JP3396791B2 - Method of forming insulating film - Google Patents

Method of forming insulating film

Info

Publication number
JP3396791B2
JP3396791B2 JP20468294A JP20468294A JP3396791B2 JP 3396791 B2 JP3396791 B2 JP 3396791B2 JP 20468294 A JP20468294 A JP 20468294A JP 20468294 A JP20468294 A JP 20468294A JP 3396791 B2 JP3396791 B2 JP 3396791B2
Authority
JP
Japan
Prior art keywords
insulating film
forming
sir
chain group
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20468294A
Other languages
Japanese (ja)
Other versions
JPH0870042A (en
Inventor
英俊 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20468294A priority Critical patent/JP3396791B2/en
Publication of JPH0870042A publication Critical patent/JPH0870042A/en
Application granted granted Critical
Publication of JP3396791B2 publication Critical patent/JP3396791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁膜の形成方法に関す
るものであり、特に、半導体集積回路装置に用いるシラ
ザン結合を有する有機シリコンを用いた層間絶縁膜の形
成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating film, and more particularly to a method for forming an interlayer insulating film using organic silicon having a silazane bond used in a semiconductor integrated circuit device.

【0002】[0002]

【従来の技術】従来、半導体集積回路装置においては、
多層配線構造が採用されており、各配線層間の絶縁をす
るためにモノシラン等から形成される通常のCVD膜等
の層間絶縁膜が用いられていた。しかし、集積度の向上
と共に配線層の層数が増加し、この増加に伴う段差の増
大により配線層のカバレッジ不良が発生しやすくなるた
め、配線層に起因する段差の平坦化が必要不可欠となっ
ていた。
2. Description of the Related Art Conventionally, in a semiconductor integrated circuit device,
A multilayer wiring structure has been adopted, and an ordinary interlayer insulating film such as a CVD film formed of monosilane has been used to insulate each wiring layer. However, as the number of wiring layers increases as the degree of integration increases, and the increase in steps due to this increase easily causes poor coverage of the wiring layers, it is essential to flatten the steps caused by the wiring layers. Was there.

【0003】従来の平坦化技術としては、TEOS(T
etra−Ethyl−Ortho−Silicat
e)とオゾン(O3 )とを反応させてシリコン酸化膜を
形成する方法やSOG(スピンオングラス)を塗布して
熱処理し、次いで、エッチバックして下層配線層上から
SOG膜を除去し、新たに全面にCVD法を用いて絶縁
膜を形成する等の方法が採用されていた。
As a conventional flattening technique, TEOS (T
Etra-Ethyl-Ortho-Silicat
e) a method of reacting ozone (O 3 ) to form a silicon oxide film, or applying SOG (spin-on-glass) to heat treatment, and then etching back to remove the SOG film from the lower wiring layer, A method such as newly forming an insulating film on the entire surface by using the CVD method has been adopted.

【0004】[0004]

【発明が解決しようとする課題】しかし、図2に示すよ
うにTEOSとオゾンを反応させてTEOS−NSG膜
(TEOS−Nondoped−Si11cate−G
lass)を形成する方法は、BPSG膜等の下地絶縁
層2上に形成されたアルミニウム合金等の配線層3同士
の間隔が広い領域、即ち、幅広の段差部において、当該
段差部がシリコン酸化膜5によって十分に平坦化されな
いという欠点があった。
However, as shown in FIG. 2, TEOS-NSG film (TEOS-Nondoped-Si11cate-G) is produced by reacting TEOS with ozone.
The method of forming the (lass) is performed in a region where the distance between the wiring layers 3 made of aluminum alloy or the like formed on the base insulating layer 2 such as the BPSG film is wide, that is, in the wide step portion, the step portion is a silicon oxide film. However, there was a drawback in that the surface was not flattened sufficiently.

【0005】また、SOGを用いる方法は、塗布、熱処
理、エッチバック、及び、CVD膜の堆積等の複数のプ
ロセスを組み合わせる必要があるため、ターンアラウン
ドタイム(TAT:要処理時間)が長く、製造コストが
上昇するという欠点があり、更に、このSOGを用いる
方法は、スピンコータとCVD装置の二種類の装置を必
要とし、且つ、この二種類の装置は互いに整合性がない
ので、一つの装置にまとめることができないという欠点
があった。
Further, the method using SOG requires a combination of a plurality of processes such as coating, heat treatment, etchback, and deposition of a CVD film, resulting in a long turnaround time (TAT: required processing time) and a manufacturing process. This method has the disadvantage of increased cost. Furthermore, the method using SOG requires two types of equipment, a spin coater and a CVD equipment, and these two types of equipment are not compatible with each other, so that one equipment is used. The drawback was that they could not be put together.

