JPH05275417A - Wiring structure and its manufacture - Google Patents
Wiring structure and its manufactureInfo
- Publication number
- JPH05275417A JPH05275417A JP5011115A JP1111593A JPH05275417A JP H05275417 A JPH05275417 A JP H05275417A JP 5011115 A JP5011115 A JP 5011115A JP 1111593 A JP1111593 A JP 1111593A JP H05275417 A JPH05275417 A JP H05275417A
- Authority
- JP
- Japan
- Prior art keywords
- formula
- represented
- general formula
- polyimide
- chemical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、低誘電率、低熱膨張率
で高ガラス転移点を有し、かつ高耐熱性であるポリイミ
ドを表面保護膜、α線遮蔽膜又は配線用絶縁膜として含
む配線構造体に係り、特に高集積な半導体装置、高集積
な多層配線構造体、及びそれらの製造法に関する。FIELD OF THE INVENTION The present invention includes a polyimide having a low dielectric constant, a low thermal expansion coefficient, a high glass transition point and high heat resistance as a surface protective film, an α-ray shielding film or an insulating film for wiring. The present invention relates to a wiring structure, and more particularly to a highly integrated semiconductor device, a highly integrated multilayer wiring structure, and manufacturing methods thereof.
【0002】[0002]
【従来の技術】近年、半導体装置等の電子装置の多層
化、高集積化、高性能化が進み、これに伴い使用される
絶縁材料に高度な特性が要求されるようになってきてい
る。現在この絶縁材料の一つにポリイミドが広く使用さ
れている。ポリイミド以前に使用されていたSOG、P
SG、シリコン窒化膜等の無機膜は、半導体装置の製造
プロセス途中で生ずる凹凸を平坦にするのが困難であっ
た。また機械的な特性、特に伸びに乏しいため、層間に
応力が残留する個所ではクラックを生じやすい等欠点が
あった。これらの問題点を解決するためにポリイミドが
使用されるようになり現在に至っている。2. Description of the Related Art In recent years, electronic devices such as semiconductor devices have been multi-layered, highly integrated, and have high performance, and accordingly, insulating materials used therein are required to have high characteristics. Currently, polyimide is widely used as one of the insulating materials. SOG, P used before polyimide
Inorganic films such as SG and silicon nitride films are difficult to make unevenness generated during the semiconductor device manufacturing process flat. In addition, since mechanical properties, especially elongation are poor, there is a defect that cracks are easily generated at a place where stress remains between layers. Polyimide has come to be used to solve these problems, and has been used up to now.
【0003】ポリイミドは一般に、ジアミン成分とテト
ラカルボン酸二無水物成分とを有機溶媒中で重合させ
て、ポリアミド酸を生成し、これを脱水閉環させる等の
方法で得られている。Polyimide is generally obtained by a method in which a diamine component and a tetracarboxylic dianhydride component are polymerized in an organic solvent to produce a polyamic acid, which is subjected to dehydration ring closure.
【0004】これらの例として、例えば、 (イ)一般式(化10)または一般式(化11)Examples of these are: (a) General formula (Formula 10) or General formula (Formula 11)
【0005】[0005]
【化10】 [Chemical 10]
【0006】[0006]
【化11】 [Chemical 11]
【0007】(式中R’は2価の炭化水素基を示す。)
で示される構造単位を含む新規ポリイミド及びそれらの
前駆体であるポリアミド酸もしくはポリアミド酸エステ
ルが知られている(特開昭62−265327号、特開
昭63−10629号)。(In the formula, R'represents a divalent hydrocarbon group.)
There are known novel polyimides containing the structural unit shown by and their precursors, polyamic acid or polyamic acid ester (JP-A-62-265327, JP-A-63-10629).
【0008】又、(ロ)一般式(化12)Further, (b) the general formula (Formula 12)
【0009】[0009]
【化12】 [Chemical 12]
【0010】(式中R”は4価の脂肪族基又は芳香族
基、nは1又は2を示す)で繰り返し単位が表されるポ
リイミドが知られている(特開昭57−114258
号、特開昭57−188853号、特開昭60−250
031号、特開昭60−221426号)。Polyimides in which a repeating unit is represented by (wherein R is a tetravalent aliphatic group or aromatic group, and n is 1 or 2) are known (JP-A-57-114258).
JP-A-57-188883, JP-A-60-250
031, JP-A-60-212426).
【0011】又(ハ)一般式(化13)Further, (c) general formula (formula 13)
【0012】[0012]
【化13】 [Chemical 13]
【0013】(式中、Yは−C(CH3)2−、−C(CF3)
2−、−SO2-である。)で繰り返し単位が表わされる
ポリイミドが知られている(特開昭62−231935
号、特開昭62−231936号、特開昭62−231
937号)。(In the formula, Y is --C (CH 3 ) 2-, --C (CF 3 ).
2 -, - SO 2 - it is. ) Is known to have a repeating unit represented by JP-A-62-231935.
No. 62-231936, 62-231.
937).
【0014】(ニ)低誘電率に優れたポリイミドとし
て、2,2−ビス(3,4-ジカルボキシフェニル)プロ
パン酸二無水物、2,2−ビス(3,4-ジカルボキシフ
ェニル)ヘキサフルオロプロパン酸二無水物と4,4’
−ビス(4−アミノフェノキシ)ビフェニル、4,4’
−ビス(4−アミノ−2−トリフルオロメチルフェノキ
シ)ビフェニル等の芳香族ジアミンとから得られたポリ
イミドが知られている(特開平2−60934号)。(D) Polyimides having excellent low dielectric constant include 2,2-bis (3,4-dicarboxyphenyl) propanoic acid dianhydride and 2,2-bis (3,4-dicarboxyphenyl) hexa Fluoropropanoic acid dianhydride and 4,4 '
-Bis (4-aminophenoxy) biphenyl, 4,4 '
A polyimide obtained from an aromatic diamine such as -bis (4-amino-2-trifluoromethylphenoxy) biphenyl is known (Japanese Patent Laid-Open No. 2-60934).
【0015】又(ホ)2,2−ビス(4-アミノフェニ
ル)ヘキサフルオロプロパン及び2,2−ビス(3-アミ
ノフェニル)ヘキサフルオロプロパンとピロメリット酸
二無水物及びジアリ−ル核を有する酸二無水物からなる
混合酸二無水物から得られたポリイミド(特開平2−6
7320)、2,2−ビス(3,4-ジカルボキシフェ
ニル)ヘキサフルオロプロパン酸二無水物と2,2−ビ
ス(4-アミノフェニル)ヘキサフルオロプロパン及び
2,2−ビス(3-アミノフェニル)ヘキサフルオロプロ
パンから得られたポリイミド(特開平2−86624)
が知られている。Also, (e) having 2,2-bis (4-aminophenyl) hexafluoropropane and 2,2-bis (3-aminophenyl) hexafluoropropane, pyromellitic dianhydride and a diaryl nucleus. A polyimide obtained from a mixed acid dianhydride consisting of an acid dianhydride (Japanese Patent Application Laid-Open No. 2-6
7320), 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanoic acid dianhydride and 2,2-bis (4-aminophenyl) hexafluoropropane and 2,2-bis (3-aminophenyl) ) Polyimide obtained from hexafluoropropane (JP-A-2-86624)
It has been known.
【0016】しかし、上記の(イ)、(ロ)、(ハ)、
(ニ)、(ホ)のポリイミドは、高耐熱性、低誘電率、
低熱膨張率、高機械的特性(特に可とう性)、高ガラス転
移温度等の諸特性が同時には考慮されておらず、また上
記の(ニ)、(ホ)のポリイミドはアルキル鎖に結合し
たトリフルオロメチル基を有するために、有機溶剤やア
ルカリ性液、例えば無電解めっき液に対し耐性が低い。
従って、これらのポリイミドを使用して電子装置、例え
ば半導体装置や多層配線構造体を作成する場合、性能向
上に限界が生じたり、プロセス上困難を来たしたりする
可能性がある。However, the above (a), (b), (c),
The polyimides (d) and (e) have high heat resistance, low dielectric constant,
Various properties such as low coefficient of thermal expansion, high mechanical properties (particularly flexibility), and high glass transition temperature are not taken into consideration at the same time, and the polyimides (d) and (e) above are bonded to the alkyl chain. Since it has a trifluoromethyl group, it has low resistance to organic solvents and alkaline liquids such as electroless plating liquids.
Therefore, when an electronic device such as a semiconductor device or a multilayer wiring structure is formed using these polyimides, there is a possibility that performance improvement may be limited or process may be difficult.
【0017】[0017]
【発明が解決しようとする課題】上記の(イ)、
(ロ)、(ハ)、(ニ)、(ホ)のポリイミドは、高耐
熱性、低誘電率、低熱膨張率、高機械的特性(特に可と
う性)、高ガラス転移温度等の諸特性が同時には考慮さ
れていない。(イ)、(ロ)、(ハ)は、高耐熱性、低
熱膨張率、高ガラス転移温度では優れているが、誘電率
が高く、可とう性がない。それはポリマ−中に相対的に
イミド環が多く、且つ(化14)[Problems to be Solved by the Invention]
Polyimides (b), (c), (d), and (e) have various properties such as high heat resistance, low dielectric constant, low coefficient of thermal expansion, high mechanical properties (especially flexibility), and high glass transition temperature. Are not considered at the same time. Although (a), (b) and (c) are excellent in high heat resistance, low thermal expansion coefficient and high glass transition temperature, they have high dielectric constant and are not flexible. It has a relatively large number of imide rings in the polymer, and
【0018】[0018]
【化14】 [Chemical 14]
【0019】で表される構造単位を含むために耐熱性、
ガラス転移温度が高く、熱膨張係数は低いが、誘電率が
高く、可とう性に乏しいと考えられる。又(ニ)、
(ホ)は−CF3(トリフルオロメチル基)を含み且つ
−O−結合を有するために、誘電率が低く可とう性に優
れているが、耐熱性やガラス転移温度が低く、熱膨張係
数が高く、更にはアルカリ液や有機溶剤に対し耐性が低
いものと考えられる。The heat resistance due to containing the structural unit represented by
Although it has a high glass transition temperature and a low coefficient of thermal expansion, it is considered to have a high dielectric constant and poor flexibility. Also (d),
(E) is and include -CF 3 (trifluoromethyl)
It has a low dielectric constant and excellent flexibility because it has a -O- bond, but it has low heat resistance and glass transition temperature, a high coefficient of thermal expansion, and low resistance to alkaline liquids and organic solvents. it is conceivable that.
【0020】先ず、絶縁膜の誘電率が大きいと配線内を
伝播する信号の遅延時間が大きくなり伝播速度が低下す
る。また吸湿性が高くなるために界面で剥離を生じやす
く、配線金属の腐食、リ−ク電流の増大などの問題を引
き起こす。従って絶縁膜の誘電率はできるかぎり低い方
が望ましい。更に、絶縁膜の熱膨張係数が大きいと、配
線金属や基板との間に応力が生じ、基板の反り、配線の
断線、絶縁膜のはがれやクラックを引き起こす原因とな
る。従って絶縁膜の熱膨張係数は基板や配線金属のそれ
に近い値である方が望ましい。ガラス転移温度が低いと
一般に熱膨張係数が大きく、配線金属や基板との界面で
より大きい応力が生じることになるのでガラス転移温度
はより高い方が望ましい。耐熱性が乏しいと使用温度を
高くできないという困難を生ずる。更に絶縁膜が充分な
可とう性や伸びを備えていないと、生じる応力に耐える
ことができず、やはり絶縁膜のはがれやクラックを生じ
る原因ともなりうる。First, if the dielectric constant of the insulating film is large, the delay time of the signal propagating in the wiring becomes long and the propagation speed decreases. Further, since the hygroscopicity is high, peeling is likely to occur at the interface, which causes problems such as corrosion of wiring metal and increase of leak current. Therefore, it is desirable that the dielectric constant of the insulating film be as low as possible. Furthermore, when the thermal expansion coefficient of the insulating film is large, stress is generated between the wiring metal and the substrate, which causes warpage of the substrate, disconnection of the wiring, peeling of the insulating film, and cracks. Therefore, it is desirable that the coefficient of thermal expansion of the insulating film be close to that of the substrate or wiring metal. When the glass transition temperature is low, the coefficient of thermal expansion is generally large, and a larger stress is generated at the interface with the wiring metal or the substrate. Therefore, the higher glass transition temperature is desirable. If the heat resistance is poor, the difficulty arises that the operating temperature cannot be raised. Furthermore, if the insulating film does not have sufficient flexibility and elongation, it cannot withstand the stress that is generated and may also cause peeling or cracks of the insulating film.
【0021】本発明者らは、これら従来の技術では成し
得なかった諸特性、即ち高耐熱性、低誘電率、低熱膨張
率、高機械的特性(特に可とう性)、高ガラス転移温度、
高耐アルカリ性等の諸特性を兼備するポリイミドを絶縁
層に使用し、信号遅延時間が小さく、また応力によるは
がれやクラック、配線の断線、腐食等の問題を引き起こ
す可能性の低い、従って高信頼性を具備する多層配線構
造体を実現することを目的として鋭意検討を重ねた結果
本発明に至ったものである。The inventors of the present invention have possessed various properties that could not be achieved by these conventional techniques, namely, high heat resistance, low dielectric constant, low thermal expansion coefficient, high mechanical properties (particularly flexibility), and high glass transition temperature. ,
Polyimide, which has various properties such as high alkali resistance, is used for the insulating layer, and the signal delay time is short, and it is unlikely to cause problems such as peeling and cracks due to stress, disconnection of wiring, and corrosion, and therefore high reliability. The present invention has been made as a result of intensive studies conducted for the purpose of realizing a multilayer wiring structure having the above.
【0022】[0022]
【課題を解決するための手段】本発明は、分子鎖が、下
記一般式(化1)で表される繰り返し単位と、下記一般
式(化2)で表される繰り返し単位とからなることを特
徴とするポリイミド前駆体を加熱して生成するポリイミ
ドを表面保護膜、α線遮蔽膜又は配線用絶縁膜として用
いた配線構造体に関する。According to the present invention, a molecular chain is composed of a repeating unit represented by the following general formula (Formula 1) and a repeating unit represented by the following general formula (Formula 2). The present invention relates to a wiring structure using a polyimide produced by heating a characteristic polyimide precursor as a surface protective film, an α-ray shielding film or an insulating film for wiring.
