JPH1140554A - Insulating film forming material, and method for forming insulating film and semiconductor device using it - Google Patents

Insulating film forming material, and method for forming insulating film and semiconductor device using it

Info

Publication number
JPH1140554A
JPH1140554A JP19606497A JP19606497A JPH1140554A JP H1140554 A JPH1140554 A JP H1140554A JP 19606497 A JP19606497 A JP 19606497A JP 19606497 A JP19606497 A JP 19606497A JP H1140554 A JPH1140554 A JP H1140554A
Authority
JP
Japan
Prior art keywords
insulating film
siloxane
formula
group
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19606497A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakada
義弘 中田
Shunichi Fukuyama
俊一 福山
Tomoko Katayama
倫子 片山
Jo Yamaguchi
城 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19606497A priority Critical patent/JPH1140554A/en
Publication of JPH1140554A publication Critical patent/JPH1140554A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form an insulating film of low dielectric constant and high reliability for raising response speed in a multi-layer interconnection structure with the insulating film employed, by using an insulating film formation material comprising siloxane composition containing a specific amount of siloxane of cage structure of Si8 . SOLUTION: An insulating film formation material comprising siloxane composition containing 50 vol.% or more of siloxane of cage structure of Si8 is prepared. The siloxane of cage structure of Si8 has a cubic structure represented by a constitutional formula (R coupled with each silicon is H, F, and organic group, and representative example of organic group includes methyl group, alkyl group of carbon numbers 1-6 such as ethyl group, alkenyl group of carbon numbers 1-6 such as vinyl group, and phenyme group), while silicon atom present at each vertex of cube and oxygen atom at intermediate of each side of cube. Relating to a film obtained from a siloxane containing organic group, H and F is suitable for R considering crack, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路の
多層配線における絶縁膜を形成するための材料、及びこ
の材料を用いて形成した絶縁膜を含む半導体装置に関す
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a material for forming an insulating film in multilayer wiring of a semiconductor integrated circuit, and a semiconductor device including the insulating film formed using the material.

【0002】[0002]

【従来の技術】半導体集積回路の集積度の増加及び素子
密度の向上に伴い、特に半導体素子の多層化への要求が
高まっている。更に、配線の微細化による配線容量の増
加を防ぐために、配線を厚くすることがますます必要と
されている。こうしたことから、多層構造の半導体集積
回路における配線による段差はますます大きくなる傾向
がある。
2. Description of the Related Art With the increase in the degree of integration of semiconductor integrated circuits and the increase in element density, demands for multi-layer semiconductor elements have been increasing. Further, in order to prevent an increase in wiring capacitance due to miniaturization of wiring, it is increasingly necessary to increase the thickness of wiring. For this reason, the level difference due to wiring in a semiconductor integrated circuit having a multilayer structure tends to be further increased.

【0003】一方、配線遅延(T)は、配線抵抗(R)
と配線間の容量(C)により影響を受け、配線長をLと
すれば、下記の式(1)で示される。
On the other hand, the wiring delay (T) is the wiring resistance (R)
And the capacitance between the wirings (C), and if the wiring length is L, it is expressed by the following equation (1).

【0004】[0004]

【数1】 (Equation 1)

【0005】そして絶縁膜の誘電率をεr とすれば、式
(1)の配線間容量Cは下記の式(2)で表される。
If the dielectric constant of the insulating film is ε r , the capacitance C between the wirings in the equation (1) is expressed by the following equation (2).

【0006】[0006]

【数2】 (Equation 2)

【0007】なお、この式において、Sは電極面積、ε
0 は真空の誘電率、dは膜厚を表す。これらの式から明
らかなように、配線遅延Tを小さくするためには、絶縁
膜の低誘電率化が有効な手段となる。
In this equation, S is the electrode area, ε
0 represents the dielectric constant of vacuum and d represents the film thickness. As is apparent from these equations, it is effective to reduce the dielectric constant of the insulating film to reduce the wiring delay T.

【0008】従来、半導体集積回路の多層配線における
絶縁材料としては、二酸化珪素(SiO2 )、窒化珪素
(SiN)、燐珪酸ガラス(PSG)等の無機材料、あ
るいはポリイミド、有機SOGなどの有機系高分子が用
いられてきた。しかし、無機材料の膜の中で最も低い誘
電率を示すCVD−SiO2 膜で、誘電率は約4程度で
ある。また、低誘電率CVD膜として最近検討されてい
るSiOF膜で、誘電率は約3.3〜3.5であるが、
この膜は吸湿性が高く、使用しているうちに誘電率が上
昇するという問題がある。
Conventionally, as an insulating material in a multilayer wiring of a semiconductor integrated circuit, an inorganic material such as silicon dioxide (SiO 2 ), silicon nitride (SiN), and phosphosilicate glass (PSG), or an organic material such as polyimide and organic SOG has been used. Polymers have been used. However, in CVD-SiO 2 film exhibiting the lowest dielectric constant in the film of an inorganic material, a dielectric constant of about 4. Further, a SiOF film which has been recently studied as a low dielectric constant CVD film and has a dielectric constant of about 3.3 to 3.5,
This film has a high hygroscopicity and has a problem that the dielectric constant increases during use.