【0006】したがって、本発明は、簡単な成膜プロセ
スによって幅広の段差部を含めて全体を平坦化し、更
に、膜質の良好な絶縁膜の堆積が可能な絶縁膜の製造方
法を提供することを目的とするものである。
Therefore, the present invention provides a method for manufacturing an insulating film, which is capable of flattening the entire surface including a wide step portion by a simple film forming process and further capable of depositing an insulating film having good film quality. It is intended.

【0007】[0007]

【課題を解決するための手段】本発明は、プラズマ化学
気相堆積法(プラズマCVD法)を使用して、シラザン
結合を有する有機シリコンのうち、側鎖基として−Cn
2n+1(n=0,1,2,3,・・・n)を有する(S
iR 2 NR’) 3 〔但し、R及びR’は−C n
2n+1 (n=0,1,2,3,・・・n)で表される側鎖
基〕または(SiR 2 NR’) 4 〔但し、R及びR’は
−C n 2n+1 (n=0,1,2,3,・・・n)、或い
は、側鎖基として−OCn 2n+1(n=1,2,3,・
・・n)またはHを有するものと、酸化剤との混合ガス
をプラズマ反応させて絶縁膜を堆積させることを特徴と
するものである。
The present invention is directed to plasma chemistry.
Using the vapor deposition method (plasma CVD method), silazane
Among the organic silicon having a bond, -C is used as a side chain group.n
H2n + 1Have (n = 0, 1, 2, 3, ... N)(S
iR 2 NR ') 3 [However, R and R'are -C n H
2n + 1 Side chains represented by (n = 0, 1, 2, 3, ... N)
Group] or (SiR 2 NR ') Four [However, R and R'are
-C n H 2n + 1 (N = 0, 1, 2, 3, ... n), Some
Is -OC as a side chain group.nH2n + 1(N = 1, 2, 3, ...
..Mixed gas of n) or H and oxidizer
Is characterized in that an insulating film is deposited by plasma reaction of
To do.

【0008】[0008]

【作用】プラズマCVD法により絶縁膜を形成する際
に、側鎖基として−Cn 2n+1(n=0,1,2,3,
・・・n)を有する(SiR 2 NR’) 3 〔但し、R及
びR’は−C n 2n+1 (n=0,1,2,3,・・・
n)で表される側鎖基〕または(SiR 2 NR’)
4 〔但し、R及びR’は−C n 2n+1 (n=0,1,
2,3,・・・n)、或いは、側鎖基として−OCn
2n+1(n=1,2,3,・・・n)またはHを有するシ
ラザン結合を有する有機シリコンを用いた場合に、堆積
段階における絶縁膜の流動性が極めて高いので、幅広の
段差部が存在する場合にも、半導体装置全体の平坦化が
可能になる。
[Function] When forming an insulating film by the plasma CVD method
And -C as a side chain groupnH2n + 1(N = 0, 1, 2, 3,
... n)(SiR 2 NR ') 3 [However, R and
And R'is -C n H 2n + 1 (N = 0, 1, 2, 3, ...
n) side chain group] or (SiR 2 NR ')
Four [However, R and R'are -C n H 2n + 1 (N = 0, 1,
2, 3, ... n), Or —OC as the side chain groupnH
2n + 1(N = 1,2,3, ... n) or a series having H
Deposition when using organosilicon having a lazan bond
Since the insulation film has extremely high fluidity in the stage,
Even if there is a step, it is possible to flatten the entire semiconductor device.
It will be possible.

【0009】また、側鎖基として−OCn 2n+1(n=
1,2,3,・・・n)またはHを有するシラザン結合
を有する有機シリコンを用いた場合には、得られた絶縁
膜の中に有機成分がほとんど存在しないので、絶縁膜の
膜質も向上する。
As a side chain group, --OC n H 2n + 1 (n =
1,2,3, ... n) or H containing silazane bond-containing organic silicon, the resulting insulating film contains almost no organic component, so that the quality of the insulating film is improved. To do.

