JP2713294B2 - Method for producing polysulfone-based resin semipermeable membrane - Google Patents

Method for producing polysulfone-based resin semipermeable membrane

Info

Publication number
JP2713294B2
JP2713294B2 JP8258574A JP25857496A JP2713294B2 JP 2713294 B2 JP2713294 B2 JP 2713294B2 JP 8258574 A JP8258574 A JP 8258574A JP 25857496 A JP25857496 A JP 25857496A JP 2713294 B2 JP2713294 B2 JP 2713294B2
Authority
JP
Japan
Prior art keywords
membrane
polysulfone
stock solution
based resin
polysulfone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8258574A
Other languages
Japanese (ja)
Other versions
JPH09103664A (en
Inventor
昌明 島垣
和実 田中
立男 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8258574A priority Critical patent/JP2713294B2/en
Publication of JPH09103664A publication Critical patent/JPH09103664A/en
Application granted granted Critical
Publication of JP2713294B2 publication Critical patent/JP2713294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 【0001】 【本発明の属する技術分野】本発明は、ポリスルホン系
樹脂半透膜の製造方法に関する。 【0002】 【従来の技術】従来、半透膜の素材としては、セルロー
スアセテート・ポリアクリロニトリル・ポリメタクリル
酸メチル・ポリアミド等多くの高分子化合物が用いられ
てきた。一方、ポリスルホン系樹脂は、元来エンジニア
リングプラスチックスとして使用されてきたが、その耐
熱安定性、耐酸・耐アルカリ性、そして生体適合性、耐
汚染性が良好であることから、半透膜素材として注目さ
れている。 【0003】ポリスルホン系樹脂を用いた半透膜を得る
方法として従来より例えば、ジャーナル・オブ・アプラ
イド・ポリマー・サイエンス(20巻、2377〜2394頁、19
76年)及び、(同21巻、1883〜1900頁、1977年)、特開
昭58−104940号公報等が提案されている。しか
し該樹脂は、分子間凝集力が強すぎて、表面の孔や貫通
すべき内部の孔を閉塞してしまうため孔形成の制御が困
難となる。このため、分画分子量が10万以下と小さく
かつ透水性も小さいものしか得られていない。一方、近
年、ポリスルホン系樹脂を用いた膜で、表面に大きな孔
をあける試みとして、次のような手段が提案されてい
る。 【0004】 異種ポリマー間のミクロ相分離を利用
する方法。(特公昭48−176号公報、特開昭54−
144456号公報、同57−50506号公報、同5
7−50507号公報、同57−50508号公報) 製膜後、抽出・溶出操作を有する方法。(特開昭5
4−26283号公報、同57−35906号公報、同
58−91822号公報) 製膜原液の準安定液体分散状態で製膜する方法。
(特開昭56−154051号公報、同59−5804
1号公報、同59−183761号公報、同59−18
9903号公報) 紡糸時に工夫をこらす方法(特開昭59−2280
16号公報) しかし、の方法ではポリマー間の凝固速度の違いを利
用しているのみで、分画分子量10万以上の大きな孔を
得るに至っていない。その上、大量にブレンドするた
め、ポリスルホン系樹脂の本来の良好な性能が失われや
すい。また、の方法は、ブレンドポリマーの抽出と無
機顆粒を溶出する大きく2つの方法に分類される。前者
においては、ポリエチレングリコール、ポリビニルピロ
リドンが主たるポリマーであるが、十分な孔径を得るこ