【0009】一方、2.5〜3.0と低い値の誘電率を
示す有機高分子膜では、ガラス転移温度が200〜35
0℃と低く、熱膨張率も大きいことから、配線へのダメ
ージが問題となっている。また、有機SOG膜では、多
層配線パターン形成時においてレジスト剥離などに用い
られている酸素プラズマアッシングにより酸化を受け、
クラックを生じるという欠点がある。また、有機SOG
を含む有機系樹脂は、配線材料であるアルミニウム及び
アルミニウムを主体とした合金や、銅及び銅を主体とし
た合金に対する密着性が低いため、配線脇にボイド(配
線と絶縁材料との間にできる空隙)を生じ、そこへ水分
が侵入して配線腐食を招く可能性があり、更にこの配線
脇ボイドは多層配線を形成するためのビアホール開口時
に位置ずれが生じた際に配線層間でのショートを招き、
信頼性を低下させる問題がある。
On the other hand, an organic polymer film having a low dielectric constant of 2.5 to 3.0 has a glass transition temperature of 200 to 35.
Since the temperature is as low as 0 ° C. and the coefficient of thermal expansion is large, damage to the wiring is a problem. In addition, the organic SOG film is oxidized by oxygen plasma ashing used for stripping resist when forming a multilayer wiring pattern,
It has the disadvantage of cracking. Organic SOG
Is low in adhesion to wiring materials such as aluminum and alloys mainly composed of aluminum and copper and alloys mainly composed of copper, so that voids are formed beside the wiring (between the wiring and the insulating material). Gaps), which may lead to moisture penetration and lead to wiring corrosion. Furthermore, these wiring side voids may cause short-circuiting between wiring layers when misalignment occurs when opening a via hole for forming a multilayer wiring. Invited,
There is a problem that reduces reliability.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、上記
のいくつかの問題を解消して、多層配線構造において低
誘電率で且つ信頼性の高い優れた絶縁膜の形成を可能に
する材料を提供することにある。この絶縁膜形成材料を
用いて多層配線の絶縁膜を形成する方法、及び絶縁膜形
成材料を用いて形成した絶縁膜を含む信頼性の高い半導
体装置を提供することも、本発明の目的である。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to form a highly reliable insulating film having a low dielectric constant in a multilayer wiring structure. Is to provide. It is also an object of the present invention to provide a method for forming an insulating film of a multilayer wiring using the insulating film forming material, and a highly reliable semiconductor device including the insulating film formed using the insulating film forming material. .

【0011】[0011]

【課題を解決するための手段】本発明の絶縁膜形成材料
は、Si8 の籠型構造のシロキサンを50vol%以上
含むシロキサン組成物からなることを特徴とする。
The insulating film forming material of the present invention is characterized by comprising a siloxane composition containing at least 50 vol% of a siloxane having a cage structure of Si 8 .

【0012】また、本発明の一つの絶縁膜形成方法(第
一の方法)は、Si8 の籠型構造のシロキサンを50v
ol%以上含むシロキサン組成物からなる絶縁膜形成材
料を基板に塗布して被膜を形成し、この被膜に300℃
以下の温度で第一の熱処理を施し、次いで300℃より
高く450℃以下の温度で第二の熱処理を施して絶縁膜
を形成することを特徴とする。
Further, in one method of forming an insulating film (first method) of the present invention, 50 v of siloxane having a cage structure of Si 8 is used.
% or more of a siloxane composition containing a siloxane composition is applied to a substrate to form a film.
The first heat treatment is performed at the following temperature, and the second heat treatment is performed at a temperature higher than 300 ° C. and 450 ° C. or less to form an insulating film.

【0013】本発明のもう一つの絶縁膜形成方法(第二
の方法)は、Si8 の籠型構造のシロキサンを50vo
l%以上含むシロキサン組成物からなる絶縁膜形成材料
を基板に塗布して被膜を形成し、そしてこの被膜に30
0℃以下の温度で紫外線を照射して絶縁膜を形成するこ
とを特徴とする。
Another method (second method) for forming an insulating film according to the present invention is a method of forming a cage-type Si 8 siloxane of 50 vol.
An insulating film forming material comprising a siloxane composition containing 1% or more is applied to a substrate to form a film, and 30%
The method is characterized in that an insulating film is formed by irradiating ultraviolet rays at a temperature of 0 ° C. or less.

【0014】本発明の更にもう一つの絶縁膜形成方法
(第三の方法)は、Si8 の籠型構造のシロキサンを5
0vol%以上含むシロキサン組成物からなる絶縁膜形
成材料を基板に塗布して被膜を形成し、この被膜に30
0℃以下の温度で紫外線を照射し、次いで300℃より
高く450℃以下の温度で熱処理を施して絶縁膜を形成
することを特徴とする。
Still another method (third method) of forming an insulating film according to the present invention is to form a cage-type siloxane of Si 8 into 5
An insulating film forming material comprising a siloxane composition containing 0 vol% or more is applied to a substrate to form a film, and 30%
An insulating film is formed by irradiating ultraviolet rays at a temperature of 0 ° C. or lower and then performing a heat treatment at a temperature higher than 300 ° C. and 450 ° C. or lower.

【0015】また、本発明の半導体装置は、配線層と絶
縁層を交互に積層して形成した多層配線構造を含む半導
体装置であって、Si8 の籠型構造のシロキサンを50
vol%以上含むシロキサン組成物からなる絶縁膜形成
材料から形成した絶縁膜の層を含むことを特徴とする。
Further, the semiconductor device of the present invention is a semiconductor device having a multilayer wiring structure formed by alternately stacking wiring layers and insulating layers, wherein 50% of siloxane having a cage structure of Si 8 is used.
It is characterized by including an insulating film layer formed from an insulating film forming material made of a siloxane composition containing at least vol%.

