JPH022862A - Modified separating membrane - Google Patents

Modified separating membrane

Info

Publication number
JPH022862A
JPH022862A JP14339888A JP14339888A JPH022862A JP H022862 A JPH022862 A JP H022862A JP 14339888 A JP14339888 A JP 14339888A JP 14339888 A JP14339888 A JP 14339888A JP H022862 A JPH022862 A JP H022862A
Authority
JP
Japan
Prior art keywords
formulas
tables
polymer
hydrophilic
chemical formulas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14339888A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishii
清 石井
Makoto Tamada
玉田 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP14339888A priority Critical patent/JPH022862A/en
Publication of JPH022862A publication Critical patent/JPH022862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain a modified separating membrane having superior heat and chemical resistances and satisfactory permeability by using modified polysulfone resin contg. a hydrophobic polymer and hydrophilic polymers in a specified ratio. CONSTITUTION:Modified polysulfone resin contg. a hydrophilic-hydrophobic graft or block copolymer consisting of a hydrophobic polymer, preferably arom. polysulfone and a hydrophilic polymer in combination with other hydrophilic polymer is used as a membrane forming material. The total amt. of the hydrophilic polymers in the resin is regulated to <=80wt.% of the amt. of the resin and the amt. of the hydrophobic polymer to >=20wt.%. The microporous surface of a membrane made of the modified polysulfone resin is highly hydrophilic, but the polymer matrix has a phase separated structure, so the membrane ensures a high rate of water permeation, is hardly contaminated and has superior mechanical strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、変性分離膜に関するものであり、更に詳しく
は疎水性芳香族重合体と親水性重合体とから成る親水−
疎水グラフト共重合体又はブロック共重合体を第2の親
水性重合体とともに含有するポリサルホン樹脂からなり
、耐熱性、耐薬品性などに優れ、透過性能が良好な変性
分離膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a modified separation membrane, more specifically a hydrophilic membrane comprising a hydrophobic aromatic polymer and a hydrophilic polymer.
The present invention relates to a modified separation membrane that is made of a polysulfone resin containing a hydrophobic graft copolymer or a block copolymer together with a second hydrophilic polymer, has excellent heat resistance, chemical resistance, etc., and has good permeability.

で示される繰り返し単位を含む構造によって特徴づけら
れる。この構造から予想される様に、ポリサルホン樹脂
は優れた耐久性、安定性を持つ反面、疎水的な性質を示
す。代表的なものは、インベリアルケミカルインダスト
リーズ社(IC1社と略す)よりVictrex、ユニ
オンカーバイド社(UCC社と略す)よりLldelの
商品名で、それぞれ市販されているが、吸水率は前者が
0.4%、後者が0.3%(いずれもASTM D 5
70)であり、親水性の膜材料樹脂として知られている
酢酸セルロース等の10の1以下の吸水率である。この
疎水的な性質のため、従来のポリサルホン膜は、「−度
乾燥すると水でぬれにくい」、「透水性能が低い」、「
膜面に疎水性溶質が付着して汚染されやすい」など数多
くの問題点があった。
It is characterized by a structure containing the repeating unit shown in As expected from this structure, polysulfone resin has excellent durability and stability, but on the other hand, it exhibits hydrophobic properties. Typical products are commercially available under the trade names of Victrex from Inverial Chemical Industries (abbreviated as IC1) and Lldel from Union Carbide Co. (abbreviated as UCC), but the former has a water absorption rate of 0. 4%, the latter 0.3% (both ASTM D 5
70), which is less than 1 in 10 of cellulose acetate, which is known as a hydrophilic membrane material resin. Due to this hydrophobic property, conventional polysulfone membranes are difficult to wet with water when dried to a certain degree, have low water permeability, and
There were many problems, including the fact that hydrophobic solutes adhere to the membrane surface and cause contamination.

この様な問題点を解決するため、ポリサルホン膜を改良
する方法が、種々提案されている。
In order to solve these problems, various methods have been proposed to improve polysulfone membranes.

芳香族ポリサルホンポリマーに親木基や親木性ポリマー
を導入して、親水化ポリサルホン膜を提供する方法とし
て、例えば、特公昭53−13679号、特開昭59−
196322号などは、ポリマー主鎖にスルホン酸基を
、特開昭57−174104号はポリマー主鎖にポリエ
チレンイミンポリマー類ヲ、それぞれ導入もしくはグラ
フトして親水化された芳香族ポリサルホンポリマーから
逆浸透膜などを提供する方法を提案している。これらの
方法はいずれも芳香族ポリサルホンポリマー主鎖の芳香
環に、親水基もしくは親水性ポリマーを共有結合により
ランダムに、均一に結合させる改質手段であることから
、改質されていないポリマーから成る膜に比較して、耐
熱性などの物性が低下することは避けられない。さらに
、該ポリマーに対して導入された親水基の比率が多い場
合には、得られた膜が水により膨潤してしまうなど、著
しい膜の物性変化を伴う改質法だと言える。
As a method for providing a hydrophilic polysulfone film by introducing a wood-loving group or a wood-loving polymer into an aromatic polysulfone polymer, for example, Japanese Patent Publication No. 13679/1982 and Japanese Patent Application Laid-open No. 1983-1989 are known.
No. 196322, etc., is a reverse osmosis membrane made from an aromatic polysulfone polymer made hydrophilic by introducing or grafting a sulfonic acid group into the polymer main chain, and JP-A-57-174104, which is made hydrophilic by introducing or grafting polyethyleneimine polymers into the polymer main chain. We are proposing a method to provide such. All of these methods are modification methods in which hydrophilic groups or hydrophilic polymers are randomly and uniformly bonded to the aromatic rings of the main chain of aromatic polysulfone polymers through covalent bonds, so they are made of unmodified polymers. It is inevitable that physical properties such as heat resistance will be lower than that of membranes. Furthermore, if the proportion of hydrophilic groups introduced into the polymer is high, the resulting membrane may swell with water, which can be said to be a modification method that involves significant changes in the physical properties of the membrane.

一方、親水性のポリマーを芳香族ポリサルホンポリマー
にブレンドした混合ポリマーから成る親水化ポリサルホ
ン膜も、種々提案されている。例えば、特開昭57−5
0507号は、セルロース誘導体を、特開昭60−20
6404号は、エチレン−ビニルアルコール系共重合体
を、それぞれブレンドした混合ポリマーから成る親水化
ポリサルホン膜を提案している。しかし、実質的な親水
化ポリサルホン膜を得るために、かなりの量の異種ポリ
マーをブレンドしなければならず、芳香族ポリサルホン
ポリマーのような分子凝集力が大きいポリマーとの均一
なブレンド物を得ることは難しかった。特に、極性有機
溶剤とポリマーを含有する製膜用溶液を、水を主成分と
するポリマーの非溶剤と接触させ、ポリマーを凝固成形
することにより上記の親水化ポリサルホン膜を作製しよ
うとする場合、均一な製膜用溶液が得にくい上に、放置
中にゲル化や相分離が発生し易いなど溶液の安定性に問
題があったり、非溶剤との接触によりポリマーが凝固す
る際に異種ポリマーとの分離が生じて膜の構造が不均一
となる可能性もあった。この様に異種ポリマーの添加は
、物性の劣るポリマーの添加効果に加えて、不均質な膜
構造の生成によっても、膜の耐熱性、耐薬品性などの物
性の劣化を惹き起こすと考えられた。
On the other hand, various hydrophilized polysulfone membranes made of mixed polymers in which a hydrophilic polymer is blended with an aromatic polysulfone polymer have also been proposed. For example, JP-A-57-5
No. 0507 discloses cellulose derivatives in Japanese Patent Application Laid-open No. 60-20
No. 6404 proposes a hydrophilized polysulfone membrane made of a mixed polymer obtained by blending ethylene-vinyl alcohol copolymers. However, in order to obtain a substantially hydrophilized polysulfone membrane, a significant amount of different polymers must be blended, and it is difficult to obtain a homogeneous blend with polymers with high molecular cohesion, such as aromatic polysulfone polymers. was difficult. In particular, when attempting to produce the above-mentioned hydrophilized polysulfone membrane by bringing a membrane-forming solution containing a polar organic solvent and a polymer into contact with a non-solvent for a polymer whose main component is water, and coagulating and molding the polymer, In addition to being difficult to obtain a uniform film-forming solution, there are problems with the stability of the solution, such as gelation and phase separation when left standing, and when the polymer coagulates due to contact with non-solvents, different polymers may form. There was also the possibility that the membrane structure would become non-uniform due to separation. In this way, the addition of different polymers was thought to cause deterioration of physical properties such as heat resistance and chemical resistance of the film, not only due to the effect of adding polymers with inferior physical properties, but also due to the formation of a non-uniform film structure. .