とや抽出操作が困難であった。後者の例では、前記特開
昭58−91822号公報で、シリカパウダーを混入し
て製膜後、アルカリを用いて溶出させ、0.05μm 以
上の大きな孔をあけるのに成功しているが、この製造方
法では同一製膜原液から他の孔径分布をとる膜を製造す
ることはできない。の方法は製膜原液にポリスルホン
系樹脂の非溶媒もしくは膨潤剤を大量に混合し、該製膜
原液が相分離する直前のところで製膜するものである。
かかる方法では、凝固浴の温度効果を有利に利用できな
い欠点がある。の方法は、製膜時に高湿度の風を吹き
つけることで、該表面での孔径拡大を実現しているが、
該方法では片面にしかその効果はなく、特に中空糸膜に
至っては、分画分子量は小さい範囲のものしか得られな
い。 【0005】これら従来のポリスルホン系樹脂半透膜の
製造方法は、その製膜原液が低温で相分離する特徴を有
するものである。このため製膜時に凝固浴中の非溶媒等
と膜中の良溶媒との交換速度を上げようとして凝固浴温
度を上げても製膜原液が均一系の方へ平衡移動するた
め、表面に緻密層ができやすいという欠点と、同じ原液
から透水性・分画分子量を広範囲に持つ種々の半透膜を
製造し得ないという欠点を有するものであった。 【0006】 【発明が解決しようとする課題】本発明者らは、上記欠
点を解析し、鋭意検討した結果本発明に到達した。特
に、透水性、分画分子量を広範囲にとることができ、か
つ、目づまりや汚れがおこりにくい、ポリスルホン系樹
脂半透膜の製造方法を提供することを目的とする。 【0007】 【課題を解決するための手段】本発明は次の構成を有す
る。すなわち、「ポリスルホン系樹脂と親水性高分子を
混和溶解した溶液を製膜原液として用い、成形した膜を
熱架橋することを特徴とするポリスルホン系樹脂半透膜
の製造方法。」 【0008】 【発明の実施の形態】本発明においてポリスルホン系樹
脂半透膜を製造するために用いる製膜原液は、基本的に
はポリスルホン系樹脂、親水性高分子および溶媒からな
る3成分系で構成される。さらに、成膜原液中に、添加
剤を加えることも好ましい。 【0009】ここで言うポリスルホン系樹脂は、通常式
(1)、または(2) 【化1】 の繰り返し単位からなるものであるが、官能基を含んで
いたり、アルキル系のものであってもよく、特に限定す
るものではない。 【0010】親水性高分子は、ポリスルホン系樹脂と相
溶性があり、かつ親水性を持つ高分子である。ポリビニ
ルピロリドンが一番良く、他に変性ポリビニルピロリド
ン、共重合ポリビニルピロリドン、ポリ酢酸ビニル、ポ
リエチレングリコール等が挙げられるが、これらに限定
されるものではない。 【0011】溶媒は、ポリスルホン系樹脂及び親水性高
分子を共に溶解する溶媒である。ジメチルスルホキシ
ド、ジメチルアセトアミド、ジメチルホルムアミド、N
―メチル―2―ピロリドン、ジオキサン等、多種の溶媒
が用いられるが、特にジメチルアセトアミド、ジメチル
スルホキシド、ジメチルホルムアミド、N―メチル―2
―ピロリドンが望ましい。 【0012】添加剤は、溶媒と相溶性を持ち、親水性高
分子の良溶媒となり、かつ、ポリスルホン系樹脂の非溶
媒又は膨潤剤となるものであれば何でも良く、例えば、
水、メタノール、エタノール、イソプロパノール、ヘキ
サノール、1,4―ブタンジオール等がある。生産コス
トを考えると水が最も望ましい。添加剤は、ポリスルホ
ン系樹脂に対する凝固性を考え合わせた上で選択すれば
良い。 【0013】これらのおのおのの組合せは任意であり、
上記の性質をもつ組合せを考えるのは、同業者にとって
容易なことである。また、溶媒・添加剤は、2種類以上
の化合物の混合系でも良い。 【0014】該製膜原液の組成として、ポリスルホン系
樹脂は、製膜可能でかつ膜としての特性を有する濃度範
囲であれば良く、5〜50重量%である。高い透水性、
大きな分画分子量を得るためにはポリマー濃度は下げる
べきで、この場合望ましくは5〜20重量%である。5
重量%未満では、製膜原液の十分な粘度を得ることがで
きず、膜を形成できなくなる。また、50重量%を越え
ると貫通孔を形成しにくくなる。 【0015】親水性高分子は、特にポリビニルピロリド
ンの場合、GAF社から分子量36万、16万、4万、
1万のものが市販されており、これを使うのが便利であ
るが、もちろんそれ以外の分子量のものを使用してもか
まわない。ただし、親水性高分子の添加の理由の1つと
して増粘効果もあるため、添加量は高分子量のものを用
いるほど少量で良く、かつまた相分離現象の温度依存性