【0016】[0016]

【発明の実施の形態】本発明においては、Si8 の籠型
構造のシロキサンを50vol%以上含むシロキサン組
成物を絶縁膜形成材料として使用する。Si8 の籠型構
造のシロキサンは、下式
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a siloxane composition containing 50 vol% or more of a siloxane having a cage structure of Si 8 is used as an insulating film forming material. Si 8 cage-type siloxane is

【0017】[0017]

【化6】 Embedded image

【0018】で表される立方体状の構造を有し、この立
方体の各頂点にケイ素原子が存在し、立方体の各辺の中
間に酸素原子が存在している。この式の各ケイ素原子に
結合したRは、それぞれ独立に、H、F、あるいは有機
基である。有機基の代表例を挙げると、炭素数1〜6の
アルキル基(例、メチル基、エチル基等)、炭素数1〜
6のアルケニル基(例、ビニル基等)、あるいはフェニ
ル基である。有機基を含むシロキサンから得られた膜
は、半導体集積回路の多層配線構造を作る工程でレジス
ト剥離などに使用される酸素プラズマアッシングにより
酸化され、クラック発生の原因になることがあるので、
上式のRとしてより好ましいものはHあるいはFであ
る。
The silicon atom is present at each vertex of the cube, and the oxygen atom is present in the middle of each side of the cube. R bonded to each silicon atom in this formula is independently H, F, or an organic group. Representative examples of the organic group include an alkyl group having 1 to 6 carbon atoms (eg, a methyl group, an ethyl group, etc.),
6 alkenyl group (eg, vinyl group, etc.) or phenyl group. Since the film obtained from siloxane containing an organic group is oxidized by oxygen plasma ashing used for resist stripping in the process of forming a multilayer wiring structure of a semiconductor integrated circuit, it may cause cracks,
More preferred as R in the above formula is H or F.

【0019】このようなSi8 の籠型構造シロキサン
は、下式
Such a cage type siloxane of Si 8 is represented by the following formula:

【0020】[0020]

【化7】 Embedded image

【0021】で表されるような、一般にラダーシロキン
と称されるポリシロキサン(この式のRは上記と同じも
のを表し、nは正の整数を表す)を製造する際の副生物
として生成され、製造されたラダーシロキサン中に通常
は約10vol%程度含まれている。ラダーシロキサン
は、半導体集積回路の多層配線構造の絶縁膜材料として
使用されることがあるが、その場合には、副生物のSi
8 籠型構造シロキサンを除去したものが使用されてい
る。
Is produced as a by-product in the production of polysiloxanes generally referred to as ladder siroquines, where R is the same as above and n is a positive integer, represented by Usually, about 10 vol% is contained in the produced ladder siloxane. Ladder siloxane is sometimes used as an insulating film material for a multilayer wiring structure of a semiconductor integrated circuit. In this case, by-product Si
The one from which the cage-type siloxane is removed is used.

【0022】本発明で使用するSi8 籠型構造シロキサ
ンは、ラダーシロキサンの製造に伴い副生されたものを
濃縮あるいは分離して使用してもよいし、あるいは特別
に合成したものを使用してもよい。ラダーシロキサン中
の副生Si8 籠型構造シロキサンを濃縮あるいは分離す
るには、例えば、特定の溶媒に対するSi8 籠型構造シ
ロキサンとラダーシロキサンの溶解度の差を有利に利用
するこどができる。
The Si 8 cage type siloxane used in the present invention may be used by concentrating or separating by-products produced during the production of ladder siloxane, or by using a specially synthesized product. Is also good. In order to concentrate or separate the by-product Si 8 cage structure siloxane in the ladder siloxane, for example, a difference in solubility between the Si 8 cage structure siloxane and the ladder siloxane in a specific solvent can be advantageously used.

【0023】Si8 籠型構造のシロキサンは、先に示し
た構造式(1)から明らかなように立方体状の分子内に
微小空間を有するため、架橋による高分子化で低密度な
絶縁膜を形成し、それによりその絶縁膜の誘電率を低減
できる。また、本発明により得られた絶縁膜は、Si8
籠型構造シロキサンを表す上記の式(1)のRが有機基
を含まない限り無機膜であるため、レジストアッシング
処理時に酸素プラズマによる酸化を受けない。更に、R
がHである場合には、Si−H結合は撥水性であるた
め、CVD−SiOF膜において認められるような吸湿
による誘電率上昇を効果的に抑制できる。したがって、
本発明により応答速度の速い半導体集積回路が得られ
る。
Since the Si 8 cage-type siloxane has minute spaces in cubic molecules as is apparent from the structural formula (1) shown above, a low-density insulating film is formed by polymerization by crosslinking. Formed, whereby the dielectric constant of the insulating film can be reduced. The insulating film obtained according to the present invention is made of Si 8
Since R in the above formula (1) representing the cage type siloxane is an inorganic film as long as it does not contain an organic group, it is not oxidized by oxygen plasma during the resist ashing process. Further, R
Is H, since the Si—H bond is water repellent, it is possible to effectively suppress an increase in the dielectric constant due to moisture absorption as observed in the CVD-SiOF film. Therefore,
According to the present invention, a semiconductor integrated circuit having a high response speed can be obtained.

【0024】本発明の絶縁膜形成材料を構成するシロキ
サン組成物は、Si8 籠型構造のシロキサン成分を少な
くとも50vol%含んでいれば特に限定されない。S
8籠型構造シロキサン以外のシロキサン成分として
は、例えば、先に言及したラダーシロキサンや、ゾル−
ゲル法で絶縁膜を形成可能なシロキサンや、あるいはそ
のようなシロキサンの任意の混合物等を使用することが
できる。この場合、Si 8 籠型構造シロキサン以外のシ
ロキサン成分も、側鎖に有機基を持つものより、Hある
いはFを持つものを使用する方が好ましい。
Shiroki constituting the insulating film forming material of the present invention
The sun composition is Si8Low siloxane component in cage structure
There is no particular limitation as long as it contains at least 50 vol%. S
i8As a siloxane component other than the cage type siloxane
Are, for example, the ladder siloxanes mentioned above,
Siloxane that can form an insulating film by gel method or
It is possible to use any mixture of siloxanes such as
it can. In this case, Si 8Other than cage-type siloxane
The loxane component also has more H than the one having an organic group in the side chain.
Or it is preferable to use one having F.