上記の提案に対して、ポリサルホンポリマーの物性を損
なわず、膜表面の親水化を行う方法として、例えば特開
昭60−87803号は、ポリサルホン膜を形成し、次
いで膜形状のままクロロスルホン酸によりポリマーをス
ルホン化する方法を、特開昭59−186604号は、
ポリサルホン膜を陽光柱プラズマ処理する方法をそれぞ
れ提案している。しかし、この様な方法は、膜の形成が
終了した製品もしくは半製品のみを対象とし、特殊な方
法と装置を必要とする繁雑な方法であり、−船釣ではな
かった。
In response to the above proposal, as a method for making the membrane surface hydrophilic without impairing the physical properties of the polysulfone polymer, for example, JP-A-60-87803 proposes forming a polysulfone membrane and then applying chlorosulfonic acid while maintaining the membrane shape. JP-A-59-186604 describes a method for sulfonating polymers.
We have proposed methods for treating polysulfone films with positive column plasma. However, such a method targets only products or semi-finished products on which film formation has been completed, and is a complicated method requiring special methods and equipment, and is not a method for boat fishing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記に鑑みて鋭意研究した結果、疎水性
重合体、好ましくは芳香族ポリサルホンと親水性重合体
とから成る親水−疎水グラフト共重合体又はブロック共
重合体を第2の親水性重合体とともに含有する変性ポリ
サルホン樹脂を膜材料とすることにより、親水化ポリサ
ルホン膜が得られることを見い出し、本発明を完成する
に至った。本発明の目的とするところは、ポリサルホン
膜の持つ優れた耐熱性、耐薬品性といった物性を、はと
んど損なうことなしに物性の優れた、透過性能が良好な
分離膜として親水化ポリサルホン膜を提供することにあ
る。
As a result of intensive research in view of the above, the present inventors have discovered that a hydrophilic-hydrophobic graft copolymer or a block copolymer consisting of a hydrophobic polymer, preferably an aromatic polysulfone, and a hydrophilic polymer can be used as a second hydrophilic polymer. The present inventors have discovered that a hydrophilic polysulfone membrane can be obtained by using a modified polysulfone resin contained together with a polysulfone polymer as a membrane material, and have completed the present invention. The purpose of the present invention is to develop a hydrophilic polysulfone membrane as a separation membrane with excellent physical properties and good permeability without impairing the excellent physical properties of polysulfone membranes such as heat resistance and chemical resistance. Our goal is to provide the following.

即ち本発明は、疎水性芳香族重合体Aと親水性重合体B
とから成る親水−疎水グラフト共重合体又はブロック共
重合体を親水性重合体C及びポリサルホン樹脂りととも
に含有する樹脂であって、樹脂中の親水性重合体成分が
BとCを合わせて全樹脂成分の80重量%以下、疎水性
重合体成分がAとDを合わせて全樹脂成分の20重量%
以上である変性芳香族樹脂から成ることを特徴とする変
性分離膜を提供するものである。
That is, the present invention provides hydrophobic aromatic polymer A and hydrophilic polymer B.
A resin containing a hydrophilic-hydrophobic graft copolymer or a block copolymer consisting of a hydrophilic polymer C and a polysulfone resin, wherein the hydrophilic polymer component in the resin is the total resin including B and C. 80% by weight or less of the components, and the hydrophobic polymer component is 20% by weight of the total resin component including A and D.
The present invention provides a modified separation membrane characterized by being made of the modified aromatic resin as described above.

ここで、ポリサルホン樹脂としては前述したように芳香
族ポリサルホンが最も好ましく、さらに詳しくは下記式
(I)の反復単位を有する単独重合体、又は式(I)の
反復単位とともに下記の式(II)〜(1’V)から選
ばれる少なくとも1種の反復単位を有する共重合体であ
ることが好ましい。
As mentioned above, aromatic polysulfone is most preferable as the polysulfone resin, and more specifically, it is a homopolymer having a repeating unit of the following formula (I), or a homopolymer having a repeating unit of the formula (I) and a repeating unit of the following formula (II). A copolymer having at least one type of repeating unit selected from -(1'V) is preferable.

また、疎水性芳香族重合体Aとしても、前記のポリサル
ホン樹脂と同様のものが好ましい。
Moreover, as the hydrophobic aromatic polymer A, the same one as the above-mentioned polysulfone resin is preferable.

また親水性重合体B及びCとしては特に代表的なものは
ビニル系の親水性重合体であり、詳しくは各々下記の構
造の1種又は2種以上を親水性成分として有することが
好ましい。この場合親水性重合体Bは下記の親水性成分
以外に疎水性芳香族重合体Aと結合する成分も有してい
ることを要する。
Further, particularly representative hydrophilic polymers B and C are vinyl-based hydrophilic polymers, and more specifically, each preferably has one or more of the following structures as a hydrophilic component. In this case, the hydrophilic polymer B is required to have a component that binds to the hydrophobic aromatic polymer A in addition to the hydrophilic component described below.

−CR,−CH2− 〔ここでR1は水素又はメチル基である。又R3は(R
3は炭素原子1ないし20個を有する脂肪族炭化水素基
。)。
-CR, -CH2- [Here, R1 is hydrogen or a methyl group. Also, R3 is (R
3 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms. ).

C00M ()、1は水素、又はカルボン酸イオンとイオン結合す
るアルカリ金属又は塩基性物質である。)。
C00M ( ), 1 is hydrogen or an alkali metal or basic substance that ionically bonds with a carboxylic acid ion. ).

CDOR。CDOR.

(R4は炭素原子1ないし20個を有する脂肪族炭化水
素基である。)。
(R4 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms).

C00NR5R6 (Rs、 R6は各々水素又は炭素原子Iないし20個
を有する脂肪族炭化水素基である。)。
C00NR5R6 (Rs, R6 are each hydrogen or an aliphatic hydrocarbon group having I to 20 carbon atoms).

(nは0 (原子価結合)〜10の整数。Mは水素、又
はスルホン酸イオンとイオン結合するアルカリ金属又は
塩基性物質である。)。
(n is an integer from 0 (valence bond) to 10; M is hydrogen, or an alkali metal or basic substance that ionically bonds with the sulfonate ion).

/\ Rs  Re (R,、R,及びR3は各々炭素原子1ないし20個を
有する脂肪族炭化水素基であり、に0はハロゲンイオン
である。)。
/\Rs Re (R, , R, and R3 are each an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 0 is a halogen ion).