の逆転も顕著になるため透水性の高い膜を得るためには
有利である。ポリビニルピロリドンの添加量は、1〜2
0重量%、特に3〜10重量%が望ましいが、用いるポ
リビニルピロリドンの分子量に左右される。一般に添加
量が少なすぎる場合、分子量が低すぎる場合は相分離の
逆転現象は得難く、ポリマー濃度が高く、ポリマー分子
量が大きすぎると、製膜後の洗浄が困難となる。それ
故、分子量の異なるものを混合して役割分担し用いるの
も一つの方法となる。 【0016】以上2つの高分子を溶媒に混合溶解する。
ここへ、添加剤を添加することが好ましいが、特に水の
場合、ポリスルホン系樹脂にとって凝固性が高いため、
7重量%以下、特に1〜5重量%が望ましい。凝固性が
小さな添加剤を用いるときは添加量が多くなることは容
易に推測される。 【0017】本発明では、この第4成分が、添加される
ため、親水性高分子の量を少なくすることができる。添
加剤の濃度が高くなるにつれ、製膜原液の相分離温度は
低下してくる。相分離温度の設定は、求める膜の透水性
や分画分子量により髄意にすればよく、例えば、高い透
水性・分画分子量を得るためには製膜時に相分離を強力
に促進するため低い相分離温度を設定すれば良い。ま
た、凝固浴の温度を高くしても同様の効果は得られる。
本発明で用いる製膜原液は、低温で均一系となるため、
原液安定性も良い。 【0018】以上の条件のもとでポリスルホン系樹脂半
透膜を得る。製膜操作は、公知技術を用いれば良い。平
膜については、該製膜原液を平坦な基板上に流展し、そ
の後凝固浴中に浸漬する。中空糸膜については、中空形
態を保つため、注入液を用いる。注入液は、製膜原液に
対して凝固性の高いものより、低いものを用いた方が紡
糸安定性は良いが、凝固浴温度・相分離温度・口金温度
との相関で中空糸膜内壁の平滑性が変化するので、適宜
最良組成を決めれば良い。ポリスルホン系樹脂に不活性
なデカン・オクタン・ウンデカン等の炭化水素を用いて
も良い。また気体を注入して中空形態を保持させてもよ
い。乾式長は0.1〜20cmであり、特に0.5〜5cm
が紡糸安定性も良く、さらに望ましい。同一組成、同一
条件で製膜した場合、中空糸膜より平膜の方が表面に開
孔する孔の直径は大きくなる傾向がある。 【0019】かかる方法で得たポリスルホン系樹脂半透
膜は、膜中に親水性高分子を残存させることによって、
水濡れ性が改善され、熱により架橋されることにより、
水に対して不溶化処理が施されてなるものである。 【0020】 【実施例】以下の実施例によって本発明をさらに詳細な
説明する。 【0021】以下、用いた測定法は次のとおりである。 【0022】(1) 透水性 中空糸膜の場合は、両端に環流液用の孔を備えたガラス
製のケースに該中空糸膜を挿入し、市販のポッティング
剤を用いて小型モジュールを作製し、37℃に保って中
空糸内側に水圧をかけ膜を通して外側へ透過する一定時
間の水の量と有効膜面積および膜間圧力差から算出する
方法で透水性能を測定した。 【0023】平膜の場合は、撹拌円筒セルを用いて同様
にして測定した。 【0024】実施例1 ポリスルホン(ユーデルP―3500)15部、ポリビ
ニルピロリドン(K90)8部、1,4―ブタンジオー
ル7部をジメチルアセトアミド70部に加え、加熱溶解
した。この製膜原液は、70℃で相分離するように1,
4―ブタンジオールをさらに微量添加して調製した。調
製された原液を外径1.0mm、内径0.7mmの環状オリ
フィスからなる口金孔内から注入液としてジメチルアセ
トアミド/水=85/15を注入しつつ吐出させ、口金
面から1.0cm下方に設置した51℃に保温した水を有
する凝固浴に通過させ、通常の方法で水洗後カセにまき
取り、中空糸条膜を得た。口金は60℃に保温した。得
られた中空糸膜の、透水性は1320ml/m2 ・hr・mm
Hgの性能を示した。 【0025】更に、この中空糸膜を175℃5時間処理
しポリビニルピロリドンを熱架橋したところ、透水性は
15800ml/ m2 ・hr・mmHgになった。水洗後溶出物
試験を行ったところ、溶出物はほとんどなかった。 【0026】比較例1 ポリスルホン12部、ポリビニルピロリドン6部をN―
メチルピロリドン82部に加え、加熱溶解した。この原
液を50℃に保温し、実施例1と同様にして製膜した。
透水性は600ml/m2 ・hr・mmHgと低いものであっ
た。 【0027】比較例2 比較例1の原液で、原液と室温に保って同様に製膜し
た。透水性は250ml/m2 ・hr・mmHgであった。 【0028】比較例3 ポリスルホン15部、ジメチルアセトアミド83部に水