【0023】一般式(化1)General formula (Formula 1)
【0024】[0024]
【化1】 [Chemical 1]
【0025】一般式(化2)General formula (Formula 2)
【0026】[0026]
【化2】 [Chemical 2]
【0027】(式中、R1は(化3)(In the formula, R 1 is
【0028】[0028]
【化3】 [Chemical 3]
【0029】から選ばれる少なくとも一種の4価の有機
基であり、R2は(化4)、[0029] From at least one tetravalent organic group selected, R 2 is (of 4)
【0030】[0030]
【化4】 [Chemical 4]
【0031】から選ばれる少なくとも一種の直線構造の
2価の有機基であり、R3は、少なくとも2個以上の芳
香環を含み屈曲構造を有する2価の有機基である。)上
記のポリイミド前駆体においては、一般式(化1)中の
R2で表される直線構造の2価の有機基の数と一般式
(化2)中のR3で表される屈曲構造を有する2価の有
機基の数の合計を100とした場合に、R2で表される
有機基の数が30〜80、R3で表される有機基の数が
70〜20の範囲であることが望ましい。R2で表され
る有機基の数が80以上、R3で表される有機基の数が
20以下になると、このポリイミド前駆体から生成され
たポリイミド膜に可とう性が不足し、R2で表される有
機基の数が30以下、R3で表される有機基の数が70
以上ではガラス転移温度Tgが低く、熱膨張係数が大き
くなる。更により低熱膨張率が要求される多層配線構造
体等に応用される場合には、R2で表される有機基の数
の割合が50〜80、R3で表される有機基の数が50
〜20の範囲であることがより望ましい。At least one linear divalent organic group selected from the group consisting of R 3 and R 3 is a divalent organic group containing at least two or more aromatic rings and having a bent structure. ) In the above polyimide precursor, the number of divalent organic groups having a linear structure represented by R 2 in the general formula (Formula 1) and the bent structure represented by R 3 in the general formula (Formula 2) When the total number of divalent organic groups having R is 100, the number of organic groups represented by R 2 is 30 to 80, and the number of organic groups represented by R 3 is 70 to 20. Is desirable. When the number of organic groups represented by R 2 is 80 or more and the number of organic groups represented by R 3 is 20 or less, the polyimide film produced from this polyimide precursor lacks flexibility and R 2 The number of organic groups represented by is 30 or less, and the number of organic groups represented by R 3 is 70
Above, the glass transition temperature Tg is low and the thermal expansion coefficient is high. Further, when applied to a multilayer wiring structure requiring a lower coefficient of thermal expansion, the ratio of the number of organic groups represented by R 2 is 50 to 80, and the number of organic groups represented by R 3 is Fifty
It is more desirable that the range is -20.
【0032】また、本発明は、分子鎖が、下記一般式
(化1)で表される繰り返し単位と、下記一般式(化
2)で表される繰り返し単位及び一般式(化5)で表さ
れる繰り返し単位とからなるポリイミド前駆体を加熱し
て生成するポリイミドを表面保護膜、α線遮蔽膜又は配
線用絶縁膜として用いた配線構造体に関する。In the present invention, the molecular chain is represented by a repeating unit represented by the following general formula (Formula 1), a repeating unit represented by the following general formula (Formula 2) and a general formula (Formula 5). The present invention relates to a wiring structure in which a polyimide produced by heating a polyimide precursor including a repeating unit is used as a surface protective film, an α-ray shielding film, or a wiring insulating film.
【0033】一般式(化1)General formula (Formula 1)
【0034】[0034]
【化1】 [Chemical 1]
【0035】一般式(化2)General formula (Formula 2)
【0036】[0036]
【化2】 [Chemical 2]
【0037】一般式(化5)General formula (Formula 5)
【0038】[0038]
【化5】 [Chemical 5]
【0039】(式中、R1は(化3)(In the formula, R 1 is
【0040】[0040]
【化3】 [Chemical 3]
【0041】から選ばれる少なくとも一種の4価の有機
基であり、R2は(化4)、[0041] From at least one tetravalent organic group selected, R 2 is (of 4)
【0042】[0042]
【化4】 [Chemical 4]
【0043】から選ばれる少なくとも一種の直線構造の
2価の有機基であり、R3は、少なくとも2個以上の芳
香環を含み屈曲構造を有する2価の有機基であり、R4
はその部分がポリマの末端である場合、あるいはポリマ
の主鎖である場合にそれぞれ一般式(化6)、R 3 is a divalent organic group having at least one linear structure selected from R 3 , R 3 is a divalent organic group having at least two aromatic rings and having a bent structure, and R 4
Is a general formula (Chemical Formula 6) when the part is at the end of the polymer or when it is the main chain of the polymer,
【0044】[0044]
【化6】 [Chemical 6]
【0045】一般式(化7)General formula (Formula 7)
【0046】[0046]
【化7】 [Chemical 7]
【0047】で表されるケイ素原子を含む炭化水素基
で、そのR5、R8は炭素数1から9の炭化水素基又はエ
−テル結合を含む炭素数1から7の飽和アルキル基、R
6は炭素数1から3の炭化水素基、R7は炭素数1から5
のアルキル基又はアルコキシアルキル基又はトリアルキ
ルシリル基の中から選ばれた1種以上の基、R9、R10は
炭素数1から3のアルキル基、炭素数1から9のアリ-
ル基の中から選ばれた1種以上の基、nは0から3の整
数、fは1又は2である。)上記のポリイミド前駆体に
おいては、一般式(化1)中のR2で表される直線構造
の2価の有機基の数と一般式(化2)中のR3で表され
る屈曲構造を有する2価の有機基及びR4で表されるケ
イ素を含む炭化水素基の数の合計を100とした場合
に、R2で表される有機基の数が30〜80、R3で表さ
れる有機基の数が70〜20、R4で表されるケイ素を
含む炭化水素基の数が0.1〜10の範囲であることが
望ましい。R2で表される有機基の数の割合とR3で表さ
れる有機基の数の割合の望ましい範囲は前述のポリイミ
ド前駆体の場合と同様である。更に、R4で表されるケ
イ素を含む炭化水素基の導入は、接着性を向上させるた
めであり、0.1%以下では接着性の効果が小さく、1
0%以上では、耐熱性や機械的特性に悪影響を及ぼす。
より好ましくは、0.5〜5%の範囲である。A hydrocarbon group containing a silicon atom represented by the following formulas, wherein R 5 and R 8 are a hydrocarbon group having 1 to 9 carbon atoms or a saturated alkyl group having 1 to 7 carbon atoms containing an ether bond, R
6 is a hydrocarbon group having 1 to 3 carbon atoms, R 7 is 1 to 5 carbon atoms
One or more groups selected from the group consisting of alkyl groups, alkoxyalkyl groups and trialkylsilyl groups, R 9 and R 10 are alkyl groups having 1 to 3 carbon atoms, and ari- groups having 1 to 9 carbon atoms.
One or more groups selected from the group, n is an integer from 0 to 3, and f is 1 or 2. ) In the above polyimide precursor, the number of divalent organic groups having a linear structure represented by R 2 in the general formula (Formula 1) and the bent structure represented by R 3 in the general formula (Formula 2) When the total number of the divalent organic groups having R and the hydrocarbon group containing silicon represented by R 4 is 100, the number of the organic groups represented by R 2 is 30 to 80, and the number represented by R 3 is It is preferable that the number of the organic groups is 70 to 20, and the number of the silicon-containing hydrocarbon group represented by R 4 is 0.1 to 10. The desirable range of the ratio of the number of organic groups represented by R 2 and the ratio of the number of organic groups represented by R 3 is the same as in the case of the above-mentioned polyimide precursor. Furthermore, the introduction of the silicon-containing hydrocarbon group represented by R 4 is for improving the adhesiveness, and when the content is 0.1% or less, the effect of the adhesiveness is small and 1
If it is 0% or more, heat resistance and mechanical properties are adversely affected.
More preferably, it is in the range of 0.5 to 5%.
【0048】上記ポリイミド前駆体は、次のようにして
製造することができる。The above polyimide precursor can be manufactured as follows.
【0049】すなわち、テトラカルボン酸二無水物と2
種以上のジアミン成分とからポリイミド前駆体を製造す
る方法において、一般式(化15)That is, tetracarboxylic dianhydride and 2
In the method for producing a polyimide precursor from at least one diamine component, a compound represented by the general formula
【0050】[0050]
【化15】 [Chemical 15]
【0051】(式中、R1は(化3)、(In the formula, R 1 is (formula 3),
【0052】[0052]
【化3】 [Chemical 3]
【0053】から選ばれる少なくとも一種の4価の有機
基である。)で表されるテトラカルボン酸二無水物成分
と、使用する各ジアミン成分のモル比の合計を100と
した場合に、1)一般式 H2N−R2−NH2(式
中、R2は(化4)、It is at least one tetravalent organic group selected from ) When the total of the molar ratios of the tetracarboxylic dianhydride component represented by the formula) and each diamine component used is 100, 1) the general formula H 2 N—R 2 —NH 2 (in the formula, R 2 Is (Chemical 4),
【0054】[0054]
【化4】 [Chemical 4]
【0055】から選ばれる少なくとも一種の直線構造の
2価の有機基である。)で表されるジアミン成分のモル
比が30〜80、及び2)一般式 H2N−R3−NH
2(式中、R3は、少なくとも2個以上の芳香環を含み屈
曲構造を有する2価の有機基である。)で表されるジア
ミン成分のモル比が70〜20、及び3)必要に応じ
て、一般式(化16)It is at least one divalent organic group having a linear structure selected from the group consisting of: ) The molar ratio of the diamine component represented by the formula) is 30 to 80, and 2) the general formula H 2 N—R 3 —NH.
2 (in the formula, R 3 is a divalent organic group having at least two aromatic rings and having a bent structure), and the molar ratio of the diamine component is 70 to 20, and 3) According to the general formula (Formula 16)
【0056】[0056]
【化16】 [Chemical 16]
【0057】又は(化17)Or (Chemical formula 17)
【0058】[0058]
【化17】 [Chemical 17]
【0059】(式中、R5、R8は炭素数1から9の炭化
水素基又はエ−テル結合を含む炭素数1から7の飽和ア
ルキル基、R6は炭素数1から3の炭化水素基、R7は炭
素数1から5のアルキル基又はアルコキシアルキル基又
はトリアルキルシリル基の中から選ばれた1種以上の
基、R9、R10は炭素数1から3のアルキル基、炭素数
1から9のアリ-ル基の中から選ばれた1種以上の基、
nは0から3の整数、fは1又は2である。)で表され
るアミノシラン化合物またはシロキサンジアミンのモル
比が0.1〜10の範囲からなるジアミン成分とを非プ
ロトン極性溶剤中温度0〜30℃で重合させて、更にか
き混ぜながら50〜80℃で加熱することにより、ポリ
イミド前駆体が得られる。(In the formula, R 5 and R 8 are hydrocarbon groups having 1 to 9 carbon atoms or saturated alkyl groups having 1 to 7 carbon atoms containing an ether bond, and R 6 is hydrocarbon groups having 1 to 3 carbon atoms. Group, R 7 is at least one group selected from an alkyl group having 1 to 5 carbon atoms, an alkoxyalkyl group or a trialkylsilyl group, and R 9 and R 10 are alkyl groups having 1 to 3 carbon atoms, carbon One or more groups selected from the aryl groups of the numbers 1 to 9,
n is an integer from 0 to 3, and f is 1 or 2. ) Aminosilane compound or siloxanediamine having a molar ratio of 0.1 to 10 is polymerized with a diamine component in an aprotic polar solvent at a temperature of 0 to 30 ° C., and further stirred at 50 to 80 ° C. A polyimide precursor is obtained by heating.
【0060】上記のポリイミド前駆体を温度100℃以
上で加熱硬化させることにより、ポリイミド硬化物が得
られる。A polyimide cured product is obtained by heating and curing the above polyimide precursor at a temperature of 100 ° C. or higher.
【0061】本発明者の実験によれば、本発明により得
られるポリイミド前駆体の硬化物であるポリイミド膜
が、高耐熱性、低誘電率、低熱膨張率、高機械的特性
(特に可とう性)、高ガラス転移温度等の諸特性を高度
に兼備することを見出した。更に当該ポリイミドを絶縁
膜として使用した半導体集積回路素子、多層配線構造体
等の電子装置が、高信頼性を有し、かつ高性能を具備し
うることを見出した。According to experiments conducted by the present inventor, a polyimide film obtained by curing the polyimide precursor obtained by the present invention has a high heat resistance, a low dielectric constant, a low coefficient of thermal expansion, and a high mechanical property (especially flexibility). ), It has also been found to have various properties such as a high glass transition temperature. Further, they have found that an electronic device such as a semiconductor integrated circuit device or a multilayer wiring structure using the polyimide as an insulating film can have high reliability and high performance.
【0062】以下、本発明で使用するポリイミド前駆体
および配線構造体の製造方法について説明する。The method for producing the polyimide precursor and the wiring structure used in the present invention will be described below.
【0063】本発明のポリイミド前駆体に用いられるテ
トラカルボン酸二無水物成分としては、p−タ−フェニ
ル−3,3”,4,4”−テトラカルボン酸二無水物
(TPDA)又はm−タ−フェニル−3,3”,4,
4”−テトラカルボン酸二無水物(m−TPDA)、又
はビフェニル−3,3’,4,4’−テトラカルボン酸
二無水物(BPDA)を用いることができる。本発明に
用いられる一般式H2N−R2−NH2で表されるジアミ
ン成分としては、4,4”−ジアミノ−p−タ−フェニ
ル、4,4”−ジアミノ−p−クォ−タ−フェニル、
9,10−ビス(p−アミノフェニル)アントラセン、
2,2’−ジメチル−4,4’−ジアミノビフェニル
(2,2’−Me2−DABP)、3,3’−ジメチル
−4,4’−ジアミノビフェニル(3,3’−Me2−
DABP)、3,5,3’,5’−テトラメチル−4,
4’−ジアミノビフェニル(3,5,3’,5’−Me
4−DABP)、2,2’−ジ(トリフルオロメチル)
−4,4’−ジアミノビフェニル(2,2’−FMe2
−DABP)、3,3’−ジ(トリフルオロメチル)−
4,4’−ジアミノビフェニル(3,3’−FMe2−
DABP)、2,2’−ジメトキシ−4,4’−ジアミ
ノビフェニル(2,2’−(MeO)2−DABP)、
3,3’−ジメトキシ−4,4’−ジアミノビフェニル
(3,3’−(MeO)2−DABP)、3,7−ジア
ミノ−2,8−ジアミノ−ジベンゾチオフェン−5,5
−ジオキシド(o−トリジンスルフォン、TSN)であ
り、これらの少なくとも1種以上の化合物を用いること
ができる。The tetracarboxylic dianhydride component used in the polyimide precursor of the present invention includes p-ta-phenyl-3,3 ", 4,4" -tetracarboxylic dianhydride (TPDA) or m-. Terphenyl-3,3 ", 4
4 ″ -tetracarboxylic dianhydride (m-TPDA) or biphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride (BPDA) can be used. General Formula Used in the Present Invention Examples of the diamine component represented by H 2 N—R 2 —NH 2 include 4,4 ″ -diamino-p-ta-phenyl, 4,4 ″ -diamino-p-quarta-phenyl,
9,10-bis (p-aminophenyl) anthracene,
2,2'-dimethyl-4,4'-diamino biphenyl (2,2'-Me 2 -DABP), 3,3'- dimethyl-4,4'-diamino biphenyl (3,3'-Me 2 -
DABP), 3,5,3 ', 5'-tetramethyl-4,
4'-diaminobiphenyl (3,5,3 ', 5'-Me
4- DABP), 2,2'-di (trifluoromethyl)
-4,4'-Diaminobiphenyl (2,2'-FMe 2
-DABP), 3,3'-di (trifluoromethyl)-
4,4'-diaminobiphenyl (3,3'-FMe 2 -
DABP), 2,2'-dimethoxy-4,4'-diaminobiphenyl (2,2 '-(MeO) 2- DABP),
3,3'-Dimethoxy-4,4'-diaminobiphenyl (3,3 '-(MeO) 2- DABP), 3,7-diamino-2,8-diamino-dibenzothiophene-5,5
-Dioxide (o-tolidine sulfone, TSN), and at least one compound thereof can be used.