(Rhoは炭素原子1ないし20個を有する脂肪族炭化
水素基、nは4〜6の整数、xoはハロゲンイオンであ
る。)。
(Rho is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, n is an integer of 4 to 6, and xo is a halogen ion).

(R11は炭素原子1ないし20個を有する脂肪族炭化
水素基であり、xoはハロゲンイオンである。) である。〕 以上の他に好ましい親水性重合体としてはスルホン化ポ
リサルホンポリマーが挙げられる。
(R11 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and xo is a halogen ion.) ] In addition to the above, preferred hydrophilic polymers include sulfonated polysulfone polymers.

詳しくは前述の式(I)の反復単位を有する単独重合体
を公知の方法でスルホン化したもの、又は式(I)の反
復単位とともに式(II)〜(IV)から選ばれる少な
くとも1種の反復単位を有する共重合体を公知の方法で
スルホン化したものが好ましい。
Specifically, a homopolymer having the above-mentioned repeating unit of formula (I) is sulfonated by a known method, or a repeating unit of formula (I) and at least one member selected from formulas (II) to (IV) Preferably, a copolymer having repeating units is sulfonated by a known method.

次に疎水性芳香族重合体Aと親水性重合体Bとから成る
グラフト共重合体及びブロック共重合体について述べる
Next, a graft copolymer and a block copolymer comprising hydrophobic aromatic polymer A and hydrophilic polymer B will be described.

前者のグラフト共重合体については既に本発明者らが特
開昭62−168503号や特願昭61−224205
号等で詳述している方法を用いて合成することができる
Regarding the former graft copolymer, the present inventors have already reported in Japanese Patent Application Laid-Open No. 168503/1982 and Japanese Patent Application No. 224205/1983.
It can be synthesized using the method detailed in No. 1, etc.

即ち、反応性の官能基を有する親水性重合体と、前記官
能基と反応しうる官能基を末端に有する疎水性芳香族重
合体とを反応させるか、又はビニル基等の活性基を末端
に有する疎水性芳香族重合体を親水性のモノマー又はオ
リゴマーと共重合させることにより得ることができる。
That is, a hydrophilic polymer having a reactive functional group is reacted with a hydrophobic aromatic polymer having a functional group at the end that can react with the functional group, or an active group such as a vinyl group is reacted at the end. It can be obtained by copolymerizing a hydrophobic aromatic polymer with a hydrophilic monomer or oligomer.

具体的な反応性の官能基と、これと反応しうる末端基の
組み合わせは公知の有機化学反応から以下のような例が
挙げられる。
Examples of combinations of specific reactive functional groups and terminal groups capable of reacting with the functional groups include the following from known organic chemical reactions.

(1)末端基が水酸基又はアルカリアルコラード基の場
合: 酸ハライド基、酸無水物基、グリシジル基、ハロメチル
基、スルホニルハライド基などの官能基。
(1) When the terminal group is a hydroxyl group or an alkali alcoholade group: A functional group such as an acid halide group, an acid anhydride group, a glycidyl group, a halomethyl group, or a sulfonyl halide group.

(2〕  末端基がハロゲン化アルキル基又はハロゲン
化アリール基の場合: +C112→、OM基(:、1はアルカリ金属、mは0
(原子価結合)又は正の整数)、アミノ基(これは第1
.第2もしくは第3級であってよい)などの官能基。
(2) When the terminal group is a halogenated alkyl group or a halogenated aryl group: +C112→, OM group (:, 1 is an alkali metal, m is 0
(valence bond) or positive integer), amino group (this is the first
.. (which may be secondary or tertiary).

(3)末端基がアミノ基の場合: ハロゲン化アルキル基、酸ハライド基などの官能基。(3) When the terminal group is an amino group: Functional groups such as halogenated alkyl groups and acid halide groups.

(4)末端基がエポキシ基の場合ニ アミノ基、アルコラード基などの官能基。(4) If the terminal group is an epoxy group, Functional groups such as amino groups and alcoholade groups.

(5)末端基がカルボニル基の場合ニ ーNHN32基、水酸基などの官能基。(5) When the terminal group is a carbonyl group, -Functional groups such as NHN32 groups and hydroxyl groups.

(6)末端基がカルボキシル基の場合:水酸基などの官
能基。
(6) When the terminal group is a carboxyl group: a functional group such as a hydroxyl group.

また、疎水性芳香族重合体に活性な末端基、親水性重合
体に官能基を導入する場合も公知の有機化学反応を用い
て行えばよく、特に限定しないが、前者の場合、疎水性
芳香族重合体の重合度をできるだけ低下させないような
条件で反応を行う必要がある。また後者の場合、親水性
成分の官能基を好ましくない方向に変化させたり、ある
いは重合度を低下させたりすることのないように適当な
反応条件を設定する必要がある。
In addition, when introducing an active terminal group into a hydrophobic aromatic polymer or a functional group into a hydrophilic polymer, known organic chemical reactions may be used. It is necessary to carry out the reaction under conditions that do not reduce the degree of polymerization of the group polymer as much as possible. In the latter case, it is necessary to set appropriate reaction conditions so as not to change the functional groups of the hydrophilic component in an unfavorable direction or reduce the degree of polymerization.

もちろん、反応性の官能基あるいは末端基を既に有して
いる市販のモノマー、オリゴマーあるいは芳香族ポリサ
ルホンポリマーをそのまま用いてもよい。
Of course, commercially available monomers, oligomers, or aromatic polysulfone polymers that already have reactive functional groups or terminal groups may be used as they are.

以上述べてきたような親水性重合体と末端反応性の疎水
性芳香族重合体、特に好ましくはポリサルホンポリマー
とを反応させて本発明のグラフト共重合体又はこれを含
んだポリサルホン樹脂を製造する。
The graft copolymer of the present invention or the polysulfone resin containing the same is produced by reacting the hydrophilic polymer as described above with a terminally reactive hydrophobic aromatic polymer, particularly preferably a polysulfone polymer.

この場合、注意しなければならないのは疎水性芳香族重
合体の末端基の片側のみが反応しうるような反応条件を
設定するということである。
In this case, care must be taken to set reaction conditions such that only one end group of the hydrophobic aromatic polymer can react.

もし両末端基が反応にあずかることになると架橋反応が
起こり、溶媒に不溶性のゲル状物となってしまう。
If both terminal groups participate in the reaction, a crosslinking reaction will occur, resulting in a gel-like substance that is insoluble in the solvent.

従って予め反応性の末端基を疎水性芳香族重合体の片側
のみに導入しておくか、又は両末端基のうち一方の末端
基のみを活性化させるか、どちらかの方法を適用する。
Therefore, either a method is applied in which a reactive end group is introduced in advance onto only one side of the hydrophobic aromatic polymer, or only one of both end groups is activated.

一方、ブロック共重合体については本発明者らが既に特
願昭62−196696号や特願昭62−92607号
等で詳述している方法を用いて合成することができる。
On the other hand, the block copolymer can be synthesized using the method already described in detail by the present inventors in Japanese Patent Applications No. 196696/1982 and No. 92607/1982.

即ち親水性重合体Bがスルホン化ポリサルホンポリマー
の場合には次のような方法がある。
That is, when the hydrophilic polymer B is a sulfonated polysulfone polymer, the following method is available.