2部を加え、加熱溶解し比較例1と同様にして製膜した
が、透水性は25ml/m2 ・hr・mmHgと低いものしか得
られなかった。 【0029】比較例4 比較例1〜2の膜に、ポリビニルピロリドンの抽出、熱
架橋処理と施すと、透水性はほとんど0となった。 【0030】 【発明の効果】本発明はポリスルホン系樹脂半透膜の、
透水性、分画分子量を広範囲にとることができる。原液
条件、製膜条件を適切に選ぶことにより、複合膜の支持
体も製造可能である。かつ、得られるポリスルホン系樹
脂半透膜は、目づまり、汚れに対して強いため、逆浸透
膜から、高性能限外濾過膜(あるいは精密濾過膜)ま
で、一般産業用途及びメディカル分野の血液成分分離膜
として使用することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semi-permeable polysulfone resin membrane. Hitherto, as a material of a semipermeable membrane, many high molecular compounds such as cellulose acetate, polyacrylonitrile, polymethyl methacrylate, and polyamide have been used. On the other hand, polysulfone resins have been used as engineering plastics from the beginning, but because of their excellent heat stability, acid / alkali resistance, biocompatibility and stain resistance, they have attracted attention as semipermeable membrane materials. Have been. [0003] As a method for obtaining a semipermeable membrane using a polysulfone-based resin, for example, the Journal of Applied Polymer Science (20, 2377-2394, 19
(1976) and (Id. 21, 1883-1900, 1977), and JP-A-58-104940. However, since the resin has too strong intermolecular cohesion, the pores on the surface and the pores to be penetrated are closed, so that it is difficult to control the formation of pores. For this reason, only those having a small molecular weight cut-off of 100,000 or less and low water permeability are obtained. On the other hand, in recent years, the following means have been proposed as an attempt to form large holes in the surface of a membrane using a polysulfone-based resin. [0004] A method utilizing microphase separation between different polymers. (JP-B-48-176, JP-A-54-176)
Nos. 144456, 57-50506, 5
JP-A-7-50507 and JP-A-57-50508) A method having an extraction / elution operation after film formation. (Japanese Patent Laid-Open No. 5
JP-A-4-26283, JP-A-57-35906 and JP-A-58-91822) A method of forming a film in a metastable liquid dispersion state of a film forming stock solution.