【0064】又一般式H2N−R3−NH2で表されるジ
アミン成分としては、例えば(化8)、(化9)、(化
18)The diamine component represented by the general formula H 2 N—R 3 —NH 2 is, for example, (Chemical formula 8), (Chemical formula 9), (Chemical formula 18)
【0065】[0065]
【化8】 [Chemical 8]
【0066】[0066]
【化9】 [Chemical 9]
【0067】[0067]
【化18】 [Chemical 18]
【0068】(式中Xは−O−、−S−、−C(CH3)2−、
−CH2−、−C(CF3)2−、−C(C6H5)2−、−C(C6H5)(CH
3)−、−CO−等である。)が挙げられ、これらの少な
くとも1種以上の化合物を用いることができる。(In the formula, X is --O--, --S--, --C (CH 3 ) 2- ,
-CH 2 -, - C (CF 3) 2 -, - C (C 6 H 5) 2 -, - C (C 6 H 5) (CH
3 )-, -CO- and the like. ), And at least one or more of these compounds can be used.
【0069】また、他のジアミンを、耐熱性、誘電率、
熱膨張率、ガラス転移温度、機械的特性、可とう性等を
調整する場合に用いても良い。例えば、一般式H2N−
R11−NH2で表されるジアミンの式中、R11が(化1
9)In addition, other diamines may be used for heat resistance, dielectric constant,
It may be used when adjusting the coefficient of thermal expansion, glass transition temperature, mechanical properties, flexibility, and the like. For example, the general formula H 2 N-
In the formula of the diamine represented by R 11 —NH 2 , R 11 is
9)
【0070】[0070]
【化19】 [Chemical 19]
【0071】等である化合物が挙げられる。And the like.
【0072】また、本発明で用いられるアミノシラン化
合物としては、一般式(化16)The aminosilane compound used in the present invention has a general formula (Chemical Formula 16)
【0073】[0073]
【化16】 [Chemical 16]
【0074】(式中、R5は炭素数1から9の炭化水素
基またはエ−テル結合を含む炭素数1から7の飽和アル
キル基、R6は炭素数1から3の炭化水素基、R7は炭素
数1から5のアルキル基又はアルコキシアルキル基又は
トリアルキルシリル基の中から選ばれた一種以上の基、
nは0〜3の整数である)で表わされるモノアミノシラ
ン化合物、例えば、3−アミノプロピルトリメチルシラ
ン、3−アミノプロピルジメチルメトキシシラン、3−
アミノプロピルメチルジメトキシシラン、3−アミノプ
ロピルトリメトキシシラン、3−アミノプロピルジメチ
ルエトキシシラン、3−アミノプロピルメチルジエトキ
シシラン、3−アミノプロピルトリエトキシシラン、3
−アミノプロピルジメチルプロポキシシラン、3−アミ
ノプロピルメチルジプロポキシシラン、3−アミノプロ
ピルトリプロポキシシラン、3−アミノプロピルジメチ
ルブトキシシラン、3−アミノプロピルメチルジブトキ
シシラン、3−アミノプロピルトリブトキシシラン等の
3−アミノプロピルジアルキルアルコキシシラン、3−
アミノプロピルアルキルジアルコキシシラン、3−アミ
ノプロピルトリアルコキシシラン、3−(4−アミノフ
ェノキシ)プロピルジアルキルアルコキシシラン、3−
(4−アミノフェノキシ)プロピルアルキルジアルコキ
シシラン、3−(4−アミノフェノキシ)プロピルトリ
アルコキシシラン、3−(3−アミノフェノキシ)プロ
ピルジアルキルアルコキシシラン、3−(3−アミノフ
ェノキシ)プロピルアルキルジアルコキシシラン、3−
(3−アミノフェノキシ)プロピルトリアルコキシシラ
ン、4−アミノブチルジメチルエトキシシラン、4−ア
ミノブチルメチルジエトキシシラン、4−アミノブチル
トリエトキシシラン等の4−アミノブチルジアルキルア
ルコキシシラン、4−アミノブチルアルキルジアルコキ
シシラン、4−アミノブチルトリアルコキシシラン、3
−アミノプロピルトリス(トリメチルシロキシ)シラ
ン、メタ−アミノフェニルジメチルメトキシシラン、メ
タ−アミノフェニルメチルジメトキシシラン、メタ−ア
ミノフェニルトリメトキシシラン、メタ−アミノフェニ
ルジメチルエトキシシラン、メタ−アミノフェニルメチ
ルジエトキシシラン、メタ−アミノフェニルトリエトキ
シシラン、メタ−アミノフェニルジメチルプロポキシシ
ラン、メタ−アミノフェニルメチルジプロポキシシラ
ン、メタ−アミノフェニルトリプロポキシシラン等のメ
タ−アミノフェニルジアルキルアルコキシシラン、メタ
−アミノフェニルアルキルジアルコキシシラン、メタ−
アミノフェニルトリアルコキシシラン、パラ−アミノフ
ェニルジメチルメトキシシラン、パラ−アミノフェニル
メチルジメトキシシラン、パラ−アミノフェニルトリメ
トキシシラン、パラ−アミノフェニルジメチルエトキシ
シラン、パラ−アミノフェニルメチルジエトキシシラ
ン、パラ−アミノフェニルトリエトキシシラン、パラ−
アミノフェニルジメチルプロポキシシラン、パラ−アミ
ノフェニルメチルジプロポキシシラン、パラ−アミノフ
ェニルトリプロポキシシラン等のパラ−アミノフェニル
ジアルキルアルコキシシラン、パラ−アミノフェニルア
ルキルジアルコキシシラン、パラ−アミノフェニルトリ
アルコキシシラン、メタ−アミノベンジルジメチルエト
キシシラン、メタ−アミノベンジルメチルジエトキシシ
ラン、メタ−アミノベンジルトリエトキシシシラン、メ
タ−アミノベンジルジメチルプロポキシシラン、メタ−
アミノベンジルメチルジプロポキシシラン、メタ−アミ
ノベンジルトリプロポキシシラン、メタ−アミノベンジ
ルジメチルプロポキシシラン、メタ−アミノベンジルメ
チルジプロポキシシラン、メタ−アミノベンジルトリプ
ロポキシシラン等のメタ−アミノベンジルジアルキルア
ルコキシシラン、メタ−アミノベンジルアルキルジアル
コキシシラン、メタ−アミノベンジルトリアルコキシシ
ラン、パラ−アミノベンジルジメチルプロポキシシラ
ン、パラ−アミノベンジルメチルジプロポキシシラン、
パラ−アミノベンジルトリプロポキシシラン等のパラ−
アミノベンジルジアルキルアルコキシシラン、パラ−ア
ミノベンジルアルキルジアルコキシシラン、パラ−アミ
ノベンジルトリアルコキシシラン、パラ−アミノフェネ
チルジメチルメトキシシラン、パラ−アミノフェネチル
メチルジメトキシシラン、パラ−アミノフェネチルトリ
メトキシシラン等のパラ−アミノフェネチルジアルキル
アルコキシシラン、パラ−アミノフェネチルアルキルジ
アルコキシシラン、パラ−アミノフェネチルトリアルコ
キシシラン、又は上記のメタ−、パラ−体のベンジル、
フェネチル系化合物の水添したものなどが挙げられる。(Wherein R 5 is a hydrocarbon group having 1 to 9 carbon atoms or a saturated alkyl group having 1 to 7 carbon atoms containing an ether bond, R 6 is a hydrocarbon group having 1 to 3 carbon atoms, and R 6 is 7 is one or more groups selected from an alkyl group having 1 to 5 carbon atoms, an alkoxyalkyl group or a trialkylsilyl group,
n is an integer of 0 to 3), for example, a monoaminosilane compound represented by 3-aminopropyltrimethylsilane, 3-aminopropyldimethylmethoxysilane, 3-
Aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyldimethylethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyltriethoxysilane, 3
-Aminopropyldimethylpropoxysilane, 3-aminopropylmethyldipropoxysilane, 3-aminopropyltripropoxysilane, 3-aminopropyldimethylbutoxysilane, 3-aminopropylmethyldibutoxysilane, 3-aminopropyltributoxysilane, etc. 3-aminopropyldialkylalkoxysilane, 3-
Aminopropylalkyldialkoxysilane, 3-aminopropyltrialkoxysilane, 3- (4-aminophenoxy) propyldialkylalkoxysilane, 3-
(4-Aminophenoxy) propylalkyldialkoxysilane, 3- (4-aminophenoxy) propyltrialkoxysilane, 3- (3-aminophenoxy) propyldialkylalkoxysilane, 3- (3-aminophenoxy) propylalkyldialkoxy Silane, 3-
(3-Aminophenoxy) propyltrialkoxysilane, 4-aminobutyldimethylethoxysilane, 4-aminobutylmethyldiethoxysilane, 4-aminobutyldialkylalkoxysilane such as 4-aminobutyltriethoxysilane, 4-aminobutylalkyl Dialkoxysilane, 4-aminobutyltrialkoxysilane, 3
-Aminopropyltris (trimethylsiloxy) silane, meta-aminophenyldimethylmethoxysilane, meta-aminophenylmethyldimethoxysilane, meta-aminophenyltrimethoxysilane, meta-aminophenyldimethylethoxysilane, meta-aminophenylmethyldiethoxysilane , Meta-aminophenyltriethoxysilane, meta-aminophenyldimethylpropoxysilane, meta-aminophenylmethyldipropoxysilane, meta-aminophenyltripropoxysilane and other meta-aminophenyldialkylalkoxysilanes, meta-aminophenylalkyldialkoxy Silane, meta
Aminophenyltrialkoxysilane, para-aminophenyldimethylmethoxysilane, para-aminophenylmethyldimethoxysilane, para-aminophenyltrimethoxysilane, para-aminophenyldimethylethoxysilane, para-aminophenylmethyldiethoxysilane, para-amino Phenyltriethoxysilane, para-
Para-aminophenyldialkylalkoxysilanes such as aminophenyldimethylpropoxysilane, para-aminophenylmethyldipropoxysilane, para-aminophenyltripropoxysilane, para-aminophenylalkyldialkoxysilanes, para-aminophenyltrialkoxysilane, meta -Aminobenzyldimethylethoxysilane, meta-aminobenzylmethyldiethoxysilane, meta-aminobenzyltriethoxysisilane, meta-aminobenzyldimethylpropoxysilane, meta-
Aminobenzylmethyldipropoxysilane, meta-aminobenzyltripropoxysilane, meta-aminobenzyldimethylpropoxysilane, meta-aminobenzylmethyldipropoxysilane, meta-aminobenzyldialkylalkoxysilane such as meta-aminobenzyltripropoxysilane, meta -Aminobenzylalkyldialkoxysilane, meta-aminobenzyltrialkoxysilane, para-aminobenzyldimethylpropoxysilane, para-aminobenzylmethyldipropoxysilane,
Para-aminobenzyltripropoxysilane and other para-
Para-like aminobenzyldialkylalkoxysilane, para-aminobenzylalkyldialkoxysilane, para-aminobenzyltrialkoxysilane, para-aminophenethyldimethylmethoxysilane, para-aminophenethylmethyldimethoxysilane, para-aminophenethyltrimethoxysilane, etc. Aminophenethyldialkylalkoxysilane, para-aminophenethylalkyldialkoxysilane, para-aminophenethyltrialkoxysilane, or the above meta- or para-benzyl,
Examples include hydrogenated phenethyl compounds.
【0075】又本発明に用いられるジアミノシロキサン
化合物としては、一般式(化17)The diaminosiloxane compound used in the present invention has the general formula
【0076】[0076]
【化17】 [Chemical 17]
【0077】(式中、R8は炭素数1から9の炭化水素
基、R9、R10は炭素数1から3のアルキル基または炭
素数1から9のアリ−ル基の中から選ばれた一種以上の
基、fは1又は2である。)で表されるジアミノシロキ
サン化合物、例えば(化20)(In the formula, R 8 is selected from a hydrocarbon group having 1 to 9 carbon atoms, R 9 and R 10 are selected from an alkyl group having 1 to 3 carbon atoms or an aryl group having 1 to 9 carbon atoms. A diaminosiloxane compound represented by one or more groups, and f is 1 or 2.
【0078】[0078]
【化20】 [Chemical 20]
【0079】等が挙げられる。And the like.
【0080】上記のモノアミノシラン化合物又はジアミ
ノシロキサン化合物は、接着性を向上させる目的で添加
されるものであり、モノアミノシラン成分又はジアミノ
シロキサン成分の使用範囲は、全ジアミン成分を100
%とした場合、0.1〜10%、好ましく0.5〜5%
である。モノアミノシラン成分又はジアミノシロキサン
成分が0.1%以下では接着性の効果が小さく、10%
以上では、耐熱性や機械的特性に悪影響を及ぼす。The above-mentioned monoaminosilane compound or diaminosiloxane compound is added for the purpose of improving the adhesiveness, and the range of use of the monoaminosilane component or diaminosiloxane component is 100% of all diamine components.
%, 0.1 to 10%, preferably 0.5 to 5%
Is. If the content of the monoaminosilane component or diaminosiloxane component is 0.1% or less, the effect of adhesiveness is small, and 10%.
In the above, heat resistance and mechanical properties are adversely affected.
【0081】本発明のポリイミド前駆体及びポリイミド
を製造するに当って用いられる溶剤は、例えば、N−メ
チル−2−ピロリドン、N,N−ジメチルアセトアミ
ド、N,N−ジメチルホルムアミド、ジメチルスルホキ
シド、ヘキサメチルホスホルアミド、テトラメチレンス
ルホン、パラ−クロロフェノ−ル、パラ−ブロモフェノ
−ル等があげられ、これらの少なくとも1種以上を用い
ることができる。The solvent used for producing the polyimide precursor and polyimide of the present invention is, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, hexa Methylphosphoramide, tetramethylene sulfone, para-chlorophenol, para-bromophenol and the like can be mentioned, and at least one kind of them can be used.
【0082】本発明を実施するにあたっての、ポリイミ
ド前駆体の調整方法は次の通りである。まずジアミン成
分を上記非プロトン極性溶剤中に溶解した後、タ−フェ
ニル−3,3”,4,4”−テトラカルボン酸二無水物
を加え、温度を0〜30℃に保ちながら約6時間撹拌す
る。これによって反応は次第に進行し、ワニス粘度が上
昇し、ポリイミド前駆体が生成する。更に50〜80℃
に保ちながら撹拌してワニス粘度を調整する。尚、ポリ
イミド前駆体の還元粘度は、例えば溶媒N−メチル−2
−ピロリドン、濃度0.1g/100ml、温度25℃
での条件で0.5dl/g以上とするのが望ましい。The method for preparing the polyimide precursor for carrying out the present invention is as follows. First, the diamine component is dissolved in the aprotic polar solvent, and then ta-phenyl-3,3 ", 4,4" -tetracarboxylic dianhydride is added, and the temperature is kept at 0 to 30 ° C for about 6 hours. Stir. As a result, the reaction gradually progresses, the viscosity of the varnish increases, and the polyimide precursor is produced. 50 to 80 ° C
Adjust the varnish viscosity by stirring while maintaining The reduced viscosity of the polyimide precursor is, for example, the solvent N-methyl-2.
-Pyrrolidone, concentration 0.1 g / 100 ml, temperature 25 ° C
It is desirable to set it to 0.5 dl / g or more under the above condition.