【0025】本発明の第一の方法により絶縁膜を形成す
る際には、本発明の絶縁膜形成材料を、例えばスピンコ
ート法により、基板(通常は金属配線を有する基板)上
に塗布し、300℃以下の温度で第一の熱処理を行うこ
とにより溶媒を乾燥させるとともにSi8 籠型構造のシ
ロキサンを架橋させ(このとき、Si8 籠型構造シロキ
サン以外のシロキサン成分の架橋も進行する)、次いで
300℃より高く450℃以下の温度で第二の熱処理
(アニール)を行うことにより低誘電率の絶縁膜を形成
できる。第一の熱処理を300℃以下とするのは、架橋
が過度に進行しないようにして架橋の度合いを調節しや
すくするためであり、第二の熱処理を300℃より高く
450以下の温度とするのは、この温度範囲がアニール
にとって一般に都合がよいからである。
When an insulating film is formed by the first method of the present invention, the insulating film forming material of the present invention is applied to a substrate (usually a substrate having metal wiring) by, for example, a spin coating method. By performing the first heat treatment at a temperature of 300 ° C. or less, the solvent is dried and the siloxane having the Si 8 cage structure is crosslinked (at this time, the crosslinking of the siloxane component other than the Si 8 cage structure siloxane also proceeds). Next, a second heat treatment (annealing) is performed at a temperature higher than 300 ° C. and 450 ° C. or lower, whereby an insulating film having a low dielectric constant can be formed. The reason why the first heat treatment is set to 300 ° C. or lower is to facilitate the adjustment of the degree of cross-linking so that the cross-linking does not proceed excessively, and to set the second heat treatment to a temperature higher than 300 ° C. and 450 or lower. Is because this temperature range is generally convenient for annealing.

【0026】第一の熱処理によるシロキサンの架橋は、
酸化によるSi−O−Si結合の形成によって進行する
ため、この第一の熱処理は大気中で有利に行うことがで
きる。また、形成した絶縁膜の示す誘電率を調節するた
めに架橋の度合いを調整してもよく、この架橋度合いの
調整は熱処理温度と時間を調整することで行うことがで
きる。
The crosslinking of the siloxane by the first heat treatment is as follows:
This first heat treatment can be advantageously performed in the air since the progress is made by the formation of a Si—O—Si bond by oxidation. In addition, the degree of crosslinking may be adjusted to adjust the dielectric constant of the formed insulating film, and the adjustment of the degree of crosslinking can be performed by adjusting the heat treatment temperature and time.

【0027】アニールを目的とする第二の熱処理は、好
ましくは酸素1%以下の不活性ガス中又は真空中で行う
ようにする。これは、第一の熱処理で架橋の度合いを調
整して残した、Siに結合した水素やフッ素が、第二の
熱処理時の酸化により減少するのを抑制するためであ
る。
The second heat treatment for annealing is preferably performed in an inert gas containing 1% or less of oxygen or in a vacuum. This is to prevent hydrogen or fluorine bonded to Si, which is left after adjusting the degree of crosslinking in the first heat treatment, from being reduced by oxidation during the second heat treatment.

【0028】本発明の第二の方法では、ケイ素に結合し
た水素を含むシロキサンは大気中で紫外線を照射すると
Si−O−Si結合を形成して架橋が進行することを利
用して、大気中での紫外線照射を行うものである。この
場合の処理温度は300℃以下とするのが好ましく、こ
の理由は、300℃を超える温度に加熱すると酸化によ
る架橋が過度に進行して、シロキサンのケイ素に結合し
た水素やフッ素が減少してしまい、絶縁膜の誘電率の上
昇につながるためである。
In the second method of the present invention, the siloxane containing hydrogen bonded to silicon forms a Si—O—Si bond when irradiated with ultraviolet rays in the air, and the crosslinking proceeds. UV irradiation is performed. In this case, the treatment temperature is preferably 300 ° C. or less. This is because heating to a temperature exceeding 300 ° C. causes excessive cross-linking due to oxidation, and reduces hydrogen and fluorine bonded to silicon of the siloxane. This leads to an increase in the dielectric constant of the insulating film.

【0029】本発明の第三の方法では、第二の方法にお
ける紫外線照射に加えて、300℃より高く450℃以
下の温度での熱処理を行う。この熱処理は、第一の方法
における第二の熱処理(アニール)に相当するものであ
り、やはり酸素1%以下の不活性ガス中又は真空中で行
うのが好ましい。
In the third method of the present invention, in addition to the ultraviolet irradiation in the second method, a heat treatment at a temperature higher than 300 ° C. and 450 ° C. or less is performed. This heat treatment corresponds to the second heat treatment (annealing) in the first method, and is also preferably performed in an inert gas containing 1% or less of oxygen or in a vacuum.

【0030】本発明により形成した絶縁膜の上には、シ
リコン酸化膜等の別の絶縁膜を、例えば気相成長法等を
利用して、形成してもよい。これは、本発明により形成
した絶縁膜を外気と遮断し、膜中に残留している水素や
フッ素の減少を抑制するのに効果がある。また、この別
の絶縁膜は、その後の工程での処理(例えば化学的機械
的研磨による平坦化等の処理)で本発明による絶縁膜が
損傷を被るのを防止するのにも有効である。
On the insulating film formed according to the present invention, another insulating film such as a silicon oxide film may be formed by using, for example, a vapor growth method. This is effective in shutting off the insulating film formed according to the present invention from outside air and suppressing a decrease in hydrogen and fluorine remaining in the film. This other insulating film is also effective in preventing the insulating film according to the present invention from being damaged in a subsequent process (for example, a process such as planarization by chemical mechanical polishing).

