JPH0120531B2 - - Google Patents

Info

Publication number
JPH0120531B2
JPH0120531B2 JP17410583A JP17410583A JPH0120531B2 JP H0120531 B2 JPH0120531 B2 JP H0120531B2 JP 17410583 A JP17410583 A JP 17410583A JP 17410583 A JP17410583 A JP 17410583A JP H0120531 B2 JPH0120531 B2 JP H0120531B2
Authority
JP
Japan
Prior art keywords
heat
resin film
forming
silicon
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17410583A
Other languages
Japanese (ja)
Other versions
JPS6066437A (en
Inventor
Ken Ogura
Yasushi Nakabo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17410583A priority Critical patent/JPS6066437A/en
Priority to US06/581,365 priority patent/US4528216A/en
Publication of JPS6066437A publication Critical patent/JPS6066437A/en
Publication of JPH0120531B2 publication Critical patent/JPH0120531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体集積回路に用いる耐熱性樹脂膜
の形成方法に関し、特に約500℃程度の比較的高
温に耐える高耐熱性の樹脂膜の形成方法に関する
ものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for forming a heat-resistant resin film used in a semiconductor integrated circuit, and particularly to a method for forming a highly heat-resistant resin film that can withstand relatively high temperatures of about 500°C. It is.

(従来技術) 従来かかる高耐熱性樹脂膜としてはポリイミド
樹脂、耐熱性ホトレジスト、ラダーシリコン、あ
るいは有機シリコン材料等が用いられエレクトロ
ンデバイスへの応用技術の開発が非常にめざまし
い。
(Prior Art) Conventionally, polyimide resin, heat-resistant photoresist, ladder silicon, or organic silicon materials have been used as such highly heat-resistant resin films, and the development of application technology to electron devices has been extremely remarkable.

例えば、LSIの高集積化を実現するための多層
配線技術として、樹脂絶縁多層配線技術が開発さ
れ、それらの絶縁材料としては高純度ポリイミド
系樹脂が一般に使用されている。
For example, resin insulated multilayer wiring technology has been developed as a multilayer wiring technology to achieve high integration of LSIs, and high purity polyimide resin is generally used as the insulating material for these.

そしてかかるポリイミド系樹脂の他に、前記耐
熱性ホトレジストや、ラダーシリコンあるいは有
機シリコン材料が同様にLSIの高集積化を目的と
して応用検討が進められて居り、そして特に前記
ポリイミド樹脂と有機シリコン材料に関する開発
研究の進展が目ざましい。
In addition to such polyimide resins, the use of the heat-resistant photoresist, ladder silicon, or organic silicon materials is also being studied for the purpose of increasing the integration density of LSIs, and in particular, the use of the above-mentioned polyimide resins and organic silicon materials is being investigated. Progress in development research is remarkable.

しかし上述のポリイミド樹脂は、450℃程度の
熱処理で重量減少が生じ上述の多層配線工程に必
要とされる熱処理温度500℃以上ではその耐熱性
が十分とは言え難い。
However, the above-mentioned polyimide resin loses weight when heat treated at about 450°C, and its heat resistance cannot be said to be sufficient at the heat treatment temperature of 500°C or higher required for the above-mentioned multilayer wiring process.

一方有機シリコン樹脂は耐熱性が極めて高く、
例えば1000℃程度の熱処理にも十分耐える特性を
有するが、比較的厚い膜厚、具体的には1〜2μm
厚の膜を形成することが著しく困難である。
On the other hand, organic silicone resin has extremely high heat resistance.
For example, it has the property of being able to withstand heat treatment at around 1000℃, but it has a relatively thick film thickness, specifically 1 to 2 μm.
It is extremely difficult to form thick films.

一般に有機シリコン樹脂は熱処理により収縮し
てクラツクを生じ易く概ね1000Å程度迄は十分に
実用に耐えるが上述のLSIに必要な膜厚1〜2μm
では該クラツクにより殆んど実用に供しえない。
In general, organic silicone resins tend to shrink and crack due to heat treatment, and can withstand practical use up to approximately 1000 Å, but the film thickness required for the above-mentioned LSI is 1 to 2 μm.
However, due to the crack, it is almost impossible to put it to practical use.