【0083】以下、本発明の配線構造体の製造方法につ
いて図1により説明する。The method of manufacturing the wiring structure of the present invention will be described below with reference to FIG.
【0084】先ず基板1上に所定のパタ−ンの導体層2
を周知のフォトエッチング技術によって形成する。次に
本発明のポリイミド前駆体(ポリアミド酸ワニス)を塗
布、熱硬化してポリイミド樹脂層3とする。(図1
a)。次にポリイミド樹脂層3上にフォトレジスト4を
塗布し、乾燥する(図1b)。フォトレジスト4は所定
のフォトマスクを用いて露光し、現像、リンス、乾燥を
行なって、所定のパタ−ンを得る(図1c)。然る後に
ポリイミド樹脂層3はフォトレジストのパタ−ンをマス
クとして、エッチングにより所定の部分を選択的に除去
してスル−ホ−ル5とし、この部分の導体層2を露出さ
せる(図1d)。その後、レジスト剥離液にてフォトレ
ジスト4を剥離する(図1e)。ここで、もしポリイミ
ド樹脂層3のスル−ホ−ル5の加工を、エキシマ−レ−
ザ−等のレ−ザ−光を用いて行うならば(図1a→図1
e)、図1b〜図1dのフォトレジスト4を用いる工程
は省略することが出来る。ポリイミド樹脂層3を表面保
護膜又はα線遮蔽膜として用いる場合は、基板外部との
電気的導通を得るためにこのスル−ホ−ルを用いる。例
えば、金配線に対するボンディングパッド部やはんだ接
続部として用いる。多層配線構造体を形成する場合は、
導体層2を下部導体層とし、上記に従い形成された配線
層上に更に上部導体層を形成する。すなわち、上部導体
層6は真空蒸着法、スパッタリング法、めっき法等の方
法で基板全面に堆積され、周知のフォトエッチング技術
等によって下部導体層2とポリイミド樹脂層3のスル−
ホ−ル5の部分で電気的に接続された所定のパタ−ンに
形成され、2層配線構造体が形成される(図1f)。更
に、この操作を多数回繰り返すことにより3層以上の多
層配線構造体が形成される。First, the conductor layer 2 having a predetermined pattern is formed on the substrate 1.
Are formed by a well-known photo etching technique. Next, the polyimide precursor (polyamic acid varnish) of the present invention is applied and heat-cured to form a polyimide resin layer 3. (Fig. 1
a). Next, a photoresist 4 is applied on the polyimide resin layer 3 and dried (FIG. 1b). The photoresist 4 is exposed by using a predetermined photomask, developed, rinsed and dried to obtain a predetermined pattern (FIG. 1c). After that, the polyimide resin layer 3 is selectively removed by etching using a photoresist pattern as a mask to form a through hole 5 to expose the conductor layer 2 at this portion (FIG. 1d). ). After that, the photoresist 4 is removed with a resist remover (FIG. 1e). Here, if the processing of the through hole 5 of the polyimide resin layer 3 is carried out by an excimer laser
If using laser light such as laser (Fig. 1a → Fig. 1
e), the step of using the photoresist 4 of FIGS. 1b to 1d can be omitted. When the polyimide resin layer 3 is used as a surface protective film or an α ray shielding film, this through hole is used in order to obtain electrical conduction with the outside of the substrate. For example, it is used as a bonding pad portion or a solder connection portion for gold wiring. When forming a multilayer wiring structure,
The conductor layer 2 is used as a lower conductor layer, and an upper conductor layer is further formed on the wiring layer formed as described above. That is, the upper conductor layer 6 is deposited on the entire surface of the substrate by a method such as a vacuum vapor deposition method, a sputtering method, a plating method or the like, and the through conductor of the lower conductor layer 2 and the polyimide resin layer 3 is formed by a well-known photoetching technique.
The two-layer wiring structure is formed by forming a predetermined pattern electrically connected in the portion of the hole 5 (FIG. 1f). Further, by repeating this operation many times, a multilayer wiring structure having three or more layers is formed.
【0085】[0085]
【作用】上記したように、本発明による、低誘電率、低
熱膨張率、高耐熱性、高ガラス転移温度、高機械的特性
(可とう性)、高接着性を兼備したポリイミド及びその
前駆体(ポリアミド酸)を用いると、伝播信号の遅延時
間が短くなり得、しかも耐湿性に優れ、基板の反りや配
線の断線やクラックも無く、信頼性の高い配線構造体を
見いだすことができた。本発明に依るポリイミドには、
直線的に結合した芳香環が多く含まれ、かつ誘電率上昇
の原因となるイミド環が相対的に少ないために、結果と
して低誘電率、低熱膨張率、高耐熱性、高ガラス転移温
度が同時に備わっている。更にポリイミドは、そのジア
ミン成分の一部に柔軟な(屈曲)構造を有するジアミン
を使用することによって、高機械的特性(可とう性)を
も兼備している。そのために高性能で高信頼性の配線構
造体が達成されたものと考えられる。As described above, according to the present invention, a polyimide having a low dielectric constant, a low thermal expansion coefficient, a high heat resistance, a high glass transition temperature, a high mechanical property (flexibility), and a high adhesive property, and a precursor thereof are provided. When (polyamic acid) was used, the delay time of the propagation signal could be shortened, the moisture resistance was excellent, and there was no warp of the substrate or disconnection or crack of the wiring, and a highly reliable wiring structure could be found. The polyimide according to the present invention includes:
Since it contains many linearly bonded aromatic rings and relatively few imide rings that cause an increase in dielectric constant, it results in low dielectric constant, low thermal expansion coefficient, high heat resistance, and high glass transition temperature at the same time. Equipped. Furthermore, the polyimide also has high mechanical properties (flexibility) by using a diamine having a flexible (flexible) structure as a part of its diamine component. Therefore, it is considered that a high-performance and highly reliable wiring structure has been achieved.
【0086】[0086]
【実施例】次に実施例により本発明を説明する。EXAMPLES The present invention will now be described with reference to examples.
【0087】合成例1 室温、窒素気流下、ビス[4−(4−アミノフェノキ
シ)フェニル]エ−テル2.842g(7.393ミリ
モル、ジアミン成分中50%のモル比)と4,4”−ジ
アミノ−p−タ−フェニル1.924g(7.393ミ
リモル、ジアミン成分中50%のモル比)を、N,N−
ジメチルアセトアミド(DMAc)とN−メチル−2−
ピロリドン(NMP)の1:1の混合溶媒53.6gに
撹拌しつつ溶解した。次にp−タ−フェニル−3,
3”,4,4”−テトラカルボン酸二無水物(TPD
A)5.475g(14.78ミリモル)を窒素気流下
上記溶液に撹拌しつつ溶解した(固形分濃度16%)。
この時溶液の温度は30度前後まで上昇し、その粘度は
150 poiseとなった。更にこの溶液に55〜6
5℃の温度範囲で約5時間熱を加えてその粘度を56
poiseとし、ポリアミド酸ワニス(ポリイミド前駆
体)とした。このポリアミド酸ワニスをガラスウエハ−
に回転塗布し、200℃30分、350℃30分加熱し
ポリイミドフィルムを得た。このポリイミドの誘電率ε
=2.7、ガラス転移温度Tg=390℃、熱膨張係数
α=21ppm/℃、伸び率=17%であった。Synthesis Example 1 2.842 g (7.393 mmol, molar ratio of 50% in diamine component) of bis [4- (4-aminophenoxy) phenyl] ether and 4,4 "under nitrogen stream at room temperature. -Diamino-p-ta-phenyl (1.924 g, 7.393 mmol, molar ratio of 50% in diamine component) was added to N, N-
Dimethylacetamide (DMAc) and N-methyl-2-
It was dissolved in 53.6 g of a 1: 1 mixed solvent of pyrrolidone (NMP) with stirring. Then p-ta-phenyl-3,
3 ", 4,4" -tetracarboxylic dianhydride (TPD
A) 5.475 g (14.78 mmol) was dissolved in the above solution with stirring under a nitrogen stream (solid content concentration 16%).
At this time, the temperature of the solution rose to around 30 degrees and its viscosity became 150 poise. Further add 55 to 6 to this solution.
Heat the mixture in the temperature range of 5 ° C for about 5 hours to increase its viscosity to 56
Poise and polyamic acid varnish (polyimide precursor) were used. This polyamic acid varnish was applied to a glass wafer.
Was spin coated on and heated at 200 ° C. for 30 minutes and 350 ° C. for 30 minutes to obtain a polyimide film. Dielectric constant ε of this polyimide
= 2.7, glass transition temperature Tg = 390 ° C., thermal expansion coefficient α = 21 ppm / ° C., elongation = 17%.
【0088】合成例2〜12、20〜24 表1に示される成分を用いて合成例1と同様の方法でポ
リアミド酸ワニスを合成した。その際の固形分濃度と粘
度を表1に併記した。これらのポリアミド酸ワニスから
合成例1と同様の方法でポリイミドフィルムを得た。そ
れらの特性値は以下の範囲であった。誘電率ε=2.7
〜2.8、ガラス転移温度Tg=360〜410℃、熱
膨張係数α=14〜25ppm/℃、伸び率=11〜1
8%Synthesis Examples 2 to 12, 20 to 24 Polyamic acid varnishes were synthesized in the same manner as in Synthesis Example 1 using the components shown in Table 1. The solid content concentration and viscosity at that time are also shown in Table 1. Polyimide films were obtained from these polyamic acid varnishes in the same manner as in Synthesis Example 1. The characteristic values were in the following ranges. Dielectric constant ε = 2.7
˜2.8, glass transition temperature Tg = 360 to 410 ° C., thermal expansion coefficient α = 14 to 25 ppm / ° C., elongation rate = 11 to 1
8%
【0089】[0089]
【表1】 (その1) [Table 1] (Part 1)
【0090】[0090]
【表1】 (その2) [Table 1] (Part 2)
【0091】[0091]
【表1】 (その3) [Table 1] (Part 3)
【0092】実施例1 本発明により製造したダイナミックランダムアクセスメ
モリ(DRAM)の断面図とその製造プロセスを図2に
示す。素子領域及び配線層を作り込んだシリコンウエハ
7上に表1中No1のポリアミド酸ワニスを回転塗布
し、200℃30分、350℃30分の順に加熱して、
ポリイミド膜8へと硬化させた。ポリイミド膜の厚さは
10μmであった(図2a)。次にポリイミド樹脂層8
上にプラズマ耐性ポジ型フォトレジスト9(RU−16
00P、日立化成製商品名)を塗布し、乾燥した。上記
フォトレジストはフォトマスクを用いて露光し、現像、
リンス、乾燥を行なって、所定のパタ−ンを得た。然る
後にポリイミド樹脂層8はフォトレジストのパタ−ン9
をマスクとして、酸素ガスを用いた反応性エッチング
(O2−RIE)によりボンディングパッド部10とス
クライブ領域11の部分を選択的に除去した(図2
b)。次いで上記フォトレジストをレジスト剥離液(S
502A、東京応化製商品名)により除去した(図2
c)。以上のように作成したボンディングパッド部1
0、スクライブ領域11の部分で下地が露出したポリイ
ミド膜8をα線遮蔽膜とした。次に上記によって作成し
た基板をスクライブ領域で切断し、チップに切りだした
(図2d)。このチップの表面に、下地にポリアミドイ
ミドエ−テルの接着層を有するポリイミドフィルム13
上に支持された外部端子12を400℃にて熱圧着した
(図2e)。然る後にボンディングパッド部10と外部
端子12間をワイヤボンダ−で金線14を配線し(図2
f)、更にシリカ含有のエポキシ系封止材を用いて成型
温度180℃、成型圧力70kg/cm2でモ−ルドす
ることにより樹脂封止部15を形成した(図2g)。最
後に外部端子を所定の形に折り曲げることによりDRA
Mの完成品を得た(図2h)。以上によって製造したD
RAMのポリイミド膜にクラックは認められなかった。
また−55℃と150℃の雰囲気に交互に繰返し放置す
る温度サイクル試験や260℃10秒間で数回加熱する
耐熱試験においても不良は認められず、信頼性の高い製
品にすることができた。Example 1 FIG. 2 shows a sectional view of a dynamic random access memory (DRAM) manufactured according to the present invention and a manufacturing process thereof. No. 1 polyamic acid varnish in Table 1 was spin-coated on a silicon wafer 7 having an element region and a wiring layer formed therein, and heated at 200 ° C. for 30 minutes and 350 ° C. for 30 minutes in this order.
The polyimide film 8 was cured. The thickness of the polyimide film was 10 μm (FIG. 2a). Next, the polyimide resin layer 8
Plasma resistant positive photoresist 9 (RU-16
00P, trade name of Hitachi Chemical Co., Ltd.) was applied and dried. The photoresist is exposed using a photomask, developed,
After rinsing and drying, a predetermined pattern was obtained. After that, the polyimide resin layer 8 is a pattern 9 of photoresist.
With the mask as a mask, the bonding pad portion 10 and the scribe region 11 are selectively removed by reactive etching (O 2 -RIE) using oxygen gas (FIG. 2).
b). Then, the photoresist is removed using a resist stripper (S
502A, trade name of Tokyo Ohka) (Fig. 2)
c). Bonding pad part 1 created as described above
0, the polyimide film 8 whose base was exposed in the scribe region 11 was used as an α-ray shielding film. Next, the substrate prepared as described above was cut in the scribe region and cut into chips (FIG. 2d). A polyimide film 13 having an adhesive layer of polyamideimide ether as a base on the surface of this chip
The external terminal 12 supported above was thermocompression bonded at 400 ° C. (FIG. 2e). After that, a gold wire 14 is laid between the bonding pad portion 10 and the external terminal 12 with a wire bonder (see FIG. 2).
f) Further, a resin-sealed portion 15 was formed by molding using a silica-containing epoxy-based encapsulant at a molding temperature of 180 ° C. and a molding pressure of 70 kg / cm 2 (FIG. 2g). Finally, by bending the external terminals into a specified shape, DRA
A finished product of M was obtained (Fig. 2h). D produced by the above
No crack was found in the polyimide film of RAM.
Further, no defects were found in a temperature cycle test in which the substrate was repeatedly left in an atmosphere of −55 ° C. and 150 ° C. alternately and in a heat resistance test in which it was heated several times at 260 ° C. for 10 seconds, and a product with high reliability could be obtained.
【0093】実施例2〜5 ポリアミド酸ワニスとして表1のNo2、4、8、及び
10のそれぞれの材料を用いることのほかは実施例1と
同様の方法によってDRAMを作成した。製造したDR
AMはいずれも温度サイクル試験や耐熱試験で不良は認
められず、信頼性の高い製品にすることができた。Examples 2 to 5 DRAMs were prepared in the same manner as in Example 1 except that the materials Nos. 2, 4, 8 and 10 shown in Table 1 were used as the polyamic acid varnish. Manufactured DR
No defects were found in the AM in the temperature cycle test or the heat resistance test, and the product could be made highly reliable.