【0031】本発明によれば、配線層と絶縁層を交互に
積層して形成した多層配線構造を含み、絶縁層の少なく
とも一つとして、Si8 の籠型構造のシロキサンを50
vol%以上含むシロキサン組成物からなる絶縁膜形成
材料から形成した低誘電率の絶縁膜の層を含む半導体装
置が得られる。本発明によるこの半導体装置は、絶縁膜
の低誘電率化により高速化が可能であり、吸湿による誘
電率の上昇が抑制されて信頼性が向上する。
According to the present invention, there is provided a multilayer wiring structure formed by alternately laminating wiring layers and insulating layers, wherein at least one of the insulating layers is made of 50% Si 8 cage-type siloxane.
A semiconductor device including a low-dielectric-constant insulating film layer formed from an insulating film-forming material made of a siloxane composition containing at least vol% is obtained. In the semiconductor device according to the present invention, the speed can be increased by lowering the dielectric constant of the insulating film, and the increase in the dielectric constant due to moisture absorption is suppressed, and the reliability is improved.

【0032】[0032]

【実施例】次に、実施例により本発明を更に説明する
が、本発明はもちろんこれらの例に限定されるものでは
ない。
Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.

【0033】〔実施例1〕上記の式(1)のRが水素で
あるSi8 籠型構造のシロキサンを50vol%含むシ
ロキサン組成物(残りのシロキサンは上記の式(2)で
示される分子量3,000のラダーシロキサンであり、
式中のRは水素である)の15wt%メチルイソブチル
ケトン溶液を、シリコン基板上に2500Å(250n
m)スピンコートし、大気中でホットプレートにて20
0℃、3分間の熱処理を施してシロキサンを架橋させる
とともに、溶媒乾燥を行った。次に、酸素をそれぞれ
0.001%から10%まで含む種々の窒素中で、40
0℃、30分間の熱処理を行い、絶縁膜を形成した。得
られた絶縁膜の誘電率は、図1の通りであった。なお、
この例及び下記の各例における誘電率は、容量計で配線
間容量を測定して、式(II)により計算で求めた。
Example 1 A siloxane composition containing 50 vol% of a Si 8 cage-type siloxane in which R in the above formula (1) is hydrogen (the remaining siloxane has a molecular weight of 3 represented by the above formula (2)) 4,000 ladder siloxanes,
A 15 wt% solution of methyl isobutyl ketone (R in the formula is hydrogen) was placed on a silicon substrate at 2500 ° (250 n).
m) Spin-coat and place on a hot plate in the air for 20 minutes.
Heat treatment was performed at 0 ° C. for 3 minutes to crosslink the siloxane, and the solvent was dried. Next, in various types of nitrogen each containing 0.001% to 10% of oxygen, 40
Heat treatment was performed at 0 ° C. for 30 minutes to form an insulating film. The dielectric constant of the obtained insulating film was as shown in FIG. In addition,
The dielectric constant in this example and each of the following examples was obtained by calculating the capacitance between wirings using a capacitance meter and calculating by the formula (II).

【0034】〔実施例2〕使用したシロキサン組成物中
のSi8 籠型構造のシロキサンを、式(1)のRが水素
とフッ素(水素:フッ素比=1:1)であるものに替え
たことを除いて、実施例1を繰り返した。得られた絶縁
膜の誘電率は図1の通りであった。
Example 2 The siloxane composition used in the siloxane composition had a Si 8 cage structure in which R in the formula (1) was hydrogen and fluorine (hydrogen: fluorine ratio = 1: 1). Example 1 was repeated, except for this. The dielectric constant of the obtained insulating film was as shown in FIG.

【0035】〔実施例3〕使用したシロキサン組成物中
のSi8 籠型構造のシロキサンを、式(1)のRがフッ
素であるものに替えたことを除いて、実施例1を繰り返
した。得られた絶縁膜の誘電率は図1の通りであった。
Example 3 Example 1 was repeated, except that the siloxane of the Si 8 cage structure in the siloxane composition used was changed to a compound in which R in the formula (1) was fluorine. The dielectric constant of the obtained insulating film was as shown in FIG.

【0036】〔実施例4〕実施例1で使用したシロキサ
ン組成物の15wt%メチルイソブチルケトン溶液をシ
リコン基板上に2500Å(250nm)スピンコート
し、大気中において200℃のホットプレート上で紫外
線を5分間照射してシロキサンを架橋させるとともに、
溶媒乾燥を行った。次に、酸素をそれぞれ0.001%
から10%まで含む種々の窒素中で、400℃、30分
間の熱処理を行い、絶縁膜を形成した。得られた絶縁膜
の誘電率は、図2の通りであった。
Example 4 A 15 wt% solution of the siloxane composition used in Example 1 in methyl isobutyl ketone was spin-coated on a silicon substrate at 2500.degree. (250 nm), and ultraviolet rays were irradiated on a hot plate at 200.degree. For a minute to crosslink the siloxane,
Solvent drying was performed. Next, each oxygen is 0.001%
In various kinds of nitrogen containing from 10% to 10%, heat treatment was performed at 400 ° C. for 30 minutes to form an insulating film. The dielectric constant of the obtained insulating film was as shown in FIG.

【0037】〔実施例5〕使用したシロキサン組成物中
のSi8 籠型構造のシロキサンを、式(1)のRが水素
とフッ素(水素:フッ素比=1:1)であるものに替え
たことを除いて、実施例4を繰り返した。得られた絶縁
膜の誘電率は図2の通りであった。
Example 5 The siloxane composition used in the siloxane composition had a Si 8 cage type siloxane in which R in the formula (1) was hydrogen and fluorine (hydrogen: fluorine ratio = 1: 1). Example 4 was repeated, except for this. The dielectric constant of the obtained insulating film was as shown in FIG.