【0010】[0010]

【実施例】以下、図1を参照して本発明の2つの実施例
に係わる絶縁膜の形成方法を説明する。なお、図1は、
シリコン半導体基板1上にBPSG膜等の下地絶縁層2
を形成し、その上にスパッタ法によってアルミニウム合
金等の導電膜を1μmの厚さに堆積し、パターニングし
て配線層3を形成したのちに本発明によるプラズマCV
D膜4を形成した状態を示すものであり、2つの実施例
に共通する構造である。
EXAMPLES Hereinafter, a method of forming an insulating film according to two examples of the present invention will be described with reference to FIG. In addition, in FIG.
A base insulating layer 2 such as a BPSG film on a silicon semiconductor substrate 1.
Is formed, a conductive film of an aluminum alloy or the like is deposited thereon by sputtering to a thickness of 1 μm, and the wiring layer 3 is formed by patterning, and then the plasma CV according to the present invention is formed.
This shows a state in which the D film 4 is formed, and the structure is common to the two examples.

【0011】第1の実施例 上述のようにアルミニウム合金等の配線層3を形成した
シリコン半導体基板1を平行平板型プラズマCVD装置
に導入し、一般式(SiR2 NR’)3 で表され、側鎖
基(R及びR’)として−Cn 2n+1(n=0,1,
2,3,・・・n)を有する有機シリコンの一つであ
り、構造模式図1に示す構造を有するヘキサメチルシク
ロトリシラザン(Si3 6 213 、略称HMCTS
Z:Siに結合するRがn=1のCH3 で、Nに結合す
るR’がn=0のH)と酸化剤としての酸素との混合ガ
スを使用して絶縁膜を形成するものである。
First Embodiment A silicon semiconductor substrate 1 on which a wiring layer 3 of aluminum alloy or the like is formed as described above is introduced into a parallel plate type plasma CVD apparatus and is represented by the general formula (SiR 2 NR ′) 3 . As a side chain group (R and R ′), —C n H 2n + 1 (n = 0, 1,
Hexamethylcyclotrisilazane (Si 3 C 6 H 21 N 3 , abbreviated as HMCTS, which is one of the organic silicon having 2, 3, ... N) and has the structure shown in FIG.
Z: Si is used to form an insulating film by using a mixed gas of R 3 which is n = 1 and CH 3 where R is n and R ′ which is bonded to N is n = 0) and oxygen as an oxidant. is there.

【0012】[0012]

【化1】 [Chemical 1]

【0013】この場合、シリコン半導体基板1を約10
0℃の温度に加熱し、ヘリウムガスでバブリングしたH
MCTSZと酸素とを、酸素とHMCTSZのキャリア
ガスであるヘリウムとの流量比が1:2となるように混
合ガスをプラズマCVD装置に導入する。なお、ソース
であるHMCTSZを一定の温度にしてバブリングする
ので、Heの流量によりHMCTSZの供給量は一義的
に決定される。
In this case, the silicon semiconductor substrate 1 has about 10
H heated to a temperature of 0 ° C and bubbled with helium gas
A mixed gas of MCTSZ and oxygen is introduced into the plasma CVD apparatus so that the flow ratio of oxygen to helium, which is a carrier gas of HMCTSZ, is 1: 2. Since the source HMCTSZ is bubbled at a constant temperature, the supply amount of HMCTSZ is uniquely determined by the flow rate of He.

【0014】そして、周波数が13.56MHzの高周
波電力を電力密度が0.4W/cm2 となるようにプラ
ズマCVD装置の平行平板電極に印加してHMCTSZ
と酸素との混合ガスをプラズマ化し、シリコン半導体基
板1上の配線層3を覆うように絶縁膜4を0.7μmの
厚さに堆積することにより、図1に示すように配線層3
の間隔が広い幅広の段差部においても得られた絶縁膜4
の表面が平坦化される。
Then, high frequency power having a frequency of 13.56 MHz is applied to the parallel plate electrodes of the plasma CVD apparatus so that the power density becomes 0.4 W / cm 2, and HMCTSZ is applied.
A mixed gas of oxygen and oxygen is turned into plasma, and an insulating film 4 is deposited to a thickness of 0.7 μm so as to cover the wiring layer 3 on the silicon semiconductor substrate 1. As a result, as shown in FIG.
Insulating film 4 obtained even in a wide step portion with a wide interval
Surface is flattened.