【0094】実施例6〜11 ポリイミド層と下地との接着強度を増すために1%のア
ルミニウムモノエチルアセテ−トジイソプロピレ−トの
溶液を塗布し、酸素雰囲気中350℃で熱処理すること
を加えた以外は同一のシリコンウエハ7を用い、ポリア
ミド酸ワニスとして表1のNo3、5、6、7、9、1
3のそれぞれの材料を用いて実施例1と同様の方法によ
ってDRAMを作成した。製造したDRAMはいずれも
温度サイクル試験や耐熱試験で不良は認められず、信頼
性の高い製品にすることができた。Examples 6 to 11 A solution of 1% aluminum monoethylacetate diisopropylate was applied to increase the adhesive strength between the polyimide layer and the base, and heat treatment was performed at 350 ° C. in an oxygen atmosphere. Are the same silicon wafers 7 and are used as polyamic acid varnishes in Nos. 3, 5, 6, 7, 9, and 1 of Table 1.
A DRAM was prepared in the same manner as in Example 1 by using the respective materials No. 3 and No. 3. None of the manufactured DRAMs were found to be defective in a temperature cycle test or a heat resistance test, and a highly reliable product could be obtained.
【0095】実施例12 本発明により製造した2層配線構造体の例として、図3
にリニアICの断面概略図を示す。以下にその製法を示
す。シリコンウエハ16に作り込まれたコレクタ17、
ベ−ス18、エミッタ19の各領域から電極を取り出す
ためにSiO2層20にスル−ホ−ルを設けた。第1層
目の配線導体として2μmのAl21を真空蒸着により
堆積し、周知のフォトエッチング技術により所定のパタ
−ンを得た。ポリイミド層と下地との接着強度を増すた
めに、上記基板に1%のアルミニウムモノエチルアセテ
−トジイソプロピレ−トの溶液を塗布し、酸素雰囲気中
で350℃で5分間熱処理した。次に、ポリアミド酸ワ
ニスNo1を回転塗布し、200℃30分、350℃3
0分の順に加熱して、ポリイミド膜22へと硬化させ
た。このポリイミド膜(配線層間絶縁膜)の厚さは2.
5μmであった。次にポリイミド樹脂層22上にプラズ
マ耐性ポジ型フォトレジスト(RU−1600P、日立
化成製商品名)を塗布し、乾燥した。上記フォトレジス
トはフォトマスクを用いて露光し、現像、リンス、乾燥
を行なって、所定のパタ−ンを得た。然る後にポリイミ
ド樹脂層22のスル−ホ−ルとなる所定の部分23を、
フォトレジストのパタ−ンをマスクとして、酸素ガスを
用いた反応性エッチング(O2−RIE)により選択的
に除去した。次いで上記フォトレジストをレジスト剥離
液(S502A、東京応化製商品名)により除去した。
次にこのスル−ホ−ル部分の下地である第1層目Al配
線の表面から酸化物層を除去するためにスルファミン酸
水溶液で処理し、更に新鮮なAl面を得るためにAlの
エッチング液で短時間処理した後水洗した。基板を乾燥
後、第2層目の配線導体として2μmのAl24を真空
蒸着により堆積し、周知のフォトエッチング技術により
所定の配線パタ−ンを得た。以上によって形成した2層
配線構造において、配線層間絶縁膜22にはクラックや
欠陥は認められなかった。また、上記基板を切り出して
外部端子を取付け、金配線した後に樹脂封止して得られ
た最終製品を、実施例1に示す信頼性試験にかけたが不
良は認められなかった。Example 12 FIG. 3 shows an example of a two-layer wiring structure manufactured according to the present invention.
A schematic sectional view of the linear IC is shown in FIG. The manufacturing method is shown below. Collector 17 built in silicon wafer 16,
A through hole was provided in the SiO 2 layer 20 in order to take out the electrode from each region of the base 18 and the emitter 19. 2 μm of Al21 was deposited by vacuum vapor deposition as the first layer wiring conductor, and a predetermined pattern was obtained by a well-known photoetching technique. In order to increase the adhesive strength between the polyimide layer and the base, a 1% solution of aluminum monoethyl acetate diisopropylate was applied to the above substrate and heat-treated at 350 ° C. for 5 minutes in an oxygen atmosphere. Next, the polyamic acid varnish No. 1 was spin-coated, and 200 ° C. for 30 minutes and 350 ° C. 3
The polyimide film 22 was cured by heating in the order of 0 minutes. The thickness of this polyimide film (interlayer wiring insulating film) is 2.
It was 5 μm. Next, a plasma resistant positive photoresist (RU-1600P, trade name of Hitachi Chemical Co., Ltd.) was applied on the polyimide resin layer 22 and dried. The photoresist was exposed using a photomask, developed, rinsed, and dried to obtain a predetermined pattern. Then, a predetermined portion 23 to be a through hole of the polyimide resin layer 22 is
Using the photoresist pattern as a mask, it was selectively removed by reactive etching (O 2 -RIE) using oxygen gas. Next, the photoresist was removed by a resist stripping solution (S502A, trade name of Tokyo Ohka).
Then, the surface of the first-layer Al wiring, which is the base of the through-hole portion, is treated with an aqueous sulfamic acid solution to remove the oxide layer, and an Al etching solution is used to obtain a fresh Al surface. After a short treatment with water, it was washed with water. After the substrate was dried, 2 μm of Al24 was deposited as a second layer wiring conductor by vacuum evaporation, and a predetermined wiring pattern was obtained by a well-known photoetching technique. In the two-layer wiring structure formed as described above, no cracks or defects were found in the wiring interlayer insulating film 22. Further, the final product obtained by cutting out the above substrate, attaching external terminals, performing gold wiring, and then sealing with resin was subjected to the reliability test shown in Example 1, but no defect was recognized.
【0096】実施例13〜16 ポリアミド酸ワニスとして表1のNo3、5、8、11
の材料を用いることのほかは、実施例12と同様の方法
によって2層配線構造のリニアICを作成した。いずれ
の場合もこれらのポリアミド酸ワニスからの硬化物(ポ
リイミド)である配線層間絶縁膜22にはクラックや欠
陥は認められなかった。また、温度サイクル試験や耐熱
試験で不良は認められず、信頼性の高い製品にすること
ができた。Examples 13 to 16 No. 3, 5, 8, and 11 in Table 1 as polyamic acid varnish
A linear IC having a two-layer wiring structure was prepared in the same manner as in Example 12 except that the above materials were used. In any case, no cracks or defects were observed in the wiring interlayer insulating film 22 which is a cured product (polyimide) from these polyamic acid varnishes. Further, no defects were found in the temperature cycle test and the heat resistance test, and the product could be made highly reliable.
【0097】実施例17 本発明により製造した個別トランジスタの断面図とその
製造プロセスを図4に示す。シリコンウエハ25(コレ
クタを兼ねる)に作り込まれたベ−ス26、エミッタ2
7の各領域から電極を取りだすためにSiO2層28に
スル−ホ−ルを設け、ボンディングパッド部の導体層と
して2μmのAl29を真空蒸着により堆積し、周知の
フォトエッチング技術により所定のパタ−ンを得た(図
4a)。ポリイミド層と下地との接着強度を増すため
に、上記基板に1%のアルミニウムモノエチルアセテ−
トジイソプロピレ−トの溶液を塗布し、酸素雰囲気中3
50℃で5分間熱処理した。次に、ポリアミド酸ワニス
No5を回転塗布し、200℃30分、350℃30分
の順に加熱して、ポリイミド膜32へと硬化させた。こ
のポリイミド膜(配線層間絶縁膜)の厚さは2.5μm
であった。次にポリイミド樹脂層32上にプラズマ耐性
ポジ型フォトレジスト(RU−1600P、日立化成製
商品名)を塗布し、乾燥した。上記フォトレジストはフ
ォトマスクを用いて露光し、現像、リンス、乾燥を行な
って、所定のパタ−ンを得た。然る後にポリイミド樹脂
層32のスル−ホ−ルとなるボンディングパッド部30
を、フォトレジストのパタ−ンをマスクとして、酸素ガ
スを用いた反応性エッチング(O2−RIE)により選
択的に除去した。次いで上記フォトレジストをレジスト
剥離液(S502A、東京応化製商品名)により除去し
た(図4b)。次に、ボンディングパッド部30の部分
で露出したAl配線の表面から酸化物層を除去するため
にスルファミン酸水溶液で処理し、更に新鮮なAl面を
得るためにAlのエッチング液で短時間処理した後水洗
した。次に上記によって作成した基板をスクライブ領域
31で切断し、チップ33に切り出した(図4c)。こ
のチップを外部端子を兼ねたリ−ドフレ−ム35上に取
付け、しかる後にボンディングパッド部と外部端子34
間をワイヤ−ボンダ−で金線36を配線し、更にシリカ
含有のエポキシ系封止材を用いて成型温度180℃、成
型圧力70kg/cm2でモ−ルドすることにより樹脂
封止部37を形成した。最後に樹脂封止したチップをリ
−ドフレ−ムから切り出し、外部端子を所定の形に折り
曲げることにより個別トランジスタの完成品を得た(図
4d)。以上によって製造した個別トランジスタのポリ
イミド膜にクラックやはがれは認められなかった。また
−55℃と150℃の雰囲気に繰返し放置する温度サイ
クル試験や260℃10秒間で数回加熱する耐熱試験に
おいても不良は認められず、信頼性の高い製品にするこ
とができた。 実施例18〜22 ポリアミド酸ワニスとして表1のNo1、7、10、1
2の材料を用いることのほかは実施例17と同様の方法
によって個別トランジスタを作成した。いずれの場合も
保護層として用いるポリイミド膜にはクラックや欠陥若
しくははがれは認められなかった。また、温度サイクル
試験や耐熱試験で不良は認められず、信頼性の高い製品
にすることができた。Example 17 A sectional view of an individual transistor manufactured according to the present invention and its manufacturing process are shown in FIG. Base 26 and emitter 2 built in a silicon wafer 25 (also serving as a collector)
A through hole is provided in the SiO 2 layer 28 to take out the electrode from each region of 7, and 2 μm of Al 29 is deposited by vacuum evaporation as a conductor layer of the bonding pad portion, and a predetermined pattern is formed by a well-known photoetching technique. (Fig. 4a). In order to increase the adhesive strength between the polyimide layer and the base, 1% aluminum monoethyl acetate was added to the above substrate.
Apply a solution of Todiisopropylate and apply in an oxygen atmosphere.
Heat treatment was performed at 50 ° C. for 5 minutes. Next, the polyamic acid varnish No. 5 was spin-coated and heated in the order of 200 ° C. for 30 minutes and 350 ° C. for 30 minutes to cure the polyimide film 32. The thickness of this polyimide film (interlayer wiring insulating film) is 2.5 μm.
Met. Next, a plasma resistant positive photoresist (RU-1600P, trade name of Hitachi Chemical Co., Ltd.) was applied on the polyimide resin layer 32 and dried. The photoresist was exposed using a photomask, developed, rinsed, and dried to obtain a predetermined pattern. After that, the bonding pad portion 30 which becomes the through hole of the polyimide resin layer 32 is formed.
Was selectively removed by reactive etching (O 2 -RIE) using oxygen gas using the pattern of the photoresist as a mask. Next, the photoresist was removed with a resist stripping solution (S502A, trade name of Tokyo Ohka) (FIG. 4b). Next, the surface of the Al wiring exposed at the bonding pad portion 30 was treated with a sulfamic acid aqueous solution to remove the oxide layer, and further treated with an Al etching solution for a short time to obtain a fresh Al surface. After that, it was washed with water. Next, the substrate prepared as described above was cut in the scribe region 31 and cut into chips 33 (FIG. 4c). This chip is mounted on the lead frame 35 which also serves as an external terminal, and thereafter, the bonding pad portion and the external terminal 34 are attached.
A gold wire 36 is laid between the two with a wire bonder, and a resin-sealed portion 37 is molded by molding a silica-containing epoxy-based encapsulant at a molding temperature of 180 ° C. and a molding pressure of 70 kg / cm 2. Formed. Finally, the resin-sealed chip was cut out from the lead frame and the external terminals were bent into a predetermined shape to obtain a completed individual transistor (FIG. 4d). No crack or peeling was observed in the polyimide film of the individual transistor manufactured as described above. No defects were found in a temperature cycle test in which the sample was repeatedly left in an atmosphere of −55 ° C. and 150 ° C. or in a heat resistance test in which it was heated several times at 260 ° C. for 10 seconds, and a highly reliable product could be obtained. Examples 18 to 22 No. 1, 7, 10, 1 in Table 1 as polyamic acid varnish
Individual transistors were prepared in the same manner as in Example 17 except that the material of 2 was used. In any case, no crack, defect or peeling was observed in the polyimide film used as the protective layer. Further, no defects were found in the temperature cycle test and the heat resistance test, and the product could be made highly reliable.
【0098】実施例23 本発明により製造した多層配線構造体の例として、図5
に大形計算機用の薄膜多層配線基板の断面概略図を示
す。以下にその製造例を示す。セラミック層38の内部
にタングステン配線39を有し、タングステン配線上部
に上部電極としてめっき法によって形成したニッケル層
40、タングステン配線下部に下部電極としてめっき法
によって形成したニッケル層41、金層42を有するセ
ラミック基板43(100mm角、1mm厚)の上に導
体層として3μmのAlを真空蒸着により堆積し、周知
のフォトエッチング技術によりニッケル層40を覆う所
定のAlパタ−ン44を得た。次に、組成No2のポリ
アミド酸ワニスを回転塗布し、オ−ブン中で140℃3
0分、200℃30分、350℃60分の順に加熱し
て、ポリイミド膜45へと硬化させた。このポリイミド
膜(配線層間絶縁膜)の厚さは7μmであった。次にポ
リイミド樹脂層45上にルモニクス社製エキシマ−レ−
ザ−(INDEX200K;KrF、248nm、パル
ス幅16ns)を所定のマスクを通してパルスで照射
し、径70μmのスル−ホ−ルを形成した。このときの
レ−ザ−照射エネルギ−密度は0.4J/cm2、ジャ
ストエッチでのパルス数は60パルスであった。この上
に3μmのAlを真空蒸着により堆積し、周知のフォト
エッチング技術により第1層Al配線パタ−ン46を形
成した。上記操作を繰り返してスル−ホ−ル径70μ
m、膜厚7μmの第2層ポリイミド膜47、膜厚3μm
の第2層Al配線パタ−ン48、スル−ホ−ル径70μ
m、膜厚7μmの第3層ポリイミド膜49の順に絶縁層
と配線層を交互に形成した。この際、第2層目以降のポ
リイミドを回転塗布する直前に、ポリイミド間の接着性
を向上させるために基板表面にアッシング処理をした。
しかる後に、真空蒸着法により膜厚0.07μmのクロ
ム、膜厚0.7μmのニッケル−銅合金を順に堆積し、
周知のフォトエッチング技術によって第3層ポリイミド
膜のスル−ホ−ルの部分で径150μmのクロム/ニッ
ケル−銅層50をパタ−ン化した。この上部を更にめっ
き法でニッケル層、金層の順に形成し、ニッケル/金複
合膜51からなる上部電極を形成した。以上によって作
成した薄膜多層配線基板においては、基板の反りは無視
できるほど小さく、ポリイミド膜のクラック、欠陥等は
見られず、またスル−ホ−ル上部のAl配線の被覆性も
良好で全ての配線にわたって良好な電気的導通が得られ
た。Example 23 As an example of a multilayer wiring structure manufactured according to the present invention, FIG.