【0038】〔実施例6〕使用したシロキサン組成物中
のSi8 籠型構造のシロキサンを、式(1)のRがフッ
素であるものに替えたことを除いて、実施例4を繰り返
した。得られた絶縁膜の誘電率は図2の通りであった。
Example 6 Example 4 was repeated, except that the siloxane of the Si 8 cage structure in the siloxane composition used was changed to a compound in which R in the formula (1) was fluorine. The dielectric constant of the obtained insulating film was as shown in FIG.

【0039】〔実施例7〕実施例1で使用したシロキサ
ン組成物の15wt%メチルイソブチルケトン溶液をシ
リコン基板上に2500Å(250nm)スピンコート
し、150℃から400℃までのいろいろな加熱温度の
ホットプレート上で大気中において紫外線を5分間照射
してシロキサンを架橋させ、且つ溶媒乾燥を行って、絶
縁膜を形成した。得られた絶縁膜の誘電率は、図3の通
りであった。
Example 7 A 15 wt% solution of the siloxane composition used in Example 1 in methyl isobutyl ketone was spin-coated at 2500 ° C. (250 nm) on a silicon substrate and heated at various heating temperatures from 150 ° C. to 400 ° C. Ultraviolet rays were irradiated on the plate in the air for 5 minutes to crosslink the siloxane, and the solvent was dried to form an insulating film. The dielectric constant of the obtained insulating film was as shown in FIG.

【0040】〔実施例8〕使用したシロキサン組成物中
のSi8 籠型構造のシロキサンを、式(1)のRが水素
とフッ素(水素:フッ素比=1:1)であるものに替え
たことを除いて、実施例7を繰り返した。得られた絶縁
膜の誘電率は図3の通りであった。
Example 8 The siloxane having a cage structure of Si 8 in the siloxane composition used was changed to a compound in which R in the formula (1) was hydrogen and fluorine (hydrogen: fluorine ratio = 1: 1). Example 7 was repeated, except for this. The dielectric constant of the obtained insulating film was as shown in FIG.

【0041】〔実施例9〕使用したシロキサン組成物中
のSi8 籠型構造のシロキサンを、式(1)のRがフッ
素であるものに替えたことを除いて、実施例7を繰り返
した。得られた絶縁膜の誘電率は図3の通りであった。
Example 9 Example 7 was repeated, except that the siloxane of the Si 8 cage structure in the siloxane composition used was changed to a compound in which R in the formula (1) was fluorine. The dielectric constant of the obtained insulating film was as shown in FIG.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
低誘電率で信頼性の高い絶縁膜を得ることができる。ま
た、この絶縁膜を採用することにより、多層配線構造に
おける応答速度の向上を図り、多層配線を含む半導体装
置の性能向上に寄与することができる。
As described above, according to the present invention,
A highly reliable insulating film having a low dielectric constant can be obtained. Further, by adopting this insulating film, the response speed in the multilayer wiring structure can be improved, and the performance of the semiconductor device including the multilayer wiring can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜3の結果を示すグラフである。FIG. 1 is a graph showing the results of Examples 1 to 3.

【図2】実施例4〜6の結果を示すグラフである。FIG. 2 is a graph showing the results of Examples 4 to 6.

【図3】実施例7〜9の結果を示すグラフである。FIG. 3 is a graph showing the results of Examples 7 to 9.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片山 倫子 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 山口 城 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Rinko Katayama 4-1-1, Kamidadanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited (72) Inventor Shiro Yamaguchi 4-1-1 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture No. 1 Inside Fujitsu Limited