【0015】この場合、堆積段階における絶縁膜4の流
動性が極めて高いので、0.5μm堆積させた段階で配
線層3上の絶縁膜分は段差部に流れ出し、高さ1μmの
段差部全体を埋め込み、全体が略平坦な状態となる。こ
の後、更に0.2μm(合計0.7μm)堆積させる
と、高さ1μmの配線層3上も含めて表面全体が絶縁膜
4で覆われると共に平坦化されることになる。
In this case, since the insulating film 4 has extremely high fluidity in the deposition step, the insulating film portion on the wiring layer 3 flows out to the step portion when 0.5 μm is deposited, and the entire step portion having a height of 1 μm is flown. After embedding, the entire structure becomes substantially flat. After that, when further 0.2 μm (total 0.7 μm) is deposited, the entire surface including the wiring layer 3 having a height of 1 μm is covered with the insulating film 4 and planarized.

【0016】この第1の実施例においては、ヘキサメチ
ルシクロトリシラザン(Si3 6213 )が用いら
れているが、ヘキサメチルシクロトリシラザンに限られ
るものではなく、ヘキサメチルシクロトリシラザンが含
まれる下記の構造模式図2に示す構造を有する、一般式
(SiR2 NR’)3 で表され、側鎖基として−Cn
2n+1(n=0,1,2,3,・・・n)を有するシラザ
ン結合を有する有機シリコンを用いても良い。
Although hexamethylcyclotrisilazane (Si 3 C 6 H 21 N 3 ) is used in the first embodiment, it is not limited to hexamethylcyclotrisilazane, and hexamethylcyclotrisilazane is used. It has a structure represented by the following structural schematic diagram 2 containing silazane, is represented by the general formula (SiR 2 NR ′) 3 , and has —C n H as a side chain group.
Organosilicon having a silazane bond having 2n + 1 (n = 0, 1, 2, 3, ... N) may be used.

【0017】[0017]

【化2】 [Chemical 2]

【0018】さらに、オクタメチルシクロテトラシラザ
ン(Si4 8 284 :Siに結合するRがCH
3 で、Nに結合するR’がH)などで知られる下記の構
造模式図に示す構造を有する、一般式(SiR2
R’)4 で表され、側鎖基として−Cn 2n+1(n=
0,1,2,3,・・・n)を有するシラザン結合を有
する有機シリコンを用いても良い。
Further, R bound to octamethylcyclotetrasilazane (Si 4 C 8 H 28 N 4 : Si is CH
3, having the structure shown in structural Scheme 3 below in which R 'is H) are known for binding to N, the general formula (SiR 2 N
R ′) 4 is represented by —C n H 2n + 1 (n =
Organosilicon having a silazane bond having 0, 1, 2, 3, ... N) may be used.

【0019】[0019]

【化3】 [Chemical 3]

【0020】また、上記第1の実施例においては、酸化
剤として酸素を用いているが、酸素以外にも一酸化窒素
(NO)或いは一酸化二窒素(N2 O)を用いても同様
な効果が得られ、さらに、有機シリコンとしてヘキサメ
チルシクロトリシラザン(Si3 6 213 )以外の
上記の構造模式図2又は3の構造を有する有機シリコン
を用いた場合にも、酸化剤として一酸化窒素(NO)或
いは一酸化二窒素(N2 O)を用いても良いものであ
る。
In the first embodiment, oxygen is used as the oxidant, but nitric oxide (NO) or dinitrogen monoxide (N 2 O) may be used instead of oxygen. The effect is obtained, and even when the organic silicon having the structure of the above structural schematic diagram 2 or 3 other than hexamethylcyclotrisilazane (Si 3 C 6 H 21 N 3 ) is used as the organic silicon, an oxidizing agent is also used. Alternatively, nitric oxide (NO) or nitrous oxide (N 2 O) may be used.

【0021】次に、側鎖基として−OCn 2n+1(n=
1,2,3,・・・n)またはHを有するシラザン結合
を有する有機シリコンを用いた第2の実施例を説明す
る。この実施例は、上記第1の実施例と比較し得られる
絶縁膜の膜質を改善するものであるが、この第2の実施
例において使用するプラズマCVD装置、及び、絶縁膜
を堆積させるシリコン半導体基板の構成は上記第1の実
施例と同様である。
[0021] Next, -OC as side groups n H 2n + 1 (n =
A second embodiment using organic silicon having a silazane bond having 1, 2, 3, ... N) or H will be described. This embodiment improves the film quality of the insulating film obtained in comparison with the first embodiment, but the plasma CVD apparatus used in this second embodiment and the silicon semiconductor for depositing the insulating film are used. The structure of the substrate is the same as that of the first embodiment.