Figure 2 shows a schematic cross-sectional view of a thin-film multilayer wiring board for large-scale computers. The production example is shown below. The ceramic layer 38 has a tungsten wiring 39 inside, a nickel layer 40 formed by plating as an upper electrode on the upper portion of the tungsten wiring, and a nickel layer 41 and a gold layer 42 formed by plating as a lower electrode on the lower portion of the tungsten wiring. 3 μm of Al was deposited as a conductor layer on the ceramic substrate 43 (100 mm square, 1 mm thick) by vacuum vapor deposition, and a predetermined Al pattern 44 covering the nickel layer 40 was obtained by a well-known photoetching technique. Next, a polyamic acid varnish of composition No. 2 was spin-coated and heated in an oven at 140 ° C. 3
The polyimide film 45 was cured by heating in order of 0 minutes, 200 ° C. for 30 minutes, and 350 ° C. for 60 minutes. The thickness of this polyimide film (interlayer wiring insulating film) was 7 μm. Next, an excimer layer manufactured by Lumonix Co., Ltd. is formed on the polyimide resin layer 45.
The (INDEX 200K; KrF, 248 nm, pulse width 16 ns) was irradiated with a pulse through a predetermined mask to form a through hole having a diameter of 70 μm. At this time, the laser irradiation energy density was 0.4 J / cm 2 , and the number of pulses in just etching was 60 pulses. 3 μm of Al was deposited thereon by vacuum vapor deposition, and the first layer Al wiring pattern 46 was formed by a well-known photoetching technique. The above operation is repeated until the through-hole diameter is 70 μm.
m, the second layer polyimide film 47 having a film thickness of 7 μm, the film thickness of 3 μm
Second layer Al wiring pattern 48, through hole diameter 70 μm
Insulating layers and wiring layers were alternately formed in this order in the order of m and a third-layer polyimide film 49 having a film thickness of 7 μm. At this time, immediately before spin-coating the second and subsequent layers of polyimide, ashing treatment was performed on the substrate surface in order to improve the adhesiveness between the polyimides.
Thereafter, a chromium film having a thickness of 0.07 μm and a nickel-copper alloy having a film thickness of 0.7 μm are sequentially deposited by a vacuum vapor deposition method,
A chromium / nickel-copper layer 50 having a diameter of 150 μm was patterned at the through-hole portion of the third layer polyimide film by a well-known photoetching technique. Then, a nickel layer and a gold layer were formed in this order on the upper portion by a plating method to form an upper electrode made of the nickel / gold composite film 51. In the thin-film multi-layer wiring board prepared as described above, the warp of the board was negligibly small, cracks and defects of the polyimide film were not seen, and the coverage of the Al wiring on the through hole was good. Good electrical continuity was obtained over the wiring.
【0099】実施例24 本発明により製造した、銅−ポリイミド系多層配線構造
体の製造プロセスを図6に示す。ムライト系セラミック
層(100mm角、5mm厚)の内部にタングステン配
線を有し、タングステン配線上部にめっき下地膜として
スパッタ法により形成したクロム層53(0.05μ
m)、銅層54(0.5μm)を有するセラミック基板
52(図6b)の上部にポジタイプレジスト55を回転
塗布し、窒素雰囲気中90℃で30分加熱した。この時
のレジスト55の膜厚は10μmであった(図6c)。
次に所定のマスクで露光、現像、リンス後(図6d)、
電気めっき法により銅めっき56を行なった。めっき液
組成はCuSO4/5H2O70g/l、H2SO4 14
0g/l、HCl 50ppm、電流密度は1.0(A
/dm2)であり、10μm厚の銅を得るための所要時
間は40分であった(図6e)。銅めっき終了後、水洗
し、真空乾燥を80℃、1時間行なった。更に以上の工
程図6c〜6eを繰り返した(工程図6f〜6h)。レ
ジスト55を剥離液にて剥離後(図6i)、アルコ−ル
系有機溶剤で洗浄した。次いでめっき下地膜である銅及
びクロムのうち、その後の銅めっきの下地になっていな
い部分を、塩化アンモニウム系エッチング液、及びフェ
リシアン化カリウム/水酸化ナトリウム混液にてそれぞ
れ選択的に除去した(図6j)。充分に水洗し、ニッケ
ルめっきを行ない水洗後、真空乾燥をした(図6k)。
このニッケル保護膜を銅に施すことにより、銅とこの後
に塗布されるポリアミド酸との反応(銅の酸化)を防ぐ
ことができる。次にNo2のポリアミド酸ワニスを回転
塗布し、140℃30分、200℃30分、350℃6
0分で窒素雰囲気下、加熱した。硬化物であるポリイミ
ドの膜厚は23μmであった(図6l)。更にアルミナ
粒子の付着したテ−プ(#500〜#4000)により
研磨しポリイミド層を平坦化し、アセトンで洗浄した
(図6m)。更に上記工程図6b〜6mを、6kの後に
酸素によるアッシング処理を行ないつつ、9回繰り返
し、配線層10層からなる銅−ポリイミド系多層配線構
造体(全薄膜層400μm厚)を得た。以上によって完
成した多層配線構造体においては、最終的な基板の反り
は9μmと小さく、またポリイミド膜のはがれやクラッ
ク、配線の腐食や欠陥等は見られず、全ての配線にわた
って良好な電気的導通が得られた。Example 24 FIG. 6 shows a manufacturing process of a copper-polyimide type multilayer wiring structure manufactured by the present invention. A mullite ceramic layer (100 mm square, 5 mm thick) has a tungsten wiring inside, and a chromium layer 53 (0.05 μ) formed on the tungsten wiring as a plating base film by a sputtering method.
m), a positive type resist 55 was spin-coated on top of the ceramic substrate 52 (FIG. 6b) having the copper layer 54 (0.5 μm), and heated at 90 ° C. for 30 minutes in a nitrogen atmosphere. The film thickness of the resist 55 at this time was 10 μm (FIG. 6c).
Then, after exposing, developing and rinsing with a predetermined mask (Fig. 6d),
Copper plating 56 was performed by electroplating. The plating solution composition is CuSO 4 / 5H 2 O 70 g / l, H 2 SO 4 14
0 g / l, HCl 50 ppm, current density 1.0 (A
/ Dm 2 ) and the time required to obtain 10 μm thick copper was 40 minutes (FIG. 6e). After completion of copper plating, the plate was washed with water and vacuum dried at 80 ° C. for 1 hour. Further, the above process drawings 6c to 6e were repeated (process drawings 6f to 6h). The resist 55 was stripped with a stripping solution (FIG. 6i) and then washed with an alcohol organic solvent. Then, of the copper and chromium as the plating base film, the portions which are not the base of the subsequent copper plating were selectively removed with an ammonium chloride-based etching solution and a potassium ferricyanide / sodium hydroxide mixed solution, respectively (FIG. 6j). ). After thorough washing with water, nickel plating, and washing with water, vacuum drying was performed (Fig. 6k).
By applying this nickel protective film to copper, it is possible to prevent the reaction between copper and the polyamic acid to be applied thereafter (oxidation of copper). Next, spin coat No2 polyamic acid varnish, 140 ° C 30 minutes, 200 ° C 30 minutes, 350 ° C 6
Heated under nitrogen atmosphere for 0 minutes. The film thickness of the cured polyimide was 23 μm (FIG. 6l). Further, the polyimide layer was flattened by polishing with a tape (# 500 to # 4000) having alumina particles attached thereto, and washed with acetone (FIG. 6m). Further, the above process steps 6b to 6m were repeated 9 times while performing ashing treatment with oxygen after 6k to obtain a copper-polyimide multilayer wiring structure (total thin film layer 400 μm thick) consisting of 10 wiring layers. In the multilayer wiring structure completed as described above, the warp of the final substrate was as small as 9 μm, and peeling and cracks of the polyimide film, corrosion and defects of the wiring, etc. were not observed, and good electrical continuity was achieved across all wiring. was gotten.
【0100】実施例25〜31 ポリアミド酸ワニスとして表1のNo5、8、10、2
1〜24を用いることの他は、実施例24と同様の方法
で配線層10層からなる銅−ポリイミド系多層配線構造
体を得た。完成した多層配線構造体においては、最終的
な基板の反りは全て16μm以下と小さく、またポリイ
ミド膜のはがれやクラック、配線の腐食や欠陥等は見ら
れず、全ての配線にわたって良好な電気的導通が得られ
た。Examples 25 to 31 Nos. 5, 8, 10 and 2 of Table 1 as polyamic acid varnishes
A copper-polyimide multilayer wiring structure consisting of 10 wiring layers was obtained in the same manner as in Example 24 except that 1 to 24 were used. In the completed multilayer wiring structure, the final warpage of the substrate is as small as 16 μm or less, and peeling and cracks of the polyimide film, corrosion and defects of the wiring, etc. are not seen, and good electrical continuity across all wiring. was gotten.
【0101】比較例1 合成例1と同様の方法で表2のNo13のポリアミド酸
ワニスを合成した。このワニスをガラス基板上に回転塗
布し、200℃30分、350℃で30分加熱して厚さ
8μmのポリイミドフィルムを得た。このフィルムは極
めて脆く、伸びは1%以下であった。上記ワニスを用い
ることの他は、実施例1と同様の方法によりDRAMを
製造した。図2cのα線遮蔽膜(ポリイミド膜)8を形
成後、作成した基板をスクライブ領域で切断し、チップ
に切りだした(図2d)。このチップの表面に、下部に
ポリアミドイミドエ−テルの接着層を持つポリイミドフ
ィルム13上に支持された外部端子12を400℃にて
熱圧着した(図2e)。この時、ポリイミド膜8には多
くのクラックが発生し、完成品には至らなかった。Comparative Example 1 No. 13 polyamic acid varnish of Table 2 was synthesized in the same manner as in Synthesis Example 1. This varnish was spin-coated on a glass substrate and heated at 200 ° C. for 30 minutes and 350 ° C. for 30 minutes to obtain a polyimide film having a thickness of 8 μm. This film was extremely brittle and had an elongation of 1% or less. A DRAM was manufactured in the same manner as in Example 1 except that the above varnish was used. After forming the α-ray shielding film (polyimide film) 8 of FIG. 2c, the formed substrate was cut in the scribe region and cut into chips (FIG. 2d). The external terminals 12 supported on a polyimide film 13 having a polyamide-imide ether adhesive layer on the bottom were thermocompression bonded at 400 ° C. to the surface of this chip (FIG. 2e). At this time, many cracks were generated in the polyimide film 8 and the finished product was not reached.
【0102】比較例2 合成例1と同様の方法で表2のNo14のポリアミド酸
ワニス(ここでPMDAはピロメリット酸二無水物であ
る)を合成した。このワニスをガラス基板上に回転塗布
し、200℃30分、350℃で30分加熱して厚さ8
μmのポリイミドフィルムを得た。このフィルムは極め
て脆く、伸びは3%以下であった。上記ワニスを用いる
ことの他は、実施例12と同様の方法でリニアICを製
造した。この例においては、第2層目のAl配線パタ−
ンを形成したときに、Al配線下部のポリイミド層に多
数のクラックが認められ、完成品には至らなかった。Comparative Example 2 In the same manner as in Synthesis Example 1, No. 14 polyamic acid varnish of Table 2 (wherein PMDA is pyromellitic dianhydride) was synthesized. This varnish is spin-coated on a glass substrate and heated at 200 ° C. for 30 minutes and 350 ° C. for 30 minutes to give a thickness of 8
A μm polyimide film was obtained. This film was extremely brittle and had an elongation of 3% or less. A linear IC was manufactured in the same manner as in Example 12 except that the above varnish was used. In this example, the Al wiring pattern of the second layer is used.
When the resin was formed, many cracks were observed in the polyimide layer under the Al wiring, and the finished product was not reached.
【0103】比較例3 合成例1と同様の方法で表2のNo15のポリアミド酸
ワニスを合成した。このワニスをガラス基板上に回転塗
布し、200℃30分、350℃で30分加熱して厚さ
8μmのポリイミドフィルムを得た。このフィルムは極
めて脆く、伸びは2%以下であった。このポリアミド酸
ワニスを用い、実施例17と同様の方法によって個別ト
ランジスタを製造した。この場合ポリイミドのパタ−ン
を形成後、−55℃と150℃の雰囲気に交互に繰り返
し放置する温度サイクル試験にかけた後、超音波探照法
によって内部を検査したところ多数のクラックが認めら
れ、完成品には至らなかった。Comparative Example 3 In the same manner as in Synthesis Example 1, No. 15 polyamic acid varnish of Table 2 was synthesized. This varnish was spin-coated on a glass substrate and heated at 200 ° C. for 30 minutes and 350 ° C. for 30 minutes to obtain a polyimide film having a thickness of 8 μm. This film was extremely brittle and had an elongation of 2% or less. Using this polyamic acid varnish, individual transistors were manufactured by the same method as in Example 17. In this case, after the polyimide pattern was formed, it was subjected to a temperature cycle test in which it was left in an atmosphere of −55 ° C. and 150 ° C. alternately and repeatedly, and then a large number of cracks were found when the inside was inspected by an ultrasonic probe method. It did not reach the finished product.
【0104】比較例4 合成例1と同様の方法で表2のNo16のポリアミド酸
ワニスを合成した。このワニスをガラス基板上に回転塗
布し、200℃30分、350℃で30分加熱して厚さ
8μmのポリイミドフィルムを得た。このフィルムは可
とう性に富み、伸びは50%以上であったが熱膨張係数
αが42ppm/℃と大きかった。このポリアミド酸ワ
ニスを用いて、実施例24と同様の方法により銅−ポリ
イミド系多層配線構造体を製造した。配線層数が5層の
時、セラミック基板よりポリイミドのはがれが見られ、
完成品には至らなかった。配線層数が4層の時点で基板
の反りを測定したところ、66μmであった。また、銅
めっきのためのフォトレジストを用いる工程でのマスク
と基板上層との完全な密着が取れず、パタ−ンサイズに
大きなバラツキが認められた。更に、2〜4層目の銅配
線の一部に断線とクラックが見られた。Comparative Example 4 In the same manner as in Synthesis Example 1, No. 16 polyamic acid varnish of Table 2 was synthesized. This varnish was spin-coated on a glass substrate and heated at 200 ° C. for 30 minutes and 350 ° C. for 30 minutes to obtain a polyimide film having a thickness of 8 μm. This film was highly flexible and had an elongation of 50% or more, but had a large coefficient of thermal expansion α of 42 ppm / ° C. Using this polyamic acid varnish, a copper-polyimide multilayer wiring structure was manufactured in the same manner as in Example 24. When the number of wiring layers is 5, polyimide peeling is seen from the ceramic substrate,
It did not reach the finished product. When the warp of the substrate was measured when the number of wiring layers was 4, it was 66 μm. Further, in the process of using a photoresist for copper plating, the mask and the upper layer of the substrate could not be completely adhered, and a large variation was found in the pattern size. Furthermore, disconnection and cracks were found in a part of the copper wirings of the second to fourth layers.