(JP-A-56-154051, JP-A-59-5804)
Nos. 1 and 59-183761 and 59-18
Japanese Patent Application Laid-Open No. 9903/1990)
However, this method only utilizes the difference in coagulation rate between polymers, and does not lead to obtaining large pores having a molecular weight cut off of 100,000 or more. In addition, due to the large amount of blending, the original good performance of the polysulfone-based resin tends to be lost. Further, the methods are roughly classified into two methods for extracting a blend polymer and eluting inorganic granules. In the former, polyethylene glycol and polyvinylpyrrolidone are the main polymers, but it has been difficult to obtain a sufficient pore size and extract operation. In the latter example, Japanese Patent Application Laid-Open No. 58-91822 describes that after forming a film by mixing silica powder and eluting with an alkali, a large hole of 0.05 μm or more was successfully formed. In this production method, it is not possible to produce a membrane having another pore size distribution from the same membrane-forming stock solution. Is a method in which a non-solvent of a polysulfone resin or a swelling agent is mixed in a large amount with a film forming stock solution, and a film is formed immediately before the film forming stock solution undergoes phase separation.
Such a method has the disadvantage that the temperature effect of the coagulation bath cannot be advantageously used. The method of the above, by blowing a high-humidity wind at the time of film formation, to realize a pore diameter expansion on the surface,
This method has an effect only on one side, and particularly in the case of a hollow fiber membrane, a molecular weight cutoff in a small range can be obtained. [0005] These conventional methods for producing a polysulfone-based resin semipermeable membrane are characterized in that the membrane forming stock solution undergoes phase separation at a low temperature. For this reason, even when the temperature of the coagulation bath is raised to increase the exchange rate between the non-solvent in the coagulation bath and the good solvent in the film during the film formation, the film forming stock solution moves equilibrium toward the homogeneous system, so the surface is dense. It has the disadvantage that a layer is easily formed, and that various semipermeable membranes having a wide range of water permeability and molecular weight cut-off cannot be produced from the same stock solution. [0006] The present inventors have analyzed the above-mentioned drawbacks and made intensive studies to arrive at the present invention. In particular, it is an object of the present invention to provide a method for producing a polysulfone-based resin semipermeable membrane which can have a wide range of water permeability and molecular weight cut off and is less likely to be clogged or stained. [0007] The present invention has the following configuration. That is, "a method for producing a semi-permeable polysulfone resin membrane characterized by using a solution obtained by mixing and dissolving a polysulfone resin and a hydrophilic polymer as a stock solution, and thermally cross-linking the formed membrane." BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a stock solution for producing a semi-permeable polysulfone resin membrane is basically composed of a three-component system comprising a polysulfone resin, a hydrophilic polymer and a solvent. Further, it is preferable to add an additive to the film forming stock solution. The polysulfone-based resin referred to here is usually represented by the formula (1) or (2): Is a repeating unit of, but may contain a functional group or may be of an alkyl type, and is not particularly limited. The hydrophilic polymer is a polymer that is compatible with the polysulfone resin and has hydrophilicity. Polyvinylpyrrolidone is the best, and modified polyvinylpyrrolidone, copolymerized polyvinylpyrrolidone, polyvinyl acetate, polyethylene glycol and the like are also exemplified, but not limited thereto. The solvent is a solvent that dissolves both the polysulfone resin and the hydrophilic polymer. Dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N
Various solvents such as -methyl-2-pyrrolidone, dioxane and the like are used. Particularly, dimethylacetamide, dimethylsulfoxide, dimethylformamide, N-methyl-2
-Pyrrolidone is preferred. The additive may be any as long as it has compatibility with the solvent, is a good solvent for the hydrophilic polymer, and is a non-solvent or swelling agent for the polysulfone resin.