【0022】第2の実施例 一般式(SiR2 NR’)3 で表され、側鎖基として−
OCn 2n+1(n=1,2,3,・・・n)またはHを
有する有機シリコンの一つであり、構造模式図に示す
構造を有するヘキサメトキシシクロトリシラザン(Si
3 6 2136 :Rがn=1のOCH3 で、R’が
H、略称はこの場合もHMCTSZ)と酸化剤としての
酸素との混合ガスを使用して絶縁膜を形成するものであ
る。
Second Example Represented by the general formula (SiR 2 NR ′) 3 and having a side chain group of —
OC n H 2n + 1 (n = 1,2,3, ··· n) is one of the organic silicon with or H, hexamethoxymethylmelamine cyclotrimethylene silazane (Si having the structure shown in schematic structure 4
3 C 6 H 21 N 3 O 6 : R is n = 1 OCH 3 and R ′ is H (abbreviation is also HMCTSZ) and an insulating film is formed using a mixed gas of oxygen as an oxidant To do.

【0023】[0023]

【化4】 [Chemical 4]

【0024】この場合は、シリコン半導体基板1を約1
00℃の温度に加熱し、ヘリウムガスでバブリングした
HMCTSZと酸素とを、酸素とHMCTSZのキャリ
アガスであるヘリウムとの流量比が1:10となるよう
に混合ガスをプラズマCVD装置に導入し、絶縁膜4を
堆積させる。
In this case, the silicon semiconductor substrate 1 is approximately 1
HMCTSZ and oxygen which have been heated to a temperature of 00 ° C. and bubbled with helium gas are introduced into the plasma CVD apparatus so that the flow rate ratio of oxygen to helium, which is the carrier gas of HMCTSZ, is 1:10. The insulating film 4 is deposited.

【0025】赤外線吸収スペクトル分析からは、第2の
実施例によって形成されたプラズマCVD絶縁膜には有
機成分に対応する吸収ピークが存在しないので、上記第
1の実施例によって形成されたプラズマCVD絶縁膜と
比較して膜中の残留有機成分が極めて少なく、より純粋
な酸化膜に近くなるので膜質が向上する。また、得られ
る平坦性は第1の実施例と同様である。
From the infrared absorption spectrum analysis, since the plasma CVD insulating film formed according to the second embodiment has no absorption peak corresponding to the organic component, the plasma CVD insulating film formed according to the first embodiment is obtained. Compared with the film, the residual organic component in the film is extremely small, and the film quality is improved because it is closer to a pure oxide film. Further, the obtained flatness is similar to that of the first embodiment.

【0026】この場合は、酸素とHMCTSZのキャリ
アガスであるヘリウムとの流量比が1:10であるが、
1:20までは、良好な結果が得られるが、逆に1:5
になると得られる形状が悪くなってくる。即ち、酸素が
少ないほうが良い結果が得られるが、酸素が少なすぎる
と良い結果は得られない。
In this case, the flow rate ratio between oxygen and helium which is the carrier gas of HMCTSZ is 1:10,
Good results are obtained up to 1:20, but conversely 1: 5
Then, the obtained shape becomes worse. That is, better results are obtained when the oxygen content is lower, but good results are not obtained when the oxygen content is too low.

【0027】また、第2の実施例において、基板温度は
100℃であるものの、50℃にしても良好な結果が得
られるが、150℃以上になると良い結果が得られなく
なる。即ち、本発明の工程は、極めて低温プロセスであ
るので、既に形成した不純物領域の不純物の再拡散が生
ぜず、高集積度の半導体装置にとって好ましいプロセス
である。
In the second embodiment, although the substrate temperature is 100 ° C., a good result can be obtained even at 50 ° C., but a good result cannot be obtained at 150 ° C. or higher. That is, since the process of the present invention is an extremely low temperature process, re-diffusion of impurities in the already formed impurity region does not occur, which is a preferable process for a highly integrated semiconductor device.

【0028】上記第2の実施例においては、有機シリコ
ンとしてヘキサメトキシシクロトリシラザン(Si3
6 213 6 )を用いているが、ヘキサメトキシシク
ロトリシラザンに限られるものではなく、ヘキサメトキ
シシクロトリシラザンが含まれる下記の構造模式図
示す構造を有する、一般式(SiR2 NR’)3 で表さ
れ、側鎖基として−OCn 2n+1(n=1,2,3,・
・・n)またはHを有するシラザン結合を有する有機シ
リコンを用いても良い。
In the second embodiment, hexamethoxycyclotrisilazane (Si 3 C) is used as the organic silicon.
Although using 6 H 21 N 3 O 6) , it is not limited to hexa methoxy cyclotrimethylene silazane having the structure shown in schematic structure 5 below that contains hexamethoxymethylmelamine cyclotrimethylene silazane of the general formula (SiR 2 NR ′) 3 and as a side chain group, —OC n H 2n + 1 (n = 1, 2, 3, ...
..N) or H-containing organosilicon having a silazane bond may be used.