【0105】比較例5〜7 合成例1と同様の方法で表2のNo17、18、19の
ポリアミド酸ワニスを合成した。このワニスをガラス基
板上に回転塗布し、200℃30分、350℃で30分
加熱して厚さ8μmのポリイミドフィルムを得た。この
フィルムは可とう性に富み、伸びは全て20%以上であ
ったが熱膨張係数αが40ppm/℃と大きかった。こ
れらのポリアミド酸ワニスを用いて、実施例24と同様
の方法により銅−ポリイミド系多層配線構造体を製造し
た。配線層数が5層の時、セラミック基板よりポリイミ
ドのはがれが見られ、完成品には至らなかった。配線層
数が4層の時点で基板の反りを測定したところ、使用し
たポリアミド酸ワニスNo17、18、19のについて
それぞれ64μm、75μm及び68μmであった。ま
た、フォト工程でのマスクと基板上層との密着が取れ
ず、パタ−ンサイズに大きなバラツキが認められた。更
に、2〜4層目の銅配線の一部に断線とクラックが見ら
れた。Comparative Examples 5 to 7 Polyamic acid varnishes Nos. 17, 18 and 19 in Table 2 were synthesized in the same manner as in Synthesis Example 1. This varnish was spin-coated on a glass substrate and heated at 200 ° C. for 30 minutes and 350 ° C. for 30 minutes to obtain a polyimide film having a thickness of 8 μm. This film was highly flexible and all had an elongation of 20% or more, but had a large thermal expansion coefficient α of 40 ppm / ° C. Using these polyamic acid varnishes, a copper-polyimide multilayer wiring structure was manufactured in the same manner as in Example 24. When the number of wiring layers was 5, peeling of the polyimide was observed from the ceramic substrate, and the finished product was not reached. When the warpage of the substrate was measured when the number of wiring layers was 4, it was 64 μm, 75 μm and 68 μm for the used polyamic acid varnishes Nos. 17, 18 and 19, respectively. Further, in the photo process, the mask and the upper layer of the substrate could not be brought into close contact with each other, and a large variation in pattern size was recognized. Furthermore, disconnection and cracks were found in a part of the copper wirings of the second to fourth layers.
【0106】[0106]
【表2】 [Table 2]
【0107】[0107]
【発明の効果】以上の実施例、比較例で説明したよう
に、本発明で用いられる新規なポリアミド酸もしくはポ
リイミドは、従来公知のポリアミド酸もしくはポリイミ
ドに比較して、すべての特性、特に低誘電率、低熱膨張
率、耐熱性、接着性において優れているので、これらを
もちいて高信頼性、高性能を具備する半導体装置、多層
配線構造体をはじめとするあらゆる電子装置を提供でき
る。INDUSTRIAL APPLICABILITY As described in the above Examples and Comparative Examples, the novel polyamic acid or polyimide used in the present invention has all characteristics, particularly low dielectric constant, as compared with the conventionally known polyamic acid or polyimide. Since these are excellent in thermal conductivity, low coefficient of thermal expansion, heat resistance, and adhesiveness, it is possible to provide a semiconductor device having high reliability and high performance by using them, and various electronic devices including a multilayer wiring structure.
【図1】本発明による多層配線構造体の製造プロセスの
一実施例を示す図。FIG. 1 is a diagram showing an example of a manufacturing process of a multilayer wiring structure according to the present invention.
【図2】DRAMの断面構造とその製造プロセスの一実
施例を示す図。FIG. 2 is a diagram showing an example of a sectional structure of a DRAM and a manufacturing process thereof.
【図3】本発明によるリニアICの断面構造を示す図。FIG. 3 is a diagram showing a sectional structure of a linear IC according to the present invention.
【図4】本発明による個別トランジスタの断面構造を示
す図。FIG. 4 is a diagram showing a sectional structure of an individual transistor according to the present invention.
【図5】本発明による薄膜多層配線基板の断面構造を示
す図。FIG. 5 is a view showing a cross-sectional structure of a thin film multilayer wiring board according to the present invention.
【図6】本発明による銅−ポリイミド系薄膜多層配線基
板の製造プロセスの一実施例を示す図。FIG. 6 is a diagram showing an example of a manufacturing process of a copper-polyimide thin film multilayer wiring board according to the present invention.
1…基板、2…導体層、3…ポリイミド樹脂層、4…フ
ォトレジスト、5…スル−ホ−ル、6…上部導体層、7
…シリコンウエハ、8…ポリイミド膜、9…フォトレジ
スト、10…ボンディングパッド、11…スクライブ領
域、12…外部端子、13…ポリイミドフィルム、14
…金線、15…樹脂封止部、16…シリコンウエハ、1
7…コレクタ、18…ベ−ス、19…エミッタ、20…
SiO2層、21…Al、22…ポリイミド膜、23…
スル−ホ−ル、24…Al、25…シリコンウエハ、2
6…ベ−ス、27…エミッタ、28…SiO2層、29
…Al、30…ボンディングパッド部、31…スクライ
ブ領域、32…ポリイミド膜、33…チップ、34…外
部端子、35…リ−ドフレ−ム、36…金線、37…樹
脂封止部、38…セラミック層、39…タングステン配
線、40…ニッケル層、41…ニッケル層、42…金
層、43…セラミック基板、44…Alパタ−ン、45
…第1層ポリイミド膜、46…第1層Al配線パタ−
ン、47…第2層ポリイミド膜、48…第2層Al配線
パタ−ン、49…第3層ポリイミド膜、50…クロム/
ニッケル−銅層、51…ニッケル/金複合膜、52…セ
ラミック基板、53…クロム層、54…銅層、55…フ
ォトレジスト、56…めっき銅、57…ニッケル保護
膜、58…ポリイミド膜DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Conductor layer, 3 ... Polyimide resin layer, 4 ... Photoresist, 5 ... Through-hole, 6 ... Upper conductor layer, 7
... Silicon wafer, 8 ... Polyimide film, 9 ... Photoresist, 10 ... Bonding pad, 11 ... Scribing area, 12 ... External terminal, 13 ... Polyimide film, 14
... gold wire, 15 ... resin sealing part, 16 ... silicon wafer, 1
7 ... Collector, 18 ... Base, 19 ... Emitter, 20 ...
SiO 2 layer, 21 ... Al, 22 ... Polyimide film, 23 ...
Through-hole, 24 ... Al, 25 ... Silicon wafer, 2
6 ... Base, 27 ... Emitter, 28 ... SiO 2 layer, 29
... Al, 30 ... Bonding pad section, 31 ... Scribe area, 32 ... Polyimide film, 33 ... Chip, 34 ... External terminal, 35 ... Lead frame, 36 ... Gold wire, 37 ... Resin sealing section, 38 ... Ceramic layer, 39 ... Tungsten wiring, 40 ... Nickel layer, 41 ... Nickel layer, 42 ... Gold layer, 43 ... Ceramic substrate, 44 ... Al pattern, 45
... first layer polyimide film, 46 ... first layer Al wiring pattern
47, second layer polyimide film, 48, second layer Al wiring pattern, 49, third layer polyimide film, 50, chromium /
Nickel-copper layer, 51 ... Nickel / gold composite film, 52 ... Ceramic substrate, 53 ... Chrome layer, 54 ... Copper layer, 55 ... Photoresist, 56 ... Plated copper, 57 ... Nickel protective film, 58 ... Polyimide film
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 23/31
Claims (18)
れる繰返し単位と下記一般式(化2)で表される繰返し
単位とからなるポリイミド前駆体を加熱脱水して得られ
るポリイミドであることを特徴とする配線構造体。 一般式(化1) 【化1】 一般式(化2) 【化2】 (式中R1は、(化3) 【化3】 から選ばれる少なくとも一種の4価の有機基であり、R
2は(化4) 【化4】 から選ばれる少なくとも一種の直線構造の2価の有機基
であり、R3は、少なくとも2個以上の芳香族環を含み
屈曲構造を有する2価の有機基である。)1. A surface protective film is obtained by heating and dehydrating a polyimide precursor comprising a repeating unit represented by the following general formula (Formula 1) and a repeating unit represented by the following general formula (Formula 2). A wiring structure characterized by being a polyimide. General formula (Formula 1) General formula (Formula 2) (In the formula, R 1 is (Chemical Formula 3) R is at least one tetravalent organic group selected from
2 is (Chemical 4) [Chemical 4] Is a divalent organic group having at least one linear structure selected from R 3 and R 3 is a divalent organic group having at least two aromatic rings and having a bent structure. )
式(化1)中のR2で表される直線構造の2価の有機基
の数と一般式(化2)中のR3で表される屈曲構造を有
する2価の有機基の数の合計を100とした場合に、R
2で表される有機基の数が30〜80、R3で表される有
機基の数が70〜20の範囲であるポリイミド前駆体を
加熱脱水して得られるポリイミドを表面保護膜とするこ
とを特徴とする配線構造体。2. The wiring structure according to claim 1, wherein the number of divalent organic groups having a linear structure represented by R 2 in the general formula (Formula 1) and R 3 in the general formula (Formula 2). When the total number of divalent organic groups having a bent structure represented by
A polyimide obtained by heating and dehydrating a polyimide precursor in which the number of organic groups represented by 2 is 30 to 80 and the number of organic groups represented by R 3 is 70 to 20 is used as a surface protective film. Wiring structure characterized by.
れる繰返し単位、下記一般式(化2)で表される繰返し
単位及び下記一般式(化5)で表される繰返し単位とか
らなるポリイミド前駆体を加熱脱水して得られるポリイ
ミドであることを特徴とする配線構造体。 一般式(化1) 【化1】 一般式(化2) 【化2】 一般式(化5) 【化5】 (式中R1は、(化3) 【化3】 から選ばれる少なくとも一種の4価の有機基であり、R
2は(化4) 【化4】 から選ばれる少なくとも一種の直線構造の2価の有機基
であり、R3は、少なくとも2個以上の芳香族環を含み
屈曲構造を有する2価の有機基であり、R4はその部分
がポリマの末端である場合、あるいはポリマの主鎖であ
る場合にそれぞれ一般式(化6)、 【化6】 一般式(化7) 【化7】 で表されるケイ素原子を含む炭化水素基で、そのR5、
R8は炭素数1から9の炭化水素基又はエ−テル結合を
含む炭素数1から7の飽和アルキル基、R6は炭素数1
から3の炭化水素基、R7は炭素数1から5のアルキル
基又はアルコキシアルキル基又はトリアルキルシリル基
の中から選ばれた1種以上の基、R9、R10は炭素数1
から3のアルキル基、炭素数1から9のアリ-ル基の中
から選ばれた1種以上の基、nは0から3の整数、fは
1又は2である。)3. The surface protective film comprises a repeating unit represented by the following general formula (Formula 1), a repeating unit represented by the following general formula (Formula 2) and a repeating unit represented by the following general formula (Formula 5). A wiring structure, which is a polyimide obtained by heating and dehydrating a polyimide precursor composed of units. General formula (Formula 1) General formula (Formula 2) General formula (Formula 5) (In the formula, R 1 is (Chemical Formula 3)) R is at least one tetravalent organic group selected from
2 is (Chemical 4) [Chemical 4] Is a divalent organic group having at least one linear structure selected from among R 3 , R 3 is a divalent organic group having at least two aromatic rings and having a bent structure, and R 4 is a polymer having a portion thereof. At the end of or the main chain of the polymer, respectively, General formula (Formula 7) A hydrocarbon group containing a silicon atom represented by R 5 ,
R 8 is a hydrocarbon group having 1 to 9 carbon atoms or a saturated alkyl group having 1 to 7 carbon atoms containing an ether bond, and R 6 is 1 carbon atom
1 to 3 hydrocarbon groups, R 7 is at least one group selected from an alkyl group having 1 to 5 carbon atoms, an alkoxyalkyl group or a trialkylsilyl group, and R 9 and R 10 are each having 1 carbon atoms.
To 3 or more, one or more kinds of groups selected from an alkyl group having 1 to 9 carbon atoms, n is an integer of 0 to 3, and f is 1 or 2. )
式(化1)中のR2で表される直線構造の2価の有機基
の数、一般式(化2)中のR3で表される屈曲構造を有
する2価の有機基の数、及びR4で表されるケイ素を含
む炭化水素基の数の合計を100とした場合に、R2で
表される有機基の数が30〜80、R3で表される有機
基の数が70〜20、R4で表されるケイ素を含む炭化
水素基の数が0.1〜10の範囲であるポリイミド前駆
体を加熱脱水して得られるポリイミドを表面保護膜とす
ることを特徴とする配線構造体。4. The wiring structure according to claim 3, wherein the number of divalent organic groups having a linear structure represented by R 2 in the general formula (Formula 1) and R 3 in the general formula (Formula 2). The number of organic groups represented by R 2 when the total number of divalent organic groups represented by R and the number of silicon-containing hydrocarbon groups represented by R 4 is 100. Is 30 to 80, the number of organic groups represented by R 3 is 70 to 20, and the number of hydrocarbon groups containing silicon represented by R 4 is in the range of 0.1 to 10 by heat dehydration. A wiring structure characterized by using the polyimide obtained by the method as a surface protective film.
4において、一般式(化2)中のR3で表される屈曲構
造を有する2価の有機基が、(化8)、(化9) 【化8】 【化9】 で表される構造式の中から選ばれる1種以上の2価の有
機基であるポリイミド前駆体を、加熱脱水して得られる
ポリイミドを表面保護膜とすることを特徴とする配線構
造体。5. The divalent organic group having a bent structure represented by R 3 in the general formula (Formula 2) is represented by the formula (Formula 8) ), (Chemical formula 9) [Chemical 9] A wiring structure comprising a polyimide obtained by heating and dehydrating a polyimide precursor which is one or more divalent organic groups selected from the structural formulas represented by:
れる繰返し単位と下記一般式(化2)で表される繰返し
単位とからなるポリイミド前駆体を加熱脱水して得られ
るポリイミドであることを特徴とする配線構造体。一般
式(化1) 【化1】 一般式(化2) 【化2】 (式中R1は、(化3) 【化3】 から選ばれる少なくとも一種の4価の有機基であり、R
2は(化4) 【化4】 から選ばれる少なくとも一種の直線構造の2価の有機基
であり、R3は、少なくとも2個以上の芳香族環を含み
屈曲構造を有する2価の有機基である。)6. An α-ray shielding film obtained by heating and dehydrating a polyimide precursor comprising a repeating unit represented by the following general formula (Formula 1) and a repeating unit represented by the following general formula (Formula 2). A wiring structure, characterized in that it is a polyimide. General formula (Formula 1) General formula (Formula 2) (In the formula, R 1 is (Chemical Formula 3) R is at least one tetravalent organic group selected from
2 is (Chemical 4) [Chemical 4] Is a divalent organic group having at least one linear structure selected from R 3 and R 3 is a divalent organic group having at least two aromatic rings and having a bent structure. )
式(化1)中のR2で表される直線構造の2価の有機基
の数と一般式(化2)中のR3で表される屈曲構造を有
する2価の有機基の数の合計を100とした場合に、R
2で表される有機基の数が30〜80、R3で表される有
機基の数が70〜20の範囲であるポリイミド前駆体を
加熱脱水して得られるポリイミドをα線遮蔽膜とするこ
とを特徴とする配線構造体。7. The wiring structure according to claim 6, wherein the number of divalent organic groups having a linear structure represented by R 2 in the general formula (Formula 1) and R 3 in the general formula (Formula 2). When the total number of divalent organic groups having a bent structure represented by
A polyimide obtained by heating and dehydrating a polyimide precursor having the number of organic groups represented by 2 in the range of 30 to 80 and the number of organic groups represented by R 3 in the range of 70 to 20 is used as an α-ray shielding film. A wiring structure characterized by the above.