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 下式 【化1】 (この式中のRは、それぞれ独立に、水素、フッ素、炭
素数1〜6のアルキル基、炭素数1〜6のアルケニル
基、あるいはフェニル基である)で表されるSi8の籠
型構造のシロキサンを50vol%以上含むシロキサン
組成物からなることを特徴とする絶縁膜形成材料。
1. The following formula: (R in this formula are each independently hydrogen, fluorine, alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms, or a phenyl group) cage structure of Si 8, represented by An insulating film forming material comprising a siloxane composition containing 50 vol% or more of the siloxane.
【請求項2】 前記Si8 の籠型構造のシロキサンの式
中のRが水素である、請求項1記載の絶縁膜形成材料。
2. The insulating film-forming material according to claim 1, wherein R in the formula of the cage-type siloxane of Si 8 is hydrogen.
【請求項3】 前記Si8 の籠型構造のシロキサンの式
中のRが水素とフッ素である、請求項1記載の絶縁膜形
成材料。
3. The insulating film forming material according to claim 1, wherein R in the formula of the siloxane having a cage structure of Si 8 is hydrogen and fluorine.
【請求項4】 前記Si8 の籠型構造のシロキサンの式
中のRがフッ素である、請求項1記載の絶縁膜形成材
料。
4. The insulating film forming material according to claim 1, wherein R in the formula of the cage-type siloxane of Si 8 is fluorine.
【請求項5】 下式 【化2】 (この式中のRは、それぞれ独立に、水素、フッ素、炭
素数1〜6のアルキル基、炭素数1〜6のアルケニル
基、あるいはフェニル基である)で表されるSi8の籠
型構造のシロキサンを50vol%以上含むシロキサン
組成物からなる絶縁膜形成材料を基板に塗布して被膜を
形成し、この被膜に300℃以下の温度で第一の熱処理
を施し、次いで300℃より高く450℃以下の温度で
第二の熱処理を施して絶縁膜を形成することを特徴とす
る絶縁膜形成方法。
5. The following formula: (R in this formula are each independently hydrogen, fluorine, alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms, or a phenyl group) cage structure of Si 8, represented by An insulating film forming material comprising a siloxane composition containing 50 vol% or more of the siloxane is applied to a substrate to form a film, and the film is subjected to a first heat treatment at a temperature of 300 ° C. or less, and then to a temperature higher than 300 ° C. and 450 ° C. An insulating film forming method, wherein a second heat treatment is performed at the following temperature to form an insulating film.
【請求項6】 下式 【化3】 (この式中のRは、それぞれ独立に、水素、フッ素、炭
素数1〜6のアルキル基、炭素数1〜6のアルケニル
基、あるいはフェニル基である)で表されるSi8の籠
型構造のシロキサンを50vol%以上含むシロキサン
組成物からなる絶縁膜形成材料を基板に塗布して被膜を
形成し、そしてこの被膜に300℃以下の温度で紫外線
を照射して絶縁膜を形成することを特徴とする絶縁膜形
成方法。
6. The following formula: (R in this formula are each independently hydrogen, fluorine, alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms, or a phenyl group) cage structure of Si 8, represented by A siloxane composition containing a siloxane composition containing 50 vol% or more of the above siloxane composition to a substrate to form a film, and irradiating the film with ultraviolet rays at a temperature of 300 ° C. or less to form an insulating film. Insulating film forming method.
【請求項7】 下式 【化4】 (この式中のRは、それぞれ独立に、水素、フッ素、炭
素数1〜6のアルキル基、炭素数1〜6のアルケニル
基、あるいはフェニル基である)で表されるSi8の籠
型構造のシロキサンを50vol%以上含むシロキサン
組成物からなる絶縁膜形成材料を基板に塗布して被膜を
形成し、この被膜に300℃以下の温度で紫外線を照射
し、次いで300℃より高く450℃以下の温度で熱処
理を施して絶縁膜を形成することを特徴とする絶縁膜形
成方法。
7. The following formula: (R in this formula are each independently hydrogen, fluorine, alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms, or a phenyl group) cage structure of Si 8, represented by An insulating film forming material comprising a siloxane composition containing 50 vol% or more of the above siloxane is applied to a substrate to form a film, and this film is irradiated with ultraviolet rays at a temperature of 300 ° C. or less, and then heated to a temperature higher than 300 ° C. and 450 ° C. or less. A method for forming an insulating film, comprising: performing heat treatment at a temperature to form an insulating film.
【請求項8】 300℃より高く450℃以下の温度で
の熱処理を酸素含有量1%以下の不活性ガス中又は真空
中で行う、請求項5又は7記載の方法。
8. The method according to claim 5, wherein the heat treatment at a temperature higher than 300 ° C. and not higher than 450 ° C. is performed in an inert gas having an oxygen content of 1% or lower or in a vacuum.
【請求項9】 前記Si8 の籠型構造のシロキサンの式
中のRが水素及びフッ素の一方又は両方である、請求項
5から8までのいずれか一つに記載の方法。
9. The method according to claim 5, wherein R in the formula of the Si 8 cage structure siloxane is one or both of hydrogen and fluorine.
【請求項10】 配線層と絶縁層を交互に積層して形成
した多層配線構造を含む半導体装置であって、下式 【化5】 (この式中のRは、それぞれ独立に、水素、フッ素、炭
素数1〜6のアルキル基、炭素数1〜6のアルケニル
基、あるいはフェニル基である)で表されるSi8の籠
型構造のシロキサンを50vol%以上含むシロキサン
組成物からなる絶縁膜形成材料から形成した絶縁膜の層
を含むことを特徴とする半導体装置。
10. A semiconductor device including a multilayer wiring structure formed by alternately stacking wiring layers and insulating layers, wherein the semiconductor device has the following formula: (R in this formula are each independently hydrogen, fluorine, alkyl group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms, or a phenyl group) cage structure of Si 8, represented by A semiconductor device comprising an insulating film layer formed from an insulating film forming material made of a siloxane composition containing 50 vol% or more of the siloxane.
【請求項11】 前記Si8 の籠型構造のシロキサンの
式中のRが水素及びフッ素の一方又は両方である、請求
項9記載の半導体装置。
11. The semiconductor device according to claim 9, wherein R in the formula of the siloxane having a cage structure of Si 8 is one or both of hydrogen and fluorine.
JP19606497A 1997-07-22 1997-07-22 Insulating film forming material, and method for forming insulating film and semiconductor device using it Withdrawn JPH1140554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19606497A JPH1140554A (en) 1997-07-22 1997-07-22 Insulating film forming material, and method for forming insulating film and semiconductor device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19606497A JPH1140554A (en) 1997-07-22 1997-07-22 Insulating film forming material, and method for forming insulating film and semiconductor device using it

Publications (1)

Publication Number Publication Date
JPH1140554A true JPH1140554A (en) 1999-02-12

Family

ID=16351605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19606497A Withdrawn JPH1140554A (en) 1997-07-22 1997-07-22 Insulating film forming material, and method for forming insulating film and semiconductor device using it

Country Status (1)