(1)  (I)式の反復単位のみから成る単独重合体
を従来法(例えば、特公昭47−617号や特公昭42
−7799号に開示されている方法)に従って合成し、
反応を停止せずにその活性末端を重合開始点として引き
続き公知の方法(例えば、カナダ特許第847963号
)により(n)〜(rV)のモノマーを(1)のモノマ
ーとともに共重合させる。次に公知の方法で(例えば濃
硫酸やクロロスルホン酸を用いて)(■)〜(rV)の
反復単位を選択的にスルホン化する。
(1) A homopolymer consisting only of repeating units of formula (I) is prepared using conventional methods (for example, Japanese Patent Publication No. 47-617 or Japanese Patent Publication No. 42
-7799),
Without stopping the reaction, the monomers (n) to (rV) are subsequently copolymerized with the monomer (1) by a known method (for example, Canadian Patent No. 847,963) using the active end as a polymerization initiation point. Next, the repeating units (■) to (rV) are selectively sulfonated by a known method (for example, using concentrated sulfuric acid or chlorosulfonic acid).

(2)  (I)式の反復単位のみから成る市販のポリ
エーテルサルホンの末端基(−CA又は−OH)をその
まま用いるか、又は別の官能基に変えて公知の有機化学
反応によって、活性末端を有し、かつ(I)の反復単位
とともに(n)〜(IV)から選ばれる少なくとも1種
の反復単位を有する共重合体と反応させる。次に公知の
方法で(II)〜(rV)の反復単位を選択的にスルホ
ン化する。
(2) The end group (-CA or -OH) of a commercially available polyether sulfone consisting only of repeating units of formula (I) can be used as is, or it can be activated by a known organic chemical reaction by changing it to another functional group. It is reacted with a copolymer having a terminal and having at least one type of repeating unit selected from (n) to (IV) together with the repeating unit of (I). Next, the repeating units (II) to (rV) are selectively sulfonated by a known method.

また親水性重合体Bとしてビニル系重合体を用いる場合
には、例えば、フェノール性水酸基を末端に有する疎水
性芳香族重合体をビニル基を有する親木性上ツマ−及び
ラジカル重合開始剤の存在下で反応させることにより目
的のブロック共重合体を製造することができる(特願昭
62−196696号)。
In addition, when a vinyl polymer is used as the hydrophilic polymer B, for example, a hydrophobic aromatic polymer having a phenolic hydroxyl group at the end is combined with a vinyl group-containing polymer and a radical polymerization initiator. The desired block copolymer can be produced by carrying out the reaction below (Japanese Patent Application No. 196696/1983).

以上述べて来たような方法で合成された親水−疎水グラ
フト共重合体又はブロック共重合体及びポリサルホンポ
リマーとともに本発明の分離膜には前述したように第2
の親水性重合体Cが添加される。この親水性重合体Cが
ポリサルホンポリマーと相溶性であれば、グラフト共重
合体やブロック共重合体の介在なしにポリサルホンポリ
マーとの単独ブレンドでも本発明の目標に近い性能を有
する耐熱性、かつ親水性の分離膜を得ることができる場
合がある。
In addition to the hydrophilic-hydrophobic graft copolymer or block copolymer and polysulfone polymer synthesized by the method described above, the separation membrane of the present invention also contains a second compound as described above.
of hydrophilic polymer C is added. If this hydrophilic polymer C is compatible with the polysulfone polymer, it will have heat resistance and hydrophilic properties that are close to the goals of the present invention even when blended alone with the polysulfone polymer without the intervention of a graft copolymer or block copolymer. In some cases, it may be possible to obtain a separation membrane with different characteristics.

例えば、本発明者らにより開示された特開昭61−40
2号がそれである。しかしながらこのようにポリサルホ
ンポリマーとの相容性の良好な親水性重合体は極めて少
ない。多くの場合非相容性であり、非相容性の親水性重
合体とポリサルホンポリマーとの単純ブレンドでは極め
て不均質な膜となり実用に適さない。
For example, JP-A-61-40 disclosed by the present inventors
That's number 2. However, there are very few hydrophilic polymers that have good compatibility with polysulfone polymers. In many cases, they are incompatible, and a simple blend of an incompatible hydrophilic polymer and a polysulfone polymer results in an extremely heterogeneous film that is not suitable for practical use.

ところで一般にポリマー■とポリマー■との相容性が良
くない場合、相容化剤としての第3のポリマー■を添加
することがあり、この場合のポリマー■は例えばポリマ
ーIの繰り返し単位とポリマーHの繰り返し単位とを共
に有する共重合体、特にブロックやグラフト共重合体で
あるとき極めて大きな相客化効果を発揮しうろことが知
られている。
By the way, in general, when the compatibility between polymer (1) and polymer (2) is not good, a third polymer (2) may be added as a compatibilizer. It is known that copolymers, especially block and graft copolymers, which have a repeating unit of

このことを本発明者らは製膜に応用し、膜素材としてポ
リサルホンポリマーと親水性重合体C及びこれらを相客
化するための前述の親水−疎水ブロック又はグラフト共
重合体とを用いたところ本発明の目標とする耐熱性、か
つ親水性の分離膜を得ることが出来たのである。しかも
製膜法として通常の乾式、乾湿式又は湿式による相変換
製膜法を用いた場合に特に良好な結果が得られた。すな
わち製膜時の相変換の過程でポリサルホンポリマー成分
に富む部分と親水性成分に富む部分とに相分離し、最終
的に分離膜の微孔表面は親水性成分で覆われ、膜の耐汚
染性は著しく向上する。一方、膜の構造を実質的に決定
しているポリマーマトリックスはポリサルホンポリマー
から主に形成されるため、膜の機械的強度や耐熱性はポ
リサルホン膜のそれに匹敵するレベルに達することにな
る。
The present inventors applied this to film formation, and used polysulfone polymer, hydrophilic polymer C, and the aforementioned hydrophilic-hydrophobic block or graft copolymer to make them compatible as membrane materials. It was possible to obtain a heat-resistant and hydrophilic separation membrane, which is the goal of the present invention. In addition, particularly good results were obtained when a conventional dry, dry-wet, or wet phase conversion film-forming method was used as the film-forming method. In other words, during the phase transformation process during membrane formation, the phase separates into a region rich in polysulfone polymer components and a region rich in hydrophilic components, and finally the microporous surface of the separation membrane is covered with hydrophilic components, making the membrane resistant to contamination. sex is significantly improved. On the other hand, since the polymer matrix that essentially determines the structure of the membrane is mainly formed from polysulfone polymer, the membrane's mechanical strength and heat resistance reach a level comparable to that of polysulfone membranes.

尚、親水性成分、すなわち前述の親水性重合体BとCは
本発明の目標とする膜を得るためには、膜内含有率が8
0重量%以下である必要がある。これを越えると膜のポ
リマーマトリックス内部も著しく親水化され、耐熱性や
機械的強度が低下する。
In addition, in order to obtain the membrane targeted by the present invention, the hydrophilic components, that is, the aforementioned hydrophilic polymers B and C, must have a content in the membrane of 8.
It needs to be 0% by weight or less. If this value is exceeded, the interior of the polymer matrix of the membrane will also become significantly hydrophilic, resulting in a decrease in heat resistance and mechanical strength.

また、ブロック共重合体又はグラフト共重合体と親水性
重合体Cとの割合は、均一な製膜用ポリマー溶液(後述
)が得られる程度に調製されるべきで、経済的には高価
なブロック共重合体又はグラフト共重合体の添加量をで
きるだけ少なくすることが好ましい。またブロック共重
合体又はグラフト共重合体の反応混合物中には目的の共
重合体の他に親水性重合体や未反応のポリサルホンポリ
マーも含まれているので、反応混合物の溶液をそのまま
製膜用溶液として用いることもできる。
In addition, the ratio of the block copolymer or graft copolymer to the hydrophilic polymer C should be adjusted to such an extent that a uniform film-forming polymer solution (described later) can be obtained. It is preferable to minimize the amount of copolymer or graft copolymer added. In addition, the reaction mixture of block copolymers or graft copolymers contains hydrophilic polymers and unreacted polysulfone polymers in addition to the desired copolymer, so the solution of the reaction mixture can be used directly for film formation. It can also be used as a solution.