Water, methanol, ethanol, isopropanol, hexanol, 1,4-butanediol and the like. Water is most desirable in view of production costs. The additive may be selected after considering the coagulability of the polysulfone-based resin. The combination of each of these is optional,
It is easy for those skilled in the art to consider combinations having the above properties. The solvent / additive may be a mixture of two or more compounds. The composition of the membrane-forming stock solution may be a polysulfone-based resin in a concentration range capable of forming a film and having properties as a film, and is 5 to 50% by weight. High water permeability,
In order to obtain a high molecular weight cut-off, the polymer concentration should be reduced, in this case preferably from 5 to 20% by weight. 5
If the amount is less than 10% by weight, a sufficient viscosity of the stock solution cannot be obtained, and a film cannot be formed. On the other hand, if it exceeds 50% by weight, it becomes difficult to form a through hole. The hydrophilic polymer, especially polyvinylpyrrolidone, has a molecular weight of 360,000, 160,000 or 40,000 from GAF.
Although 10,000 types are commercially available, it is convenient to use them, but of course, those having other molecular weights may be used. However, one of the reasons for the addition of the hydrophilic polymer is a thickening effect. Therefore, the amount of addition is small as the amount of the high molecular weight is used, and the reversal of the temperature dependence of the phase separation phenomenon becomes remarkable. Therefore, it is advantageous to obtain a membrane having high water permeability. The amount of polyvinylpyrrolidone added is 1-2.
0% by weight, especially 3 to 10% by weight is desirable, but depends on the molecular weight of the polyvinylpyrrolidone used. In general, when the added amount is too small or the molecular weight is too low, the reversal phenomenon of the phase separation is difficult to obtain, and when the polymer concentration is high and the polymer molecular weight is too large, it is difficult to wash after film formation. For this reason, one method is to mix and use ones having different molecular weights and share roles. The above two polymers are mixed and dissolved in a solvent.
Here, it is preferable to add an additive, particularly in the case of water, since the coagulability of the polysulfone resin is high,
7% by weight or less, particularly 1 to 5% by weight is desirable. When an additive having a small coagulability is used, it is easily presumed that the amount of the additive increases. In the present invention, since the fourth component is added, the amount of the hydrophilic polymer can be reduced. As the concentration of the additive increases, the phase separation temperature of the film forming stock solution decreases. The phase separation temperature may be set according to the required water permeability and molecular weight cut-off of the membrane.For example, in order to obtain high water permeability and molecular weight cut-off, a low value is required to strongly promote phase separation during film formation. What is necessary is just to set the phase separation temperature. The same effect can be obtained even if the temperature of the coagulation bath is increased.
The stock solution used in the present invention is homogeneous at low temperature,
Stock solution stability is also good. A polysulfone-based resin semipermeable membrane is obtained under the above conditions. A known technique may be used for the film forming operation. For a flat membrane, the stock solution is spread on a flat substrate and then immersed in a coagulation bath. For the hollow fiber membrane, an injection liquid is used to maintain the hollow form. The spinning stability is better when the injection liquid is low than the one with high coagulability with respect to the film forming stock solution, but the inner wall of the hollow fiber membrane is correlated with the coagulation bath temperature, phase separation temperature, and die temperature. Since the smoothness changes, the best composition may be determined as appropriate. Hydrocarbons, such as decane, octane, and undecane, which are inert to the polysulfone resin may be used. Further, a hollow form may be maintained by injecting a gas. Dry length is 0.1-20cm, especially 0.5-5cm
However, spinning stability is also good and more desirable. When the membrane is formed under the same composition and under the same conditions, the diameter of the hole formed in the flat membrane tends to be larger than that of the hollow fiber membrane. The semi-permeable polysulfone resin membrane obtained by such a method can be obtained by leaving a hydrophilic polymer in the membrane.