Country Link
JP (1) JPH1140554A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017172A (en) * 1998-06-29 2000-01-18 Toshiba Corp Silicon polymer composition, formation of silicon oxide film and semiconductor element
JP2004006983A (en) * 1998-04-28 2004-01-08 Asml Us Inc Low kappa dielectric inorganic/organic hybrid film
JP2004274052A (en) * 2003-03-04 2004-09-30 Air Products & Chemicals Inc Mechanical enhancement of high-density porous organic silicate material by uv irradiation
JP2004303770A (en) * 2003-03-28 2004-10-28 Nippon Zeon Co Ltd Process for forming organic insulating film, organic insulating film, and display
JP2005503673A (en) * 2001-09-14 2005-02-03 アクセリス テクノロジーズ インコーポレーテッド Ultraviolet curing treatment for porous low dielectric constant materials
JP2006041052A (en) * 2004-07-23 2006-02-09 Jsr Corp Semiconductor device, composition for forming insulating film therefor, silica-based film and method of forming same, and interconnect structure
JP2006190872A (en) * 2005-01-07 2006-07-20 Fujitsu Ltd Manufacturing method of semiconductor device
JP2006253510A (en) * 2005-03-11 2006-09-21 Seiko Epson Corp Insulator composition, organic semiconductor device, electronic device and electronic equipment
JP2007189223A (en) * 2007-01-04 2007-07-26 Fujitsu Ltd Method of manufacturing low dielectric constant film
US7268201B2 (en) 2003-03-28 2007-09-11 Fujifilm Corporation Insulating-film forming material and insulating film using the same
US7320828B2 (en) 2004-02-18 2008-01-22 Fujifilm Corporation Composition for forming insulating film and process for producing insulating film
WO2019049735A1 (en) * 2017-09-11 2019-03-14 東京エレクトロン株式会社 Method for forming insulating film, apparatus for processing substrate, and system for processing substrate
JP2020514465A (en) * 2016-12-30 2020-05-21 ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. Coating composition and film produced therefrom

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006983A (en) * 1998-04-28 2004-01-08 Asml Us Inc Low kappa dielectric inorganic/organic hybrid film
JP2000017172A (en) * 1998-06-29 2000-01-18 Toshiba Corp Silicon polymer composition, formation of silicon oxide film and semiconductor element
JP2005503673A (en) * 2001-09-14 2005-02-03 アクセリス テクノロジーズ インコーポレーテッド Ultraviolet curing treatment for porous low dielectric constant materials
JP2004274052A (en) * 2003-03-04 2004-09-30 Air Products & Chemicals Inc Mechanical enhancement of high-density porous organic silicate material by uv irradiation
US7268201B2 (en) 2003-03-28 2007-09-11 Fujifilm Corporation Insulating-film forming material and insulating film using the same
JP2004303770A (en) * 2003-03-28 2004-10-28 Nippon Zeon Co Ltd Process for forming organic insulating film, organic insulating film, and display
US7320828B2 (en) 2004-02-18 2008-01-22 Fujifilm Corporation Composition for forming insulating film and process for producing insulating film
JP2006041052A (en) * 2004-07-23 2006-02-09 Jsr Corp Semiconductor device, composition for forming insulating film therefor, silica-based film and method of forming same, and interconnect structure
JP2006190872A (en) * 2005-01-07 2006-07-20 Fujitsu Ltd Manufacturing method of semiconductor device
JP2006253510A (en) * 2005-03-11 2006-09-21 Seiko Epson Corp Insulator composition, organic semiconductor device, electronic device and electronic equipment
JP2007189223A (en) * 2007-01-04 2007-07-26 Fujitsu Ltd Method of manufacturing low dielectric constant film
JP2020514465A (en) * 2016-12-30 2020-05-21 ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. Coating composition and film produced therefrom
WO2019049735A1 (en) * 2017-09-11 2019-03-14 東京エレクトロン株式会社 Method for forming insulating film, apparatus for processing substrate, and system for processing substrate
JPWO2019049735A1 (en) * 2017-09-11 2020-10-01 東京エレクトロン株式会社 Insulating film film formation method, substrate processing equipment and substrate processing system

Similar Documents

Publication Publication Date Title
JP3418458B2 (en) Method for manufacturing semiconductor device
JP3276963B2 (en) Method of forming dielectric film on substrate
US6177143B1 (en) Electron beam treatment of siloxane resins
JP3174417B2 (en) Method for forming silicon oxide film
JP3568537B2 (en) Electron beam processed film for microelectronic structure
JP3210457B2 (en) Method for forming silicon oxide film
US6589862B2 (en) Process of using siloxane dielectric films in the integration of organic dielectric films in electronic devices
JP2008297550A (en) Composition for forming silica-based coating film, silica-based coating film and method for producing the same, and electronic parts
JPH1140554A (en) Insulating film forming material, and method for forming insulating film and semiconductor device using it
JP2003142477A (en) Material for forming insulation film, insulation film, method of forming the film and semiconductor device
US7830012B2 (en) Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device
US6426127B1 (en) Electron beam modification of perhydrosilazane spin-on glass
JP4756526B2 (en) Method for forming porous low dielectric constant insulating film, porous low dielectric constant insulating film formed by the method, and semiconductor device using the porous low dielectric constant insulating film
US6191183B1 (en) Method for the formation of silica thin films
JP3485425B2 (en) Method for forming low dielectric constant insulating film and semiconductor device using this film
JP3483500B2 (en) Insulating film forming material, insulating film forming method, and semiconductor device
JP2004296476A (en) Method of manufacturing semiconductor device
JP2000058540A (en) Composition for forming low-permittivity insulating film and formation thereof
JPH07242747A (en) Organosilicon polymer and semiconductor device
JP3489946B2 (en) Method for forming insulating film of semiconductor device and material for forming insulating film
JP3169565B2 (en) Low dielectric constant insulating film and method of forming the same, and semiconductor device and method of manufacturing the same
JPH09241518A (en) Resin composition and method for forming multilayer interconnection
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
JP2004260076A (en) Coating solution for formation of coating, insulating film, method for manufacturing the same, and semiconductor device
JP2003273098A (en) Composition for low dielectric constant film formation, low dielectric constant film, its manufacturing method, and semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041005