次に前述の相変換製膜法について詳しく述べる。この製
膜法ではポリマーを適当な溶媒に溶解する必要があるが
、このような溶媒としては、例えば、N、 N−ジメチ
ルアセトアミド、N、N−ジメチルホルムアミド、N−
メチル−2−ピロリドン、2−ピロリドン、ジメチルス
ルホキシド、スルホラン、テトラヒドロフラン等の水に
可溶な溶媒(これらを第1群の溶媒とする)や塩化メチ
レン、クロロホルムなどの水に不溶のハロゲン系炭化水
素の溶媒(これらを第■群の溶媒とする)が挙げられる
Next, the above-mentioned phase conversion film forming method will be described in detail. In this film forming method, it is necessary to dissolve the polymer in a suitable solvent, and examples of such a solvent include N,N-dimethylacetamide, N,N-dimethylformamide, N-
Water-soluble solvents such as methyl-2-pyrrolidone, 2-pyrrolidone, dimethyl sulfoxide, sulfolane, and tetrahydrofuran (these are the first group of solvents), and water-insoluble halogenated hydrocarbons such as methylene chloride and chloroform. (these are referred to as the solvents of group Ⅰ).

第1群の溶媒を用いる場合は、これに前述のポリマー混
合物を溶解し、必要に応じて電解質や水溶性高分子ある
いは水溶性の貧溶媒(例えば、水又はアルコール類やケ
トン類など)を同時に溶解混合した製膜用溶液(これを
ドープと呼ぶ)を調製する。シート状、あるいは管状に
分離膜を形成させるには、シート状あるいは管状の適当
な支持体(例えばガラス板あるいは管、不織布、布など
)上に、前記ドープを厚さ数十ミクロン−数百ミクロン
の範囲で適当な方法により流延し、必要に応じて一定時
間一定条件の雰囲気に放置後、例えば、貧溶媒(主に水
)から成る凝固浴中に浸漬してゾル−ゲル相変換による
湿式又は乾湿式製膜を行う。また、公知の方法でドープ
を中空糸成形ノズルを経て紡糸することにより中空糸膜
の製造が可能である。
When using the first group of solvents, dissolve the above-mentioned polymer mixture in it, and if necessary, add an electrolyte, a water-soluble polymer, or a water-soluble poor solvent (for example, water, alcohols, ketones, etc.) at the same time. A solution for film forming by dissolving and mixing (this is called a dope) is prepared. In order to form a separation membrane in the form of a sheet or tube, the dope is placed on a suitable support (e.g. glass plate or tube, nonwoven fabric, cloth, etc.) in the form of a sheet or tube to a thickness of several tens of microns to several hundred microns. After casting by an appropriate method within the range of Or perform wet-dry film formation. Further, a hollow fiber membrane can be manufactured by spinning the dope through a hollow fiber forming nozzle using a known method.

また、第■群の溶媒を用いる場合は、第1群と同様にし
て調整したドープを、第1群の場合と同様の方法でシー
ト状、管状、あるいは中空糸状に流延、又は吐出し、一
定時間、一定条件の君囲気にさらすことによって液−液
相分離を起こさせ、さらに溶媒を蒸発させて行くことに
より、最終的に比較的多孔質の分離膜を得ることができ
る。これは酢酸セルロース系メンブレンフィルターの乾
式製膜法とほとんど同様の方法である。
In addition, when using the solvent of Group Ⅰ, the dope prepared in the same manner as in Group 1 is cast or discharged in the form of a sheet, a tube, or a hollow fiber in the same manner as in Group 1, By exposing the membrane to ambient air under certain conditions for a certain period of time to cause liquid-liquid phase separation and further evaporating the solvent, a relatively porous separation membrane can finally be obtained. This method is almost the same as the dry film forming method for cellulose acetate membrane filters.

〔発明の効果〕〔Effect of the invention〕

本発明の変性芳香族樹脂から成る分離膜は、膜の微孔表
面は親水性に富むが、膜の構造を実質的に決定している
ポリマーマトリックスは主にポリサルホンポリマーから
構成されていると、)う相分離構造を有する嘆となって
いる。この結果、本発明の膜は透水速度が高く、汚れも
付きにくい性質を有していると同時に膜の機械的強度、
耐熱性、耐薬品性等は従来の芳香族ポリサルホン膜のそ
れにほぼ匹敵する性能を有している。従って、従来の親
水性ポリマーから主として成る分離膜(例えば酢酸セル
ロース類、あるいは従来法による親水化ポリサルホン膜
)が耐えられなかったような過酷な条件下の膜分離操作
に有効に使用することが出来る利点を有している。
In the separation membrane made of the modified aromatic resin of the present invention, the microporous surface of the membrane is highly hydrophilic, but the polymer matrix that substantially determines the structure of the membrane is mainly composed of polysulfone polymer. ) It has a phase-separated structure. As a result, the membrane of the present invention has a high water permeation rate and is resistant to dirt, and at the same time has a high mechanical strength.
Its heat resistance, chemical resistance, etc. are comparable to those of conventional aromatic polysulfone membranes. Therefore, it can be effectively used in membrane separation operations under harsh conditions that conventional separation membranes mainly made of hydrophilic polymers (e.g., cellulose acetates or hydrophilized polysulfone membranes made by conventional methods) cannot withstand. It has advantages.

〔実施例〕〔Example〕

次に実施例により本発明を具体的に説明するが、本発明
はこれらの実施例で限定されるものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 末端が水酸基である下記の反復単位 を有するポリエーテルサルホン(PESと略す)(Vi
ctrex 5003P、 ICI社製)15gをジメ
チルスルホキシド(DMS[lと略す)70mlに溶解
し、ビニルピロリドン15gを加えて撹拌しっつN2ガ
スを10分間吹き込んだ。この溶液を70℃に昇温後、
アゾビスイソブチロリトリル0.38 gを加えて4時
間撹拌した。室温に戻し0.2gのハイドロキノンを添
加後、50gの溶液を採取した。この溶液に(1)式の
反復単位を有する高分子量タイプのPES (Vict
rex 5200P、  IC1社製> 10 g 、
 DMS030g、アセトン10gより成る溶液を混合
し、昼夜撹拌して、均一な溶液を得た。この溶液を濾過
、脱泡後、ポリエステル不織布(MF−80K。
Example 1 Polyethersulfone (abbreviated as PES) (Vi
ctrex 5003P, manufactured by ICI Corporation) was dissolved in 70 ml of dimethyl sulfoxide (DMS [abbreviated as 1]), 15 g of vinylpyrrolidone was added, stirred, and N2 gas was blown into the solution for 10 minutes. After heating this solution to 70°C,
0.38 g of azobisisobutyrolitrile was added and stirred for 4 hours. After returning to room temperature and adding 0.2 g of hydroquinone, 50 g of solution was collected. This solution contains high molecular weight type PES (Vict
rex 5200P, manufactured by IC1 > 10 g,
A solution consisting of 030 g of DMS and 10 g of acetone was mixed and stirred day and night to obtain a homogeneous solution. After filtering and degassing this solution, a polyester nonwoven fabric (MF-80K) was used.