即ち、十分な膜厚の点ではポリイミド樹脂が望
ましいが耐熱性に問題があり、該耐熱性について
は有機シリコン材料の使用が望ましいとしても上
記クラツクを生ずる重大な問題が免がれないこと
になる。
That is, polyimide resin is preferable in terms of sufficient film thickness, but it has a problem with heat resistance, and even if it is desirable to use an organic silicon material in terms of heat resistance, the serious problem that causes the above-mentioned cracks cannot be avoided. .

(発明の目的) ここに本発明者等は、かかる問題に鑑み、耐熱
性にすぐれしかも十分な膜厚を有する優れた特性
を有する樹脂膜の形成に関し検討を重ねこの発明
を完成したのである。
(Object of the Invention) In view of this problem, the inventors of the present invention have completed the present invention after repeated studies regarding the formation of a resin film having excellent properties such as excellent heat resistance and sufficient film thickness.

即ち本発明は、ピロメリテイツクジアンヒドラ
イドと、3,3′,4,4′―ベンゾフエニルテトラ
カルボキシリイツクアシドジアンヒドライドと、
4,4′―ジアミノジフエニルエーテルと、4,
4′―ジアミノジフエニルエーテル―3―カルボン
アミドとの反応体を含む溶液からなるポリイミド
樹脂前駆体溶液と、シリコン化合物溶液との混合
液をシリコン基板上に塗布し、加熱処理すること
を特徴とする耐熱樹脂膜の形成方法である。
That is, the present invention provides pyromellitic acid dianhydride, 3,3',4,4'-benzophenyltetracarboxylic acid dianhydride,
4,4'-diaminodiphenyl ether, 4,
A mixture of a polyimide resin precursor solution containing a reactant with 4'-diaminodiphenyl ether-3-carbonamide and a silicon compound solution is applied onto a silicon substrate and heat-treated. This is a method for forming a heat-resistant resin film.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

まず一般的にポリイミド樹脂及び有機シリコン
材料を使用した場合について簡単に説明する。ポ
リイミド樹脂を用いた膜形成にはポリイミド前駆
体であるポリアミツク酸溶液をシリコン基板上に
スピナー等により塗布する。ここでポリアミツク
酸の構造は次式で示される。
First, a case where a polyimide resin and an organic silicon material are generally used will be briefly explained. To form a film using polyimide resin, a polyamic acid solution, which is a polyimide precursor, is applied onto a silicon substrate using a spinner or the like. Here, the structure of polyamic acid is shown by the following formula.

その後、200℃程度の温度で加熱処理すると溶
剤が蒸発し、該ポリアミツク酸が脱水閉環して次
式のポリイミドとなる。
Thereafter, by heat treatment at a temperature of about 200° C., the solvent evaporates, and the polyamic acid undergoes dehydration and ring closure to become a polyimide of the following formula.

このようにして得られるポリイミド樹脂膜は、
空気中(酸素雰囲気中)で熱処理すると、約420
℃〜470℃の温度下で徐々に膜重量の減少が認め
られ膜厚が薄くなる(例えば特公昭51−44871等
参照)。
The polyimide resin film obtained in this way is
When heat treated in air (oxygen atmosphere), approximately 420
A gradual decrease in film weight and thinner film thickness is observed at temperatures between .degree. C. and 470.degree. C. (see, for example, Japanese Patent Publication No. 51-44871).

次に有機シリコン化合物はシリカフイルムとし
て広く知られており、例えば酢酸硅素をエチルア
ルコールに溶解したものを主成分とする(有機シ
リコン材料の組成については例えば特公昭52−
20825、52−16488号公報等参照)。
Next, organic silicon compounds are widely known as silica films, and their main component is, for example, silicon acetate dissolved in ethyl alcohol.
20825, 52-16488, etc.).