【0029】[0029]

【化5】 [Chemical 5]

【0030】また、他の有機シリコンとしては、ヘキサ
メトキシジシラザン(Si2 6 19NO6 :RがOC
3 で、R’がH)などで知られる下記の構造模式図
に示す構造を有する、一般式(SiR3 2 NR’で表
され、側鎖基として−OCn2n+1( n =1,2,
3,・・・n )またはHを有するシラザン結合を有す
る有機シリコンを用いても良い。
As another organic silicon, hexamethoxydisilazane (Si 2 C 6 H 19 NO 6 : R is OC
In H 3, structural schematic below which R 'is H) are known for Figure 6
Represented by the general formula (SiR 3 ) 2 NR ′ having a structure shown in, and as a side chain group, —OC n H 2n + 1 (n = 1, 2,
3, ... N) or H-containing organosilicon having a silazane bond may be used.

【0031】[0031]

【化6】 [Chemical 6]

【0032】さらに、オクタメトキシシクロテトラシラ
ザン(Si4 8 284 8 :RがOCH3 で、R’
がH)などで知られる下記の構造模式図に示す構造を
有する、一般式(SiR2 NR’)4 で表され、側鎖基
として−OCn 2n+1(n=1,2,3,・・・n)ま
たはHを有するシラザン結合を有する有機シリコンを用
いても良い。
Further, octamethoxycyclotetrasilazane (Si 4 C 8 H 28 N 4 O 8 : R is OCH 3 and R '
Is represented by the general formula (SiR 2 NR ′) 4 , which has a structure shown in the following structural schematic diagram 7 known as H) or the like and has —OC n H 2n + 1 (n = 1, 2, 3, ... N) or H-containing organosilicon having a silazane bond may be used.

【0033】[0033]

【化7】 [Chemical 7]

【0034】また、上記第2の実施例においては、酸化
剤として酸素を用いているが、酸素以外にも一酸化窒素
(NO)或いは一酸化二窒素(N2 O)を用いても同様
な効果が得られ、さらに、有機シリコンとしてヘキサメ
トキシシクロトリシラザン(Si3 6 213 6
以外に上記の構造模式図5乃至7の構造を有する有機シ
リコンを用いた場合にも、酸化剤として一酸化窒素(N
O)或いは一酸化二窒素(N2 O)を用いても良いもの
である。
In the second embodiment, oxygen is used as the oxidant, but nitric oxide (NO) or dinitrogen monoxide (N 2 O) may be used instead of oxygen. Hexamethoxycyclotrisilazane (Si 3 C 6 H 21 N 3 O 6 ) as organic silicon
Besides, in the case of using the organic silicon having the structures of the above structural schematic diagrams 5 to 7, nitric oxide (N
O) or dinitrogen monoxide (N 2 O) may be used.

【0035】なお、上記の各一般式で表される有機シリ
コンを用いる場合、形成された縁膜中の有機基を減ら
すためには、側鎖基として出来るだけ水素の多いものを
用いればよいが、水素が多い有機シリコンは活性な化合
物となり取扱が危険になるので、それらのバランスを考
慮して側鎖基を適宜決定する必要がある。
[0035] In the case of using an organic silicon represented by the general formula described above, in order to reduce the formed organic groups in absolute Enmaku was may be used as a lot of hydrogen as possible as side groups However, since organic silicon containing a large amount of hydrogen becomes an active compound and becomes dangerous to handle, it is necessary to appropriately determine the side chain group in consideration of the balance thereof.

【0036】さらに、上記各実施例においては、配線層
を有するシリコン半導体基板上に絶縁膜を形成している
が、本発明はシリコン半導体基板に限られるのではな
く、他の化合物半導体基板にも適用されるものである。
Furthermore, in the above embodiments, the silicon semiconductor substrate having a wiring layer forming the insulating film, the present invention is limited to a silicon semiconductor substrate, not even of a, the other compound semiconductor substrate Also applies.