日本バイリーン社製)上に厚さ150 μmに流延し、
一定雰囲気下に一定時間さらした後、10℃の水中に浸
漬することにより非対称分離膜を得た。さらに、90℃
で15分間熱水洗浄を行った後、純水透水係数(L、)
、 L、の経時低下率(β)および牛血清アルブミンの
排除率(Ro)を測定した、各パラメーターの定義は以
下の通りである。
(manufactured by Nippon Vilene Co., Ltd.) to a thickness of 150 μm,
After being exposed to a certain atmosphere for a certain period of time, an asymmetric separation membrane was obtained by immersing it in water at 10°C. Furthermore, 90℃
After washing with hot water for 15 minutes, the pure water permeability coefficient (L,)
, L, and the elimination rate (Ro) of bovine serum albumin were measured. The definitions of each parameter are as follows.

Lさ (但し濾過1時間後のり、をB、  a時間後のり、を
L3とする。) らに水でソックスレー抽出後乾燥し、270MHz’H
−NIARと有機溶剤系GPCで分析したところ下記の
構造を有するブロック共重合体であった。
(However, the paste after 1 hour of filtration is called B, and the paste after a hour is called L3.) Then, after Soxhlet extraction with water, it was dried and heated to 270MHz'H.
- When analyzed by NIAR and organic solvent-based GPC, it was found to be a block copolymer having the following structure.

−f−CH2CH→yr CH2CH0その結果り二=
8.7m’/m’−日・kg/cm2.  β=6.5
%及びR,= 100%という優れた性能を有していた
-f-CH2CH→yr CH2CH0 As a result Ri2=
8.7 m'/m'-day/kg/cm2. β=6.5
% and R, = 100%.

また、この分離膜を乾燥して膜素材ポリマーをDIJS
O−d、 (重水素置換DMSO)に溶解し、IH−N
F、4R(100MHz)で分析したところ、ポリビニ
ルピロリドン(PVP)成分が28重量%存在している
ことが判明した。これをさらにアセトン水溶液で抽出処
理するとPvP成分は16重量%に減少し、PvPホモ
ポリマー(すなわち親水性重合体C)は12重量%含ま
れていたことがわかった。
In addition, this separation membrane is dried and the membrane material polymer is DIJS.
O-d, dissolved in (deuterated DMSO), IH-N
Analysis by F, 4R (100 MHz) revealed that 28% by weight of polyvinylpyrrolidone (PVP) component was present. When this was further extracted with an aqueous acetone solution, the PvP component was reduced to 16% by weight, and it was found that the PvP homopolymer (ie, hydrophilic polymer C) was contained at 12% by weight.

また先の反応混合物の残りを水で再沈し、さ比較例1 実施例1で用いた高分子量タイプのPES (V 1c
trex5200P)の溶液のみから実施例1と同様の
方法で分離膜を製膜した。この分離膜はLl!=9.6
m3/m2・日・kg/cm2であるが、β=20%で
あり純水透水速度の低下が著しい。
In addition, the remainder of the above reaction mixture was reprecipitated with water, and the high molecular weight type PES (V 1c
A separation membrane was formed in the same manner as in Example 1 from only a solution of trex5200P). This separation membrane is Ll! =9.6
m3/m2·day·kg/cm2, but β=20%, and the pure water permeation rate is significantly reduced.

実施例2 末端が水酸基である(I)式のPES (V 1ctr
ex52003P) 200gをDMSO600mj2
とPhCn 300−の混合溶媒に室温で溶解し、これ
に0.5NのNaOH水溶液水溶液50奢j!して室温
で2時間撹拌し、末端がナトリウムフェルレート型0P
ESの溶液を得た。
Example 2 PES of formula (I) whose terminal is a hydroxyl group (V 1ctr
ex52003P) 200g in DMSO600mj2
and PhCn 300- at room temperature, and 50 liters of 0.5N NaOH aqueous solution was added to this. and stirred at room temperature for 2 hours, and the end was sodium ferulate type 0P.
A solution of ES was obtained.

これにベンジルクロリド4gを添加後室温で1時間、7
0℃で2時間撹拌しPESの片側末端をベンジルエーテ
ル型に変えた。この溶液に0.5N−NaOH50−を
滴下し、1時間撹拌後、クロロメチルスチレン6gを滴
下し、室温で1時間、70℃で3時間反応させPESの
もう一方の末端にビニル基を導入した。この反応混合物
をメタノール/水(8:2(容積比))の混合液で再沈
後、ポリマーを濾過回収して乾燥した。このポリマーを
270MHzの’HNMRで分析したところ片末端にベ
ンジルエーテル基、他の片末端にビニル基(スチリル基
)が導入されているPESマクロマーであることが確認
された。
After adding 4 g of benzyl chloride to this, it was heated at room temperature for 7 hours.
The mixture was stirred at 0° C. for 2 hours to convert one end of PES into a benzyl ether type. 0.5N-NaOH50- was added dropwise to this solution, and after stirring for 1 hour, 6 g of chloromethylstyrene was added dropwise, and the reaction was carried out at room temperature for 1 hour and at 70°C for 3 hours to introduce a vinyl group to the other end of PES. . This reaction mixture was reprecipitated with a mixed solution of methanol/water (8:2 (volume ratio)), and the polymer was collected by filtration and dried. When this polymer was analyzed by 'HNMR at 270 MHz, it was confirmed that it was a PES macromer having a benzyl ether group introduced at one end and a vinyl group (styryl group) introduced at the other end.

このP[ESマクロマー170gとビニルピロリドン1
70gをDMSO800I!に溶解し、N2ガスを吹き
込んだ。この溶液を70℃に昇温し重合開始剤としてア
ゾビスイソブチロニトリル2.1gを添加して5時間重
合させた。室温に戻し2gのハイドロキノンを添加後5
0gの溶液を採取し、実施例1と同様のVictrex
 5200Pの溶液50gと混合し、実施例1と同様に
して非対称分離膜を得た。この膜はLA = 12m3
/m2・日・kg/cm’、  β=1.2%であり、
透水性能が優れていた。またこの分離膜のR,は100
%であり、この性能は80℃の熱水に30日間浸漬した
後も変わらなかった。またこの分離膜の組成分析を実施
例1と同様の方法で行ったところPVP成分は28重量
%であり、このうち19重量%は下記の特性を有するグ
ラフト共重合体中のPVPで、9重量%はPvPホモポ
リマーであった。
This P[ES macromer 170g and vinylpyrrolidone 1
70g in DMSO800I! was dissolved in water, and N2 gas was blown into the solution. This solution was heated to 70° C., 2.1 g of azobisisobutyronitrile was added as a polymerization initiator, and polymerization was carried out for 5 hours. After returning to room temperature and adding 2 g of hydroquinone,
0 g of the solution was collected and transferred to Victrex as in Example 1.
The mixture was mixed with 50 g of a solution of 5200P to obtain an asymmetric separation membrane in the same manner as in Example 1. This membrane is LA = 12m3
/m2・day・kg/cm', β=1.2%,
It had excellent water permeability. Also, R of this separation membrane is 100
%, and this performance remained unchanged even after being immersed in hot water at 80°C for 30 days. In addition, compositional analysis of this separation membrane was performed in the same manner as in Example 1, and the PVP component was 28% by weight, of which 19% by weight was PVP in the graft copolymer having the following characteristics, and 9% by weight. % was PvP homopolymer.