有機シリコン材料の場合は、上述の酢酸硅素溶
液を同様にスピン塗布法によりシリコン基板上に
塗布し、空気中(酸素雰囲気中)で400℃程度に
加熱することにより、SiO2膜に転ずる。得られ
たSiO2膜は例えば1000℃程度の熱処理にも耐え、
弗酸によるエツチング加工も可能であることから
不純物拡散のマスクとしても使用でき、その性質
は通常のSiO2膜と変らないが前述の如くクラツ
クを生じ易い。
In the case of an organic silicon material, the above-mentioned silicon acetate solution is similarly applied onto a silicon substrate by spin coating and heated to about 400° C. in air (in an oxygen atmosphere), thereby converting it into a SiO 2 film. The obtained SiO 2 film can withstand heat treatment of, for example, 1000℃,
Since it can be etched with hydrofluoric acid, it can also be used as a mask for impurity diffusion, and its properties are the same as ordinary SiO 2 films, but as mentioned above, it is prone to cracks.

これに対して本発明は上述の如く、特に限定さ
れたピロメリテイツクジアンヒドライドと、3,
3′,4,4′―ベンゾフエニルテトラカルボキシリ
イツクアシドジアンヒドライドと、4,4′―ジア
ミノジフエニルエーテルと、4,4′―ジアミノジ
フエニルエーテル―3―カルボンアミドとの反応
体を含む溶液からなるポリイミド樹脂前駆体溶液
と、有機シリコン溶液とを混合しシリコン基板上
に塗布し加熱したことにより、後記詳述する如く
得られる塗膜中にSi―O―Si成分とポリイミド成
分の両成分を含有した樹脂膜が形成されることに
なり上記耐熱性を著しく向上させかつ高い耐クラ
ツク性が得られたのである。
In contrast, the present invention, as mentioned above, uses a particularly limited pyromellitic dianhydride, 3,
Reactant of 3',4,4'-benzophenyltetracarboxylic acid dianhydride, 4,4'-diaminodiphenyl ether, and 4,4'-diaminodiphenyl ether-3-carbonamide By mixing a polyimide resin precursor solution containing a solution containing a polyimide resin and an organic silicone solution, applying the mixture onto a silicon substrate and heating it, the Si-O-Si component and the polyimide component are mixed in the resulting coating film, as will be described in detail later. As a result, a resin film containing both components was formed, which significantly improved the heat resistance and achieved high crack resistance.

次に本発明において有機シリコン化合物とは、
例えば次式 〔RnSi(OH)4-o〕 (式中Rは1価の炭化水素基、nは0を含む1〜
4の整数) で表わされる硅素化合物及び添加剤(ガラス質形
成剤、有機バインダー等)をアルコール主成分、
エステル、ケトン等の有機溶剤に溶解したもので
あり、上記硅素化合物が20重量%以下のものであ
る。
Next, in the present invention, the organosilicon compound is
For example, the following formula [RnSi(OH) 4-o ] (wherein R is a monovalent hydrocarbon group, n is 1 to 0 including 0)
(an integer of 4) and additives (vitreous forming agents, organic binders, etc.) as the main component of alcohol,
It is dissolved in an organic solvent such as ester or ketone, and contains 20% by weight or less of the silicon compound.

次に本発明において、シリコン基板上に塗布し
た上述塗布膜の加熱は80〜500℃の範囲にて行う
のが適当である。
Next, in the present invention, it is appropriate to heat the above-mentioned coating film coated on a silicon substrate at a temperature in the range of 80 to 500°C.

(実施例) 以下本発明を具体的な実施例に基づいて詳細に
説明する。
(Examples) The present invention will be described in detail below based on specific examples.