【0037】[0037]

【発明の効果】本発明によれば、絶縁膜のシリコン源と
してシラザン結合を有する有機シリコンを用いた簡単な
プラズマCVD法を用いることにより、低温プロセスに
よって幅広の段差部を有する半導体基板の表面を平坦化
することができ、したがって、多層配線層のカバレージ
不良を防止でき、半導体集積回路装置の高集積化、或い
は、高速化に大きく寄与するものである。
According to the present invention, the surface of a semiconductor substrate having a wide step portion is formed by a low temperature process by using a simple plasma CVD method using an organic silicon having a silazane bond as a silicon source of an insulating film. Therefore, it is possible to flatten the surface, and thus to prevent the coverage failure of the multi-layered wiring layer, which greatly contributes to high integration or high speed of the semiconductor integrated circuit device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のプラズマCVD法により形成
した絶縁膜の堆積状況を示す図である。
FIG. 1 is a diagram showing a deposition state of an insulating film formed by a plasma CVD method according to an embodiment of the present invention.

【図2】従来のTEOSとO3 の反応により形成したT
EOS−NSG膜(シリコン酸化膜)の堆積状況を示す
図である。
FIG. 2 T formed by a conventional reaction between TEOS and O 3.
It is a figure which shows the deposition condition of an EOS-NSG film (silicon oxide film).

【符号の説明】[Explanation of symbols]

1 シリコン半導体基板 2 下地絶縁層 3 配線層 4 プラズマCVD法により形成した絶縁膜 5 TEOSとO3 の反応により形成したTEOS−N
SG膜
1 Silicon Semiconductor Substrate 2 Base Insulating Layer 3 Wiring Layer 4 Insulating Film 5 Formed by Plasma CVD Method TEOS-N Formed by Reaction of TEOS and O 3
SG film

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 プラズマ化学気相堆積法を使用して、シ
ラザン結合を有する(SiR 2 NR’) 3 〔但し、R及
びR’は−C n 2n+1 (n=0,1,2,3,・・・
n)で表される側鎖基〕と、酸化剤との混合ガスをプラ
ズマ反応させて絶縁膜を堆積させることを特徴とする絶
縁膜の形成方法。
1. A using a plasma chemical vapor deposition, having a silazane bond (SiR 2 NR ') 3 [Here, R及
And R ′ are −C n H 2n + 1 (n = 0, 1, 2, 3, ...
n)), and a mixed gas of an oxidizing agent and a plasma reaction to deposit an insulating film.
【請求項2】 プラズマ化学気相堆積法を使用して、シ
ラザン結合を有する(SiR 2 NR’) 4 〔但し、R及
びR’は−C n 2n+1 (n=0,1,2,3,・・・
n)と、酸化剤との混合ガスをプラズマ反応させて絶縁
膜を堆積させることを特徴とする絶縁膜の形成方法。
2. A plasma chemical vapor deposition method is used to
(SiR 2 NR ′) 4 having a lazan bond [provided that R and R
And R ′ are −C n H 2n + 1 (n = 0, 1, 2, 3, ...
n) and the gas mixture of oxidizer and plasma reaction to insulate
A method for forming an insulating film, which comprises depositing a film.
【請求項3】 プラズマ化学気相堆積法を使用して、側
鎖基として、−OC n 2n+1 (n=1,2,3,・・・
n)またはHを有するシラザン結合を有する有機シリコ
ンと、酸化剤との混合ガスをプラズマ反応させて絶縁膜
を堆積させることを特徴とする絶縁膜の形成方法。
3. A plasma chemical vapor deposition method is used to
As a chain group, —OC n H 2n + 1 (n = 1, 2, 3, ...
n) or organic silico having a silazane bond having H
Insulation film by plasma reaction of mixed gas of oxygen and oxidant
A method for forming an insulating film, which comprises depositing
【請求項4】 上記シラザン結合を有する有機シリコン
として、(SiR32 NR’〔但し、R及びR’は−
OCn 2n+1(n=1,2,3,・・・n)で表される
側鎖基またはH〕を用いたことを特徴とする請求項
載の絶縁膜の形成方法。
4. The organic silicon having a silazane bond is (SiR 3 ) 2 NR ′ [wherein R and R ′ are −
4. The method for forming an insulating film according to claim 3, wherein a side chain group represented by OC n H 2n + 1 (n = 1, 2, 3, ... N) or H] is used.
【請求項5】 上記シラザン結合を有する有機シリコン
として、(SiR2NR’)3 〔但し、R及びR’は−
OCn 2n+1(n=1,2,3,・・・n)で表される
側鎖基またはH〕を用いたことを特徴とする請求項
載の絶縁膜の形成方法。
5. The organic silicon having a silazane bond is (SiR 2 NR ′) 3 [wherein R and R ′ are −
4. The method for forming an insulating film according to claim 3, wherein a side chain group represented by OC n H 2n + 1 (n = 1, 2, 3, ... N) or H] is used.
【請求項6】 上記シラザン結合を有する有機シリコン
として、(SiR2NR’)4 〔但し、R及びR’は−
OCn 2n+1(n=1,2,3,・・・n)で表される
側鎖基またはH〕を用いたことを特徴とする請求項
載の絶縁膜の形成方法。
6. The organic silicon having a silazane bond is (SiR 2 NR ′) 4 [wherein R and R ′ are −
4. The method for forming an insulating film according to claim 3, wherein a side chain group represented by OC n H 2n + 1 (n = 1, 2, 3, ... N) or H] is used.
【請求項7】 上記酸化剤として、酸素、一酸化窒素、
及び、一酸化二窒素のうちのいずれか一つを用いたこと
を特徴とする請求項1乃至のいずれか1項に記載の絶
縁膜の形成方法。
7. The oxidizing agent is oxygen, nitric oxide,
And method of forming a dielectric film according to any one of claims 1 to 6, characterized by using any one of dinitrogen monoxide.
JP20468294A 1994-08-30 1994-08-30 Method of forming insulating film Expired - Lifetime JP3396791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20468294A JP3396791B2 (en) 1994-08-30 1994-08-30 Method of forming insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20468294A JP3396791B2 (en) 1994-08-30 1994-08-30 Method of forming insulating film