Pu5−PVPグラフト共重合体: IJW = 140.000 MN= 70,000 MW/MN =2.0 PVP含有率37重量% 実施例3 実施例1のブロック共重合体25g、PVPホモポリマ
ー(分子量40.000、アルドリッチ社製)25g、
 Victrex 5200P 150gをDMSo 
600 gとポリエチレングリコール(PEG略す)の
i子量200200gの混合溶媒に溶解し、均一な製膜
用溶液(ドープ)を得た。このドープを濾過、脱泡後、
中空糸製造用環状ノズルから押出し、中空糸内部にはD
 !、I S O/水=ll(重量比)を送液して凝固
させ、外部からは水を凝固液として凝固させた。
Pu5-PVP graft copolymer: IJW = 140.000 MN = 70,000 MW/MN = 2.0 PVP content 37% by weight Example 3 25 g of the block copolymer of Example 1, PVP homopolymer (molecular weight 40 .000, manufactured by Aldrich) 25g,
Victrex 5200P 150g in DMSo
600 g and polyethylene glycol (PEG abbreviated) with an i molecular weight of 200,200 g in a mixed solvent to obtain a uniform film-forming solution (dope). After filtering and defoaming this dope,
Extruded from an annular nozzle for manufacturing hollow fibers, D is inside the hollow fibers.
! , IS O/water = 1 l (weight ratio) was sent to cause solidification, and water was applied from the outside as a coagulation liquid to cause solidification.

得られた中空糸膜の内径は530μm、膜厚は150μ
mで、Ij = 17m3/112−日・kg/cm2
.  β=1.0%及びR0=100%という優れた性
能を有していた。
The inner diameter of the obtained hollow fiber membrane was 530 μm, and the membrane thickness was 150 μm.
m, Ij = 17m3/112-day kg/cm2
.. It had excellent performance of β=1.0% and R0=100%.

尚、PVPホモポリマーの膜内含有率は10重量%(ブ
ロック共重合体中のPvPと合わせると14重量%)で
あった。
The content of PVP homopolymer in the film was 10% by weight (14% by weight when combined with PvP in the block copolymer).

比較例2 ブロック共重合体を加えないこと以外は実施例3と同様
の方法で中空糸膜を作製した。この膜のしp−47m3
/m2・日・kg/cm’、  β=10%及びR,=
95%であり、実施例3の膜より性能は劣っていた。尚
、PvPホモポリマーの膜内含有率は3重量%という低
い値であった。
Comparative Example 2 A hollow fiber membrane was produced in the same manner as in Example 3 except that the block copolymer was not added. This membrane p-47m3
/m2・day・kg/cm', β=10% and R,=
The performance was 95%, which was inferior to that of the membrane of Example 3. The content of PvP homopolymer in the film was as low as 3% by weight.

実施例4 ビニルピロリドン170gの代わりにアクリル酸60g
を用いること以外は実施例2と同様の方法でマクロマー
と重合し、反応混合物を水で再沈後、水で30時間ソッ
クスレー抽出した。これを真空乾燥し’H−NMRとG
PCで分析したところ、未反応のPES以外に下記の特
性を有するグラフト共重合体を25重量%含んでいた。
Example 4 60g of acrylic acid instead of 170g of vinylpyrrolidone
The macromer was polymerized in the same manner as in Example 2, except that the reaction mixture was reprecipitated with water, and then Soxhlet-extracted with water for 30 hours. This was vacuum dried and 'H-NMR and G
When analyzed by PC, it was found that in addition to unreacted PES, it contained 25% by weight of a graft copolymer having the following characteristics.

PE5−FAA ”グラフト共重合体:MW=770.
000 FAA含有率14重量% 幹ポリマー: PAA、 MW = 108.000枝
ポリマー: PES、 ’a = 15.000枝の数
=44 本 PAA :ポリアクリル酸 このグラフト共重合体を含むポリマー生成物25gを実
施例1のブロック共重合体25gの代わりに用いること
以外は実施例3と同様の方法でドープを調製し、中空糸
膜を作製した。得られた中空糸膜の内径は500 μm
、膜厚は150 μmで、lj−15m3/m” ・日
・kg/cm2.  β−0%及びR,=100%とい
う優れた性能を有していた。尚、PVPホモポリマーの
膜内含有率は10重量%、FAA成分は0.5重量%で
あった。
PE5-FAA” graft copolymer: MW=770.
000 FAA content 14% by weight Trunk polymer: PAA, MW = 108.000 Branch polymer: PES, 'a = 15.000 Number of branches = 44 PAA: polyacrylic acid 25 g of polymer product containing this graft copolymer A dope was prepared in the same manner as in Example 3, except that 25 g of the block copolymer of Example 1 was used, and a hollow fiber membrane was produced. The inner diameter of the hollow fiber membrane obtained was 500 μm.
, the film thickness was 150 μm, and had excellent performance of lj-15m3/m''・day・kg/cm2.β-0% and R,=100%. The percentage was 10% by weight, and the FAA component was 0.5% by weight.

実施例5 PVPホモポリマー25gの代わりにFAAホモポリマ
ー(重合度=709日本純薬社製)10gを用いること
以外は実施例3と同様の方法でドープを調製し、中空糸
膜を作製した。この膜の内径は550μm、膜厚は14
0 μmで、14 =20m3/m2・日・kg/cm
2.  β=0%及びR,= 100%という優れた性
能を有していた。尚、FAAホモポリマーの膜内含有率
は5重量%、PVP成分は4重量%であった。
Example 5 A dope was prepared in the same manner as in Example 3, except that 10 g of FAA homopolymer (polymerization degree = 709, manufactured by Nippon Pure Chemical Industries, Ltd.) was used instead of 25 g of PVP homopolymer, and a hollow fiber membrane was produced. The inner diameter of this membrane is 550 μm, and the thickness is 14
At 0 μm, 14 = 20 m3/m2・day・kg/cm
2. It had excellent performance with β=0% and R,=100%. The content of the FAA homopolymer in the film was 5% by weight, and the content of the PVP component was 4% by weight.

Claims (5)