実施例 1 ポリイミド前駆体として、ピロメリテイツクジ
アンヒドライドと、3,3′,4,4′―ベンゾフエ
ニルテトラカルボキシリイツクアシドジアンヒド
ライドと、4,4′―ジアミノジフエニルエーテル
と、4,4′―ジアミノジフエニルエーテル―3―
カルボンアミドとをN―メチル―2ピロリドン溶
液に溶解した反応体(樹脂濃度分14.2%)の溶液
20c.c.と、上述の有機シリコン化合物溶液(例えば
酢酸硅素、SiO2濃度分3%)10c.c.とを準備しこ
れらを混合した。得られた混合物をスピナーによ
りシリコン基板上にスピン塗布した後該シリコン
基板を100℃で1時間加熱した。その結果1〜
2μmの膜厚を有し、後記の如くSi―O―Si構造及
びポリイミド構造を有する樹脂被膜がシリコン基
板上に形成されていた。この被膜の耐熱特性を調
べたところ第1図の如く耐熱特性TGA,DTAに
より測定された実線で示した特性曲線1,2が得
られた。尚ここでTGA特性とは500℃(air中)
での樹脂の重さを時間に対して計測したものであ
る。
Example 1 As polyimide precursors, pyromellitic dianhydride, 3,3',4,4'-benzophenyl tetracarboxylic acid dianhydride, and 4,4'-diaminodiphenyl ether were used. , 4,4′-diaminodiphenyl ether-3-
A solution of the reactant (resin concentration 14.2%) in which carbonamide and N-methyl-2-pyrrolidone were dissolved.
and 10 c.c. of the above-described organic silicon compound solution (for example, silicon acetate, SiO 2 concentration 3%) were prepared and mixed. The resulting mixture was spin-coated onto a silicon substrate using a spinner, and then the silicon substrate was heated at 100° C. for 1 hour. The result 1~
A resin film having a film thickness of 2 μm and having a Si--O--Si structure and a polyimide structure as described later was formed on a silicon substrate. When the heat resistance characteristics of this coating were investigated, characteristic curves 1 and 2 shown by solid lines, measured by heat resistance TGA and DTA, as shown in FIG. 1, were obtained. In addition, TGA characteristics are 500℃ (in air)
The weight of the resin is measured against time.

同様に前記ポリイミド樹脂単体(以後PIと略
記する)の耐熱特性は同曲線3,4で示される。
両者を比較すると先ず特性曲線1と3において本
発明の減量率は上記PI3よりも長時間側にシフ
トしていることが明らかに認められる。
Similarly, the heat resistance characteristics of the polyimide resin alone (hereinafter abbreviated as PI) are shown by curves 3 and 4.
Comparing the two, it is clearly recognized that in characteristic curves 1 and 3, the weight loss rate of the present invention is shifted to the longer time side than in PI3.

次にDTA特性は樹脂の温度に対する吸熱反応
あるいは発熱反応を示すものであるが、同様に特
性曲線2と4とを比較すると本発明の樹脂の特性
はPIよりも長時間側にシフトしていることが判
り、即ち発熱反応が樹脂の分解反応を示しており
発熱点が長時間側にシフトすると云うことはその
分温度に対する耐性が大きいことを示し高耐熱性
を有することが示されている。
Next, the DTA characteristics indicate an endothermic or exothermic reaction to the temperature of the resin, and similarly comparing characteristic curves 2 and 4, the characteristics of the resin of the present invention are shifted to the long-term side compared to PI. That is, the exothermic reaction indicates a decomposition reaction of the resin, and the fact that the exothermic point shifts to the long-term side indicates that the material has a correspondingly greater resistance to temperature, indicating that it has high heat resistance.

次に顕微鏡等による塗膜表面の観察結果では本
発明樹脂膜はPI樹脂膜と比較してクラツク等が
生じやすくなるという欠点は特に見出されなかつ
た。
Next, as a result of observing the surface of the coating film using a microscope, etc., no particular drawback was found in the resin film of the present invention such that cracks are more likely to occur compared to the PI resin film.