By improving water wettability and being crosslinked by heat,
Water is insolubilized. The present invention will be described in more detail with reference to the following examples. Hereinafter, the measuring method used is as follows. (1) In the case of a water-permeable hollow fiber membrane, the hollow fiber membrane is inserted into a glass case having holes for reflux liquid at both ends, and a small module is manufactured using a commercially available potting agent. The water permeation performance was measured by applying a water pressure to the inside of the hollow fiber while maintaining the temperature at 37 ° C., and calculating from the amount of water permeating through the membrane for a certain period of time and the effective membrane area and the transmembrane pressure difference. In the case of a flat membrane, the measurement was carried out in the same manner using a stirred cylindrical cell. Example 1 15 parts of polysulfone (Udel P-3500), 8 parts of polyvinylpyrrolidone (K90) and 7 parts of 1,4-butanediol were added to 70 parts of dimethylacetamide and dissolved by heating. This membrane-forming stock solution was subjected to 1,
It was prepared by further adding a trace amount of 4-butanediol. The prepared undiluted solution is discharged while injecting dimethylacetamide / water = 85/15 as an injecting liquid from a die hole formed of a circular orifice having an outer diameter of 1.0 mm and an inner diameter of 0.7 mm, and is discharged 1.0 cm below the die surface. The mixture was passed through a coagulation bath having water maintained at 51 ° C., washed with water in a usual manner, and then cut into a scab to obtain a hollow fiber membrane. The base was kept at 60 ° C. The water permeability of the obtained hollow fiber membrane is 1320 ml / m 2 · hr · mm
The performance of Hg was shown. Further, when the hollow fiber membrane was treated at 175 ° C. for 5 hours to thermally crosslink polyvinylpyrrolidone, the water permeability became 15,800 ml / m 2 · hr · mmHg. When the eluate test was conducted after washing with water, almost no eluate was found. Comparative Example 1 12 parts of polysulfone and 6 parts of polyvinylpyrrolidone were converted to N-
The mixture was dissolved in 82 parts of methylpyrrolidone by heating. This stock solution was kept at 50 ° C., and a film was formed in the same manner as in Example 1.
The water permeability was as low as 600 ml / m 2 · hr · mmHg. Comparative Example 2 A film was formed using the stock solution of Comparative Example 1 while keeping the stock solution at room temperature. The water permeability was 250 ml / m 2 · hr · mmHg. Comparative Example 3 Water was added to 15 parts of polysulfone and 83 parts of dimethylacetamide, and 2 parts of water was added thereto. The mixture was heated and dissolved to form a film in the same manner as in Comparative Example 1, but the water permeability was as low as 25 ml / m 2 · hr · mmHg. I could only get it. Comparative Example 4 When the membranes of Comparative Examples 1 and 2 were subjected to extraction of polyvinylpyrrolidone and thermal crosslinking, the water permeability was almost zero. The present invention relates to a polysulfone resin semipermeable membrane,
A wide range of water permeability and molecular weight cutoff can be obtained. By appropriately selecting stock solution conditions and film forming conditions, a support for a composite membrane can also be produced. In addition, since the resulting polysulfone-based resin semipermeable membrane is resistant to clogging and dirt, blood components in general industrial use and medical fields, from reverse osmosis membranes to high-performance ultrafiltration membranes (or microfiltration membranes). It can be used as a separation membrane.

Claims (1)

(57)【特許請求の範囲】 1.ポリスルホン系樹脂と親水性高分子を混和溶解した
溶液を製膜原液として用い、成形した膜を熱架橋するこ
とを特徴とするポリスルホン系樹脂半透膜の製造方法。 2.親水性高分子が、ポリビニルピロリドンである請求
項1記載のポリスルホン系樹脂半透膜の製造方法。 3.ポリスルホン系樹脂と親水性高分子を混和溶解した
溶液に該ポリスルホン系樹脂に対して非溶媒もしくは膨
潤剤なる添加剤を加えた系を製膜原液として用いること
を特徴とする請求項1または2記載のポリスルホン系樹
脂半透膜の製造方法。
(57) [Claims] A method for producing a semi-permeable polysulfone resin membrane, comprising: using a solution in which a polysulfone resin and a hydrophilic polymer are mixed and dissolved as a stock solution, and thermally crosslinking the formed membrane. 2. 2. The method according to claim 1, wherein the hydrophilic polymer is polyvinylpyrrolidone. 3. 3. A film-forming stock solution comprising a solution obtained by mixing and dissolving a polysulfone resin and a hydrophilic polymer with an additive such as a non-solvent or a swelling agent for the polysulfone resin. A method for producing a semi-permeable polysulfone resin membrane.