【特許請求の範囲】[Claims] (1)疎水性芳香族重合体Aと親水性重合体Bとから成
る親水−疎水グラフト共重合体又はブロック共重合体を
親水性重合体C及びポリサルホン樹脂Dとともに含有す
る樹脂であって、樹脂中の親水性重合体成分がBとCを
合わせて全樹脂成分の80重量%以下、疎水性重合体成
分がAとDを合わせて全樹脂成分の20重量%以上であ
る変性芳香族樹脂から成ることを特徴とする変性分離膜
(1) A resin containing a hydrophilic-hydrophobic graft copolymer or a block copolymer consisting of a hydrophobic aromatic polymer A and a hydrophilic polymer B together with a hydrophilic polymer C and a polysulfone resin D, the resin From a modified aromatic resin in which the hydrophilic polymer component of B and C combined is 80% by weight or less of the total resin component, and the hydrophobic polymer component of A and D combined is 20% by weight or more of the total resin component. A modified separation membrane characterized by:
(2)変性芳香族樹脂の溶液から相変換法で製膜される
請求項1記載の変性分離膜。
(2) The modified separation membrane according to claim 1, which is produced by a phase conversion method from a solution of a modified aromatic resin.
(3)疎水性芳香族重合体Aが下記式( I )の反復単
位を有する単独重合体、又は式( I )の反復単位とと
もに下記の式(II)〜(IV)から選ばれる少なくとも1
種の反復単位を有する共重合体である請求項1記載の変
性分離膜。 ▲数式、化学式、表等があります▼・・・( I ) ▲数式、化学式、表等があります▼・・・(II) ▲数式、化学式、表等があります▼・・・(III) ▲数式、化学式、表等があります▼・・・(IV)
(3) The hydrophobic aromatic polymer A is a homopolymer having a repeating unit of the following formula (I), or a repeating unit of the formula (I) together with at least one member selected from the following formulas (II) to (IV).
The modified separation membrane according to claim 1, which is a copolymer having repeating units of various types. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(III) ▲Mathematical formulas , chemical formulas, tables, etc.▼...(IV)
(4)親水性重合体B、Cが各々下記の構造の1種又は
2種以上を親水性成分として有する請求項1記載の変性
分離膜。 ▲数式、化学式、表等があります▼ 〔ここでR_1は水素又はメチル基である。又R_2は ▲数式、化学式、表等があります▼ (R_3は炭素原子1ないし20個を有する脂肪族炭化
水素基。)、 ▲数式、化学式、表等があります▼ (Mは水素、又はカルボン酸イオンとイオン結合するア
ルカリ金属又は塩基性物質であ る。)、 ▲数式、化学式、表等があります▼ (R_4は炭素原子1ないし20個を有する脂肪族炭化
水素基である。)、 ▲数式、化学式、表等があります▼ (R_5、R_6は各々水素又は炭素原子1ないし20
個を有する脂肪族炭化水素基である。)、▲数式、化学
式、表等があります▼または▲数式、化学式、表等があ
ります▼ (nは0(原子価結合)〜10の整数。Mは水素、又は
スルホン酸イオンとイオン結合 するアルカリ金属又は塩基性物質である。)、▲数式、
化学式、表等があります▼ (R_1、R_8及びR_9は各々炭素原子1ないし2
0個を有する脂肪族炭化水素基であり、X^■はハロゲ
ンイオンである。)、 ▲数式、化学式、表等があります▼ (R_1_0は炭素原子1ないし20個を有する脂肪族
炭化水素基、nは4〜6の整数、X^■はハロゲンイオ
ンである。)、 ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼ (R_1_1は炭素原子1ないし20個を有する脂肪族
炭化水素基であり、X^■はハロゲンイオンである。) である。〕
(4) The modified separation membrane according to claim 1, wherein each of the hydrophilic polymers B and C has one or more of the following structures as a hydrophilic component. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [Here, R_1 is hydrogen or a methyl group. Also, R_2 has ▲ mathematical formulas, chemical formulas, tables, etc. ▼ (R_3 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms), ▲ ▲ has mathematical formulas, chemical formulas, tables, etc. ▼ (M is hydrogen or carboxylic acid It is an alkali metal or basic substance that forms an ionic bond with ions.), ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (R_4 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms.), ▲Mathical formulas, There are chemical formulas, tables, etc. ▼ (R_5 and R_6 each represent hydrogen or 1 to 20 carbon atoms.
It is an aliphatic hydrocarbon group having . ), ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. It is a metal or a basic substance.), ▲ Formula,
There are chemical formulas, tables, etc.▼ (R_1, R_8 and R_9 each represent 1 or 2 carbon atoms.
It is an aliphatic hydrocarbon group having 0 atoms, and X^■ is a halogen ion. ), ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R_1_0 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, n is an integer from 4 to 6, and X^■ is a halogen ion.), ▲ Formula There are , chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R_1_1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and X^■ is a halogen ion.) . ]
(5)ポリサルホン樹脂Dが、下記式( I )の反復単
位を有する単独重合体、又は式(II)〜(IV)から選ば
れる少なくとも1種の反復単位を式( I )反復単位と
ともに有する共重合体である請求項1記載の変性分離膜
。 ▲数式、化学式、表等があります▼・・・( I ) ▲数式、化学式、表等があります▼・・・(II) ▲数式、化学式、表等があります▼・・・(III) ▲数式、化学式、表等があります▼・・・(IV)
(5) The polysulfone resin D is a homopolymer having a repeating unit of the following formula (I), or a copolymer having at least one repeating unit selected from formulas (II) to (IV) together with the repeating unit of the formula (I). The modified separation membrane according to claim 1, which is a polymer. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(III) ▲Mathematical formulas , chemical formulas, tables, etc.▼...(IV)
JP14339888A 1988-06-10 1988-06-10 Modified separating membrane Pending JPH022862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14339888A JPH022862A (en) 1988-06-10 1988-06-10 Modified separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14339888A JPH022862A (en) 1988-06-10 1988-06-10 Modified separating membrane

Publications (1)

Publication Number Publication Date
JPH022862A true JPH022862A (en) 1990-01-08

Family

ID=15337839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14339888A Pending JPH022862A (en) 1988-06-10 1988-06-10 Modified separating membrane

Country Status (1)

Country Link
JP (1) JPH022862A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700902A (en) * 1995-07-27 1997-12-23 Circe Biomedical, Inc. Block copolymers
US5798437A (en) * 1996-07-29 1998-08-25 Circe Biomedical, Inc. Thermoplastic block copolymers
EP0840759A4 (en) * 1995-07-27 1998-10-07 Grace W R & Co Block copolymers
JP2010504189A (en) * 2006-09-22 2010-02-12 ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー Porous membrane and manufacturing method thereof
JP2012506772A (en) * 2008-10-28 2012-03-22 アーケマ・インコーポレイテッド Moisture flowable polymer membrane
US8939294B2 (en) 2010-03-31 2015-01-27 General Electric Company Block copolymer membranes and associated methods for making the same
JP2015163398A (en) * 2009-09-01 2015-09-10 東レ株式会社 Separation membrane and separation membrane module, and method of producing separation membrane and method of manufacturing separation membrane module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700902A (en) * 1995-07-27 1997-12-23 Circe Biomedical, Inc. Block copolymers
EP0840759A4 (en) * 1995-07-27 1998-10-07 Grace W R & Co Block copolymers
US5798437A (en) * 1996-07-29 1998-08-25 Circe Biomedical, Inc. Thermoplastic block copolymers
JP2010504189A (en) * 2006-09-22 2010-02-12 ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー Porous membrane and manufacturing method thereof
JP2012506772A (en) * 2008-10-28 2012-03-22 アーケマ・インコーポレイテッド Moisture flowable polymer membrane
US9707524B2 (en) 2008-10-28 2017-07-18 Arkema Inc. Water flux polymer membranes
JP2015163398A (en) * 2009-09-01 2015-09-10 東レ株式会社 Separation membrane and separation membrane module, and method of producing separation membrane and method of manufacturing separation membrane module
US8939294B2 (en) 2010-03-31 2015-01-27 General Electric Company Block copolymer membranes and associated methods for making the same

Similar Documents

Publication Publication Date Title
JP3851358B2 (en) POLYMER ELECTROLYTE AND METHOD FOR PREPARING THE SAME
EP0407665B1 (en) Affinity membranes having pendant groups and processes for the preparation and use thereof
KR20200034760A (en) Sulfonated polyaryl ether sulfones and membranes thereof
US5006287A (en) Affinity membranes having pendant hydroxy groups and processes for the preparation and use thereof
Teotia et al. Porosity and compatibility of novel polysulfone-/vitamin E-TPGS-grafted composite membrane
JPH02160026A (en) Hydrophilic separation membrane
JPH022862A (en) Modified separating membrane
JPH0628713B2 (en) Hydrophilized polysulfone membrane
JPH0757825B2 (en) Polysulfone resin porous membrane
JPS6238205A (en) Semi-permeable membrane for separation
US5006256A (en) Affinity membranes having pendant hydroxy groups and processes for the preparation and use thereof
JPH0751632B2 (en) Hydrophilized polyethylene sulfone membrane
JPS63258603A (en) Aromatic polymer membrane
JP3948993B2 (en) Polysulfone copolymer
JPS63258930A (en) Aromatic polymer
JPS62168503A (en) Separation membrane
US10752716B2 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
JPH0122009B2 (en)
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JP2613764B2 (en) Separation membrane
CN110869400A (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and use thereof
JPH05293345A (en) Semipermeable dual membrane
CN114849489B (en) Preparation method of hydrophilic polyvinylidene fluoride micro-filtration membrane
JP2885878B2 (en) Separation membrane
US5221482A (en) Polyparabanic acid membrane for selective separation