なおこれらの樹脂膜に関してFTIR(フーリエ
変換赤外吸収スペクトル分析)による分析の吸収
差スペクトルを調べた結果を第2図に示す(樹脂
膜を350℃1Hキユアした後FTIR分析したもの)。
波数1070にSi―O―Siによる吸収が見られると同
時に波数1790にイミド結合による吸収が出ており
本発明樹脂膜はSi―O―Si成分とポリイミド成分
との合成されたものであることを示すと同時にイ
ミド生成反応がPIよりも早いことを示している。
The absorption difference spectra of these resin films analyzed by FTIR (Fourier transform infrared absorption spectroscopy) are shown in Figure 2 (FTIR analysis was performed after the resin films were cured at 350°C for 1 hour).
Absorption by Si-O-Si is observed at wave number 1070, and at the same time absorption by imide bond appears at wave number 1790, indicating that the resin film of the present invention is a composite of Si-O-Si component and polyimide component. At the same time, it also shows that the imide production reaction is faster than that of PI.

実施例 2 ポリイミド前駆体溶液20c.c.と有機シリコン化合
物溶液20c.c.とを混合したものを用いた外は上記実
施例1と同様に行ない上述の耐熱性を調べたが実
施例1を超える高耐熱性を示した。
Example 2 The above heat resistance was investigated in the same manner as in Example 1 except that a mixture of 20 c.c. of polyimide precursor solution and 20 c.c. of organic silicon compound solution was used. It showed high heat resistance.

実施例 3 実施例1における酢酸硅素の代りに水酸化硅素
を用いた外は実施例1と全く同様に行つたところ
上記各例と同等あるいはそれ以上の特性を有する
膜が得られることが確認された。
Example 3 The same procedure as in Example 1 was conducted except that silicon hydroxide was used instead of silicon acetate in Example 1, and it was confirmed that a film having properties equivalent to or better than those of the above examples could be obtained. Ta.

(発明の効果) 本発明は以上説明した如くシリコン基板上に優
れた耐熱性、耐被覆性を有する膜を形成し得るの
で特に超高集積回路の各種絶縁膜に利用して優れ
た効果を発揮し、工業的利用価値は極めて高い。
(Effects of the Invention) As explained above, the present invention can form a film having excellent heat resistance and coating resistance on a silicon substrate, and therefore it can be particularly applied to various insulating films of ultra-highly integrated circuits to exhibit excellent effects. However, its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明耐熱樹脂膜の耐熱特性図、第2
図は同FTIR分析特性図である。
Figure 1 is a heat resistance characteristic diagram of the heat-resistant resin film of the present invention, Figure 2
The figure shows the same FTIR analysis characteristic diagram.

Claims (1)