JP8258574A 1996-09-30 1996-09-30 Method for producing polysulfone-based resin semipermeable membrane Expired - Lifetime JP2713294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8258574A JP2713294B2 (en) 1996-09-30 1996-09-30 Method for producing polysulfone-based resin semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8258574A JP2713294B2 (en) 1996-09-30 1996-09-30 Method for producing polysulfone-based resin semipermeable membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60080371A Division JPH0675667B2 (en) 1985-04-17 1985-04-17 Method for producing semi-permeable membrane of polysulfone resin

Publications (2)

Publication Number Publication Date
JPH09103664A JPH09103664A (en) 1997-04-22
JP2713294B2 true JP2713294B2 (en) 1998-02-16

Family

ID=17322147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8258574A Expired - Lifetime JP2713294B2 (en) 1996-09-30 1996-09-30 Method for producing polysulfone-based resin semipermeable membrane

Country Status (1)

Country Link
JP (1) JP2713294B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434565B1 (en) * 2001-01-12 2004-06-05 주식회사 코오롱 A polysulfone-based hollow fiber membrane with excellent durability for steam, and a process of preparing for the same
KR100434564B1 (en) * 2001-01-12 2004-06-05 주식회사 코오롱 A polysulfone-based hollow fiber membrane with excellent durability for steam, and a process of preparing for the same
JP3642065B1 (en) 2004-03-22 2005-04-27 東洋紡績株式会社 Permselective separation membrane and method for producing a selectively permeable separation membrane
CN102764596B (en) * 2012-07-17 2014-05-14 西安建筑科技大学 Preparation method of hydrophilic ultra-filtration membrane
JP6197649B2 (en) 2012-09-26 2017-09-20 東レ株式会社 Composite semipermeable membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106243A (en) * 1979-02-07 1980-08-14 Nitto Electric Ind Co Ltd Preparation of microporous polymer membrane
JPS5616187A (en) * 1979-07-18 1981-02-16 Hitachi Ltd Display unit

Also Published As

Publication number Publication date
JPH09103664A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
JPH0218695B2 (en)
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
KR20140138651A (en) Complex semi-permeable membrane
EP1080777A1 (en) Ultrafiltration membrane and method for producing the same, dope composition used for the same
JPH0711019A (en) Semipermeable membrane of homogeneously miscible polymer alloy
JPH0757825B2 (en) Polysulfone resin porous membrane
JP2010082573A (en) Porous film and method for manufacturing the same
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
JPH0675667B2 (en) Method for producing semi-permeable membrane of polysulfone resin
JPS6238205A (en) Semi-permeable membrane for separation
CN105879696A (en) High-hydrophilic internal pressure type polysulfone/sulfonate polysulfone hollow fiber ultrafiltration membrane and preparation method thereof
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JPH053331B2 (en)
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JP2505428B2 (en) Low-temperature dissolving stock solution and method for producing the same
JPH04227824A (en) Hydrophilic membrane and its manufacture
EP3500357B1 (en) Method for the production of positively charged membranes
JPH06339620A (en) Method for treating polysulfone resin semipermeable membrane
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
JPS6399325A (en) Hollow yarn membrane of polysulfone resin and production thereof
KR0177273B1 (en) Sponge-like polysulfone hollow fiber membrane with active layer and manufacturing method thereof
KR100200041B1 (en) Sponge-like polysulphone hollow fibre membrane having active layer and manufacturing method thereof
JPS6329562B2 (en)
KR100200040B1 (en) Sponge-like polysulphone hollow fibre membrane and manufacturing method thereof