Publications (2)

Publication Number Publication Date
JPH0870042A JPH0870042A (en) 1996-03-12
JP3396791B2 true JP3396791B2 (en) 2003-04-14

Family

ID=16494565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20468294A Expired - Lifetime JP3396791B2 (en) 1994-08-30 1994-08-30 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JP3396791B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498273B2 (en) * 2006-05-30 2009-03-03 Applied Materials, Inc. Formation of high quality dielectric films of silicon dioxide for STI: usage of different siloxane-based precursors for harp II—remote plasma enhanced deposition processes
US7943531B2 (en) * 2007-10-22 2011-05-17 Applied Materials, Inc. Methods for forming a silicon oxide layer over a substrate
EP3929326A3 (en) * 2011-06-03 2022-03-16 Versum Materials US, LLC Compositions and processes for depositing carbon-doped silicon-containing films
TW201533098A (en) * 2013-12-25 2015-09-01 Toagosei Co Ltd Polyalkoxysilazane and method for producing same, and coating composition and silicon-based ceramic coating obtained therefrom
EP3431629B1 (en) * 2014-10-24 2021-11-24 Versum Materials US, LLC Compositions and methods using same for deposition of silicon-containing films

Also Published As

Publication number Publication date
JPH0870042A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
JP2697315B2 (en) Method of forming fluorine-containing silicon oxide film
JP2699695B2 (en) Chemical vapor deposition
KR0135486B1 (en) Methdo of fabricating semiconductor device
JPH07312368A (en) Method to form even structure of insulation film
JPH08153784A (en) Manufacture of semiconductor device
US6858195B2 (en) Process for forming a low dielectric constant fluorine and carbon-containing silicon oxide dielectric material
KR100197765B1 (en) Method of manufacturing semiconductor
JP2008544533A (en) Method for forming dielectric film and novel precursor for carrying out the method
US6572925B2 (en) Process for forming a low dielectric constant fluorine and carbon containing silicon oxide dielectric material
JP3463416B2 (en) Method of manufacturing insulating film and semiconductor device
JP3173426B2 (en) Method for manufacturing silica insulating film and method for manufacturing semiconductor device
JP3396791B2 (en) Method of forming insulating film
US7015168B2 (en) Low dielectric constant fluorine and carbon-containing silicon oxide dielectric material characterized by improved resistance to oxidation
JP2991657B2 (en) Film formation method
WO2000054328A1 (en) Production method for semiconductor device
JP3485425B2 (en) Method for forming low dielectric constant insulating film and semiconductor device using this film
JPH08167601A (en) Method of manufacturing semiconductor device
JPH05121572A (en) Manufacture of semiconductor device
US6066573A (en) Method of producing dielectric film
JPH0499049A (en) Semiconductor device
JP3401322B2 (en) Method for manufacturing semiconductor device having insulating film
JPH0547758A (en) Formation of layer insulating film of semiconductor device
JPH05291415A (en) Production of semiconductor device
JPH10313003A (en) Formation of silicon oxide dielectric film
JP2629587B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

EXPY Cancellation because of completion of term