【特許請求の範囲】 1 ピロメリテイツクジアンヒドライドと、3,
3′,4,4′―ベンゾフエニルテトラカルボキシリ
イツクアシドジアンヒドライド、4,4′―ジアミ
ノジフエニルエーテルと、4,4′―ジアミノジフ
エニルエーテル―3―カルボンアミドとの反応体
を含む溶液からなるポリイミド樹脂前駆体溶液
と、シリコン化合物溶液との混合液をシリコン基
板上に塗布し、加熱処理することを特徴とする耐
熱樹脂膜の形成方法。 2 前記有機シリコン化合物溶液が酢酸硅素をエ
チルアルコールに溶解したものを主成分とする特
許請求の範囲第1項記載の耐熱樹脂膜の形成方
法。 3 前記ポリイミド樹脂前駆体溶液と有機シリコ
ン化合物溶液との混合物をシリコン基板上に塗布
し、加熱することにより該樹脂膜中にSi―O―Si
構造を形成し含有させる特許請求の範囲第1項記
載の耐熱樹脂膜の形成方法。 4 前記有機シリコン化合物溶液が水酸化硅素を
エチルアルコールに溶解したものを主成分とする
ものである特許請求の範囲第1項記載の耐熱樹脂
膜の形成方法。
[Scope of Claims] 1. pyromellitic dianhydride; 3.
A reactant of 3',4,4'-benzophenyltetracarboxylic acid dianhydride, 4,4'-diaminodiphenyl ether, and 4,4'-diaminodiphenyl ether-3-carbonamide. A method for forming a heat-resistant resin film, comprising applying a mixed solution of a polyimide resin precursor solution and a silicon compound solution onto a silicon substrate, and subjecting the mixture to a heat treatment. 2. The method for forming a heat-resistant resin film according to claim 1, wherein the organic silicon compound solution contains silicon acetate dissolved in ethyl alcohol as a main component. 3 A mixture of the polyimide resin precursor solution and an organic silicon compound solution is applied onto a silicon substrate and heated to form Si-O-Si in the resin film.
A method for forming a heat-resistant resin film according to claim 1, which comprises forming and containing a structure. 4. The method of forming a heat-resistant resin film according to claim 1, wherein the organic silicon compound solution contains silicon hydroxide dissolved in ethyl alcohol as a main component.
JP17410583A 1983-02-24 1983-09-22 Forming method of heat-resistant resin film Granted JPS6066437A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17410583A JPS6066437A (en) 1983-09-22 1983-09-22 Forming method of heat-resistant resin film
US06/581,365 US4528216A (en) 1983-02-24 1984-02-17 Process for forming heat-resistant resin films of polyimide and organosilicic reactants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17410583A JPS6066437A (en) 1983-09-22 1983-09-22 Forming method of heat-resistant resin film

Publications (2)

Publication Number Publication Date
JPS6066437A JPS6066437A (en) 1985-04-16
JPH0120531B2 true JPH0120531B2 (en) 1989-04-17

Family

ID=15972730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17410583A Granted JPS6066437A (en) 1983-02-24 1983-09-22 Forming method of heat-resistant resin film

Country Status (1)

Country Link
JP (1) JPS6066437A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116360B2 (en) * 1986-06-02 1995-12-13 東レ株式会社 Polyimide coating agent composition
JPH0834202B2 (en) * 1986-06-11 1996-03-29 東レ株式会社 Method for manufacturing semiconductor device
JPH07116407B2 (en) * 1986-07-08 1995-12-13 東レ株式会社 Passive method for semiconductor device
JP2001288362A (en) * 2000-04-05 2001-10-16 Hitachi Ltd Heat-resistant resin composition and method for producing the same

Also Published As

Publication number Publication date
JPS6066437A (en) 1985-04-16

Similar Documents

Publication Publication Date Title
EP0517475B1 (en) Process for coating a substrate with a silica precursor
CA2051174C (en) Polyimide adhesion on reactive metals
US5547703A (en) Method of forming si-o containing coatings
JPH04224824A (en) Polyimide having low tce
US6074695A (en) Composition and process for forming electrically insulating thin films
JPH0120531B2 (en)
EP0869515A1 (en) Composition and process for forming electrically insulating thin films
JP2002534804A (en) Dielectric film with organic hydride siloxane resin
JP2000340651A (en) Manufacture of film having low dielectric constant
US5569731A (en) N,N' disubstituted perylene diamide
JP2004307693A (en) Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device
JPH09298241A (en) Semiconductor device and manufacture thereof
JPH0120532B2 (en)
JP2743366B2 (en) Method for manufacturing multilayer wiring structure using resin interlayer film
JPS62261149A (en) Manufacture of semiconductor device
Matsuoka et al. Ester‐type photosensitive polyimide precursor with low thermal expansion coefficient
JPH0216007B2 (en)
JPS61273806A (en) Insulation covered wire
JP2979558B2 (en) Method of forming multilayer wiring interlayer insulating film of semiconductor device
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
JPH1131690A (en) Method of forming porous film
JPH0439371A (en) Formation of insulating film and semiconductor device having insulating film
JPH04359056A (en) Resin composition and method for forming layer insulating film
JPS59107524A (en) Method for formation of interlayer insulating film for semiconductor element
JPH02192729A (en) Manufacture of insulating layer