れる繰返し単位、下記一般式(化2)で表される繰返し
単位及び下記一般式(化5)で表される繰返し単位とか
らなるポリイミド前駆体を加熱脱水して得られるポリイ
ミドであることを特徴とする配線構造体。一般式(化
1) 【化1】 一般式(化2) 【化2】 一般式(化5) 【化5】 (式中R1は、(化3) 【化3】 から選ばれる少なくとも一種の4価の有機基であり、R
2は(化4) 【化4】 から選ばれる少なくとも一種の直線構造の2価の有機基
であり、R3は、少なくとも2個以上の芳香族環を含み
屈曲構造を有する2価の有機基であり、R4はその部分
がポリマの末端である場合、あるいはポリマの主鎖であ
る場合にそれぞれ一般式(化6) 【化6】 一般式(化7) 【化7】 で表されるケイ素原子を含む炭化水素基で、そのR5、
R8は炭素数1から9の炭化水素基又はエ−テル結合を
含む炭素数1から7の飽和アルキル基、R6は炭素数1
から3の炭化水素基、R7は炭素数1から5のアルキル
基又アルコキシアルキル基又ははトリアルキルシリル基
の中から選ばれた1種以上の基、R9、R10は炭素数1
から3のアルキル基、炭素数1から9のアリ-ル基の中
から選ばれた1種以上の基、nは0から3の整数、fは
1又は2である。)8. An α-ray shielding film is represented by a repeating unit represented by the following general formula (Formula 1), a repeating unit represented by the following general formula (Formula 2) and a general formula (Formula 5) below. A wiring structure, which is a polyimide obtained by heating and dehydrating a polyimide precursor comprising a repeating unit. General formula (Formula 1) General formula (Formula 2) General formula (Formula 5) (In the formula, R 1 is (Formula 3) R is at least one tetravalent organic group selected from
2 is (Chemical 4) [Chemical 4] Is a divalent organic group having at least one linear structure selected from R 3 , R 3 is a divalent organic group having at least two aromatic rings and having a bending structure, and R 4 is a polymer having a portion thereof. At the end of or the main chain of the polymer, respectively. General formula (Formula 7) A hydrocarbon group containing a silicon atom represented by R 5 ,
R 8 is a hydrocarbon group having 1 to 9 carbon atoms or a saturated alkyl group having 1 to 7 carbon atoms containing an ether bond, and R 6 is 1 carbon atom
1 to 3 hydrocarbon groups, R 7 is one or more groups selected from an alkyl group having 1 to 5 carbon atoms, an alkoxyalkyl group or a trialkylsilyl group, and R 9 and R 10 are each having 1 carbon atoms.
To 3 alkyl groups, one or more groups selected from aryl groups having 1 to 9 carbon atoms, n is an integer from 0 to 3, and f is 1 or 2. )
式(化1)中のR2で表される直線構造の2価の有機基
の数、一般式(化2)中のR3で表される屈曲構造を有
する2価の有機基の数、及びR4で表されるケイ素を含
む炭化水素基の数の合計を100とした場合に、R2で
表される有機基の数が30〜80、R3で表される有機
基の数が70〜20、R4で表されるケイ素を含む炭化
水素基の数が0.1〜10の範囲であるポリイミド前駆
体を加熱脱水して得られるポリイミドをα線遮蔽膜とす
ることを特徴とする配線構造体。9. The wiring structure according to claim 8, wherein the number of divalent organic groups having a linear structure represented by R 2 in the general formula (Formula 1) and R 3 in the general formula (Formula 2). The number of organic groups represented by R 2 when the total number of divalent organic groups represented by R and the number of silicon-containing hydrocarbon groups represented by R 4 is 100. Is 30 to 80, the number of organic groups represented by R 3 is 70 to 20, and the number of hydrocarbon groups containing silicon represented by R 4 is in the range of 0.1 to 10 by heat dehydration. A wiring structure comprising the obtained polyimide as an α-ray shielding film.
項9において、一般式(化2)中のR3で表される屈曲
構造を有する2価の有機基が、(化8)、(化9) 【化8】 【化9】 で表される構造式の中から選ばれる1種以上の2価の有
機基であるポリイミド前駆体を、加熱脱水して得られる
ポリイミドをα線遮蔽膜とすることを特徴とする配線構
造体。10. The divalent organic group having a bending structure represented by R 3 in the general formula (Formula 2) is represented by (Formula 8) ), (Chemical formula 9) [Chemical 9] A wiring structure comprising a polyimide precursor obtained by heating and dehydrating a polyimide precursor which is one or more kinds of divalent organic groups selected from the structural formulas represented by:
表される繰返し単位と下記一般式(化2)で表される繰
返し単位とからなるポリイミド前駆体を加熱脱水して得
られるポリイミドであることを特徴とする配線構造体。
一般式(化1) 【化1】 一般式(化2) 【化2】 (式中R1は、(化3) 【化3】 から選ばれる少なくとも一種の4価の有機基であり、R
2は(化4) 【化4】 から選ばれる少なくとも一種の直線構造の2価の有機基
であり、R3は、少なくとも2個以上の芳香族環を含み
屈曲構造を有する2価の有機基である。)11. An insulating film for wiring is obtained by heating and dehydrating a polyimide precursor comprising a repeating unit represented by the following general formula (Formula 1) and a repeating unit represented by the following general formula (Formula 2). A wiring structure, characterized in that it is a polyimide.
General formula (Formula 1) General formula (Formula 2) (In the formula, R 1 is (Chemical Formula 3) R is at least one tetravalent organic group selected from
2 is (Chemical 4) [Chemical 4] Is a divalent organic group having at least one linear structure selected from R 3 and R 3 is a divalent organic group having at least two aromatic rings and having a bent structure. )
一般式(化1)中のR2で表される直線構造の2価の有
機基の数と一般式(化2)中のR3で表される屈曲構造
を有する2価の有機基の数の合計を100とした場合
に、R2で表される有機基の数が30〜80、R3で表さ
れる有機基の数が70〜20の範囲であるポリイミド前
駆体を加熱脱水して得られるポリイミドを絶縁膜とする
ことを特徴とする配線構造体。12. The wiring structure according to claim 11,
The number of divalent organic groups having a linear structure represented by R 2 in the general formula (Formula 1) and the number of divalent organic groups having a bent structure represented by R 3 in the general formula (Formula 2) When the total of 100 is 100, the number of organic groups represented by R 2 is 30 to 80, and the number of organic groups represented by R 3 is 70 to 20. A wiring structure comprising the obtained polyimide as an insulating film.
表される繰返し単位、下記一般式(化2)で表される繰
返し単位及び下記一般式(化5)で表される繰返し単位
とからなるポリイミド前駆体を加熱脱水して得られるポ
リイミドであることを特徴とする配線構造体。一般式
(化1) 【化1】 一般式(化2) 【化2】 一般式(化5) 【化5】 (式中R1は、(化3) 【化3】 から選ばれる少なくとも一種の4価の有機基であり、R
2は(化4) 【化4】 から選ばれる少なくとも一種の直線構造の2価の有機基
であり、R3は、少なくとも2個以上の芳香族環を含み
屈曲構造を有する2価の有機基であり、R4はその部分
がポリマの末端である場合、あるいはポリマの主鎖であ
る場合にそれぞれ一般式(化6)、 【化6】 一般式(化7) 【化7】 で表されるケイ素原子を含む炭化水素基で、そのR5、
R8は炭素数1から9の炭化水素基又はエ−テル結合を
含む炭素数1から7の飽和アルキル基、R6は炭素数1
から3の炭化水素基、R7は炭素数1から5のアルキル
基又はアルコキシアルキル基又はトリアルキルシリル基
の中から選ばれた1種以上の基、R9、R10は炭素数1
から3のアルキル基、炭素数1から9のアリ-ル基の中
から選ばれた1種以上の基、nは0から3の整数、fは
1又は2である。)13. A wiring insulating film is represented by a repeating unit represented by the following general formula (Formula 1), a repeating unit represented by the following general formula (Formula 2), and a general formula (Formula 5) below. A wiring structure, which is a polyimide obtained by heating and dehydrating a polyimide precursor composed of a repeating unit. General formula (Formula 1) General formula (Formula 2) General formula (Formula 5) (In the formula, R 1 is (Chemical Formula 3)) R is at least one tetravalent organic group selected from
2 is (Chemical 4) [Chemical 4] Is a divalent organic group having at least one linear structure selected from among R 3 , R 3 is a divalent organic group having at least two aromatic rings and having a bent structure, and R 4 is a polymer having a portion thereof. At the end of or the main chain of the polymer, respectively, General formula (Formula 7) A hydrocarbon group containing a silicon atom represented by R 5 ,
R 8 is a hydrocarbon group having 1 to 9 carbon atoms or a saturated alkyl group having 1 to 7 carbon atoms containing an ether bond, and R 6 is 1 carbon atom
1 to 3 hydrocarbon groups, R 7 is at least one group selected from an alkyl group having 1 to 5 carbon atoms, an alkoxyalkyl group or a trialkylsilyl group, and R 9 and R 10 are each having 1 carbon atoms.
To 3 or more, one or more kinds of groups selected from an alkyl group having 1 to 9 carbon atoms, n is an integer of 0 to 3, and f is 1 or 2. )
一般式(化1)中のR2で表される直線構造の2価の有
機基の数、一般式(化2)中のR3で表される屈曲構造
を有する2価の有機基の数、及びR4で表されるケイ素
を含む炭化水素基の数の合計を100とした場合に、R
2で表される有機基の数が30〜80、R3で表される有
機基の数が70〜20、R4で表されるケイ素を含む炭
化水素基の数が0.1〜10の範囲であるポリイミド前
駆体を加熱脱水して得られるポリイミドを絶縁膜とする
ことを特徴とする配線構造体。14. The wiring structure according to claim 13,
Number of divalent organic groups having a linear structure represented by R 2 in the general formula (Formula 1), number of divalent organic groups having a bent structure represented by R 3 in the general formula (Formula 2) , And R 4 when the total number of silicon-containing hydrocarbon groups represented by R 4 is 100,
The number of organic groups represented by 2 is 30 to 80, the number of organic groups represented by R 3 is 70 to 20, and the number of silicon-containing hydrocarbon groups represented by R 4 is 0.1 to 10. A wiring structure comprising a polyimide obtained by heating and dehydrating a polyimide precursor within a range as an insulating film.
は請求項14において、一般式(化2)中のR3で表さ
れる屈曲構造を有する2価の有機基が、(化8)、(化
9) 【化8】 【化9】 で表される構造式の中から選ばれる1種以上の2価の有
機基であるポリイミド前駆体を、加熱脱水して得られる
ポリイミドを絶縁膜とすることを特徴とする配線構造
体。15. In claim 11, claim 12, claim 13 or claim 14, the divalent organic group having a bending structure represented by R 3 in the general formula (Formula 2) is ), (Chemical formula 9) [Chemical 9] A wiring structure comprising a polyimide precursor obtained by heating and dehydrating a polyimide precursor which is one or more kinds of divalent organic groups selected from the structural formulas represented by:
請求項1〜請求項15のいずれかに記載の配線構造体。16. The wiring structure according to claim 1, wherein the wiring structure is a semiconductor integrated circuit device.
る請求項1〜請求項5のいずれかに記載の配線構造体。17. The wiring structure according to claim 1, wherein the wiring structure is an individual transistor element.
求項11〜請求項15のいずれかに記載の配線構造体。18. The wiring structure according to claim 11, wherein the wiring structure is a thin film multilayer wiring board.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1667092 | 1992-01-31 | ||
JP4-16670 | 1992-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05275417A true JPH05275417A (en) | 1993-10-22 |
Family
ID=11922757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5011115A Pending JPH05275417A (en) | 1992-01-31 | 1993-01-26 | Wiring structure and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05275417A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002093958A (en) * | 2000-09-20 | 2002-03-29 | Fuji Electric Co Ltd | Polyimide resin for protective film of semiconductor elements and semiconductor device using the same |
WO2015163314A1 (en) * | 2014-04-23 | 2015-10-29 | Jx日鉱日石エネルギー株式会社 | Tetracarboxylic dianhydride, polyamic acid, polyimide, methods for producing same, and polyamic acid solution |
WO2019216300A1 (en) * | 2018-05-08 | 2019-11-14 | 株式会社村田製作所 | High-frequency module |
-
1993
- 1993-01-26 JP JP5011115A patent/JPH05275417A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002093958A (en) * | 2000-09-20 | 2002-03-29 | Fuji Electric Co Ltd | Polyimide resin for protective film of semiconductor elements and semiconductor device using the same |
WO2015163314A1 (en) * | 2014-04-23 | 2015-10-29 | Jx日鉱日石エネルギー株式会社 | Tetracarboxylic dianhydride, polyamic acid, polyimide, methods for producing same, and polyamic acid solution |
CN106232589A (en) * | 2014-04-23 | 2016-12-14 | 捷客斯能源株式会社 | Tetracarboxylic dianhydride, polyamic acid, polyimides and those manufacture method and polyamic acid solution |
JPWO2015163314A1 (en) * | 2014-04-23 | 2017-04-20 | Jxエネルギー株式会社 | Tetracarboxylic dianhydride, polyamic acid, polyimide, method for producing the same, and polyamic acid solution |
US10513582B2 (en) | 2014-04-23 | 2019-12-24 | Jxtg Nippon Oil & Energy Corporation | Tetracarboxylic dianhydride, polyamic acid, polyimide, methods for producing the same, and polyamic acid solution |
WO2019216300A1 (en) * | 2018-05-08 | 2019-11-14 | 株式会社村田製作所 | High-frequency module |
JPWO2019216300A1 (en) * | 2018-05-08 | 2021-02-12 | 株式会社村田製作所 | High frequency module |
US11309259B2 (en) | 2018-05-08 | 2022-04-19 | Murata Manufacturing Co., Ltd. | High frequency module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5536584A (en) | Polyimide precursor, polyimide and metalization structure using said polyimide | |
JP4029517B2 (en) | WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE | |
US5208066A (en) | Process of forming a patterned polyimide film and articles including such a film | |
US5868949A (en) | Metalization structure and manufacturing method thereof | |
TW200522228A (en) | Semiconductor device containing stacked semiconductor chips and manufacturing method thereof | |
CN111830786B (en) | Photosensitive resin composition containing silane coupling agent | |
KR102451559B1 (en) | resin composition | |
US5133989A (en) | Process for producing metal-polyimide composite article | |
US5120573A (en) | Process for producing metal/polyimide composite article | |
EP0389195A2 (en) | A process of forming a patterned polyimide film and articles including such a film | |
JPH05275417A (en) | Wiring structure and its manufacture | |
JPH07307114A (en) | Method for forming polyimide insulated film | |
JP3079740B2 (en) | Polyimide and wiring structure using the same | |
US5958600A (en) | Circuit board and method of manufacturing the same | |
JPS60221426A (en) | Production of polyimide composite | |
JP3969902B2 (en) | Manufacturing method of interposer for chip size package | |
JP3602206B2 (en) | Wiring structure and its manufacturing method | |
JP2001313451A (en) | Manufacturing method for flexible wiring board | |
JP4203972B2 (en) | Method for manufacturing circuit member for semiconductor device | |
JPH0581077B2 (en) | ||
JPH0649207A (en) | Production of electronic device using polyamic acid ester | |
JPH068036B2 (en) | Method for producing metal / polyimide composite | |
JP3689985B2 (en) | Circuit board and manufacturing method thereof | |
JPH04171607A (en) | Manufacture of multilayered wiring structure and said structure | |
JP2000311962A (en) | Semiconductor device circuit member and its manufacture |