JPS6238205A - Semi-permeable membrane for separation - Google Patents

Semi-permeable membrane for separation

Info

Publication number
JPS6238205A
JPS6238205A JP60177069A JP17706985A JPS6238205A JP S6238205 A JPS6238205 A JP S6238205A JP 60177069 A JP60177069 A JP 60177069A JP 17706985 A JP17706985 A JP 17706985A JP S6238205 A JPS6238205 A JP S6238205A
Authority
JP
Japan
Prior art keywords
membrane
separation
hydrophilic
high polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60177069A
Other languages
Japanese (ja)
Other versions
JPH0554372B2 (en
Inventor
Makoto Tamada
玉田 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP60177069A priority Critical patent/JPS6238205A/en
Publication of JPS6238205A publication Critical patent/JPS6238205A/en
Publication of JPH0554372B2 publication Critical patent/JPH0554372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes

Abstract

PURPOSE:To produce a semi-permeable membrane for separation, hydrophilic for a long time, by making only the fine layer of membrane face asymmetric structure consisting of mixture of hydrophobic high polymer substance and hydrophilic high polymer substance treated to be insoluble. CONSTITUTION:The dope solution, in which such hydrophilic high polymers such as aromatic polysulfone, polyvinyl pyrrolidone and the like are solved with 2-pyrrolidone and the like, is flow-stretched over a nonwoven fabric, dipped in water to produce an asymmetric structure membrane and then dipped in hot water to produce a precursor membrane as desolvation agent. Said mem brane is then dipped in the solution of ammonium persulfate and the like and polyvinyl pyrrolidone is treated to be insoluble. THrough said process, a semi- permeable membrane for separation, the surface of which is a mixture of hydro phobic high polymer and insoluble hydrophilic high polymer and the backside made of porous bed of hydrophobic high polymer, is produced.

Description

【発明の詳細な説明】 (技術の背景) 本発明は新規な構造を有する非対称分離用半透膜に関す
るものである。近年、半透膜を用いた分離技術である逆
浸透法や限外−過法は各種の分野において実用化されて
おり、その多様な用途に夫々適する素材から作られた半
透膜が上布されている。特に限外−過法に用いられる半
透膜の材料としてよく知られているものにポリアクリロ
ニトリル系、セルロース系、ポリスルホン系などがある
DETAILED DESCRIPTION OF THE INVENTION (Technical Background) The present invention relates to a semipermeable membrane for asymmetric separation having a novel structure. In recent years, reverse osmosis and ultrafiltration methods, which are separation techniques using semipermeable membranes, have been put into practical use in various fields. has been done. Particularly, well-known materials for semipermeable membranes used in the ultraviolet filtration method include polyacrylonitrile, cellulose, and polysulfone.

これらの膜素材の中で芳香族ポリスルホン系の膜は機械
的強度が大きく、耐熱性、耐薬品性が優れているものと
して注目されてさている。
Among these membrane materials, aromatic polysulfone-based membranes are attracting attention as they have high mechanical strength and excellent heat resistance and chemical resistance.

(従来技術およびその欠点) しかしながら芳香族ポリスルホン系樹脂は親水性が低く
、水に濡れにくい素材であるために、これを素材とした
分離用半透膜は親水性素材から成る分離用半透膜に比べ
て著しく透水速度が低く、f過動率が悪い。
(Prior art and its drawbacks) However, aromatic polysulfone resin has low hydrophilicity and is a material that is difficult to wet with water. The water permeation rate is significantly lower than that of , and the f-perturbation rate is poor.

そこでこれ筐で芳香族ポリスルホンの分離膜の透水性能
を向上させるべく種々の試みがなされて来た。
Therefore, various attempts have been made to improve the water permeability of aromatic polysulfone separation membranes in this case.

たとえば特開昭58−104940では分子量10万以
上のポリビニルピロリドンを含有するポリスルホン系分
離膜とその製造方法がある。しかしながら10万以上の
分子量を有する親水性ポリマーを製膜用溶液(ドープと
呼ぶ)に添加するこの方法においては、ドープのポリマ
ー密度を増大させることになり、このようなドープから
製膜されたポリスルホン系分離膜は添加された親水性高
分子が膜全体中にそのまま残存しており、その後の使用
においても除去されないため著しく緻密す構造となって
透水速度はかえって低下してし1つ。
For example, JP-A-58-104940 discloses a polysulfone separation membrane containing polyvinylpyrrolidone having a molecular weight of 100,000 or more and a method for producing the same. However, in this method of adding a hydrophilic polymer having a molecular weight of 100,000 or more to a film-forming solution (called a dope), the polymer density of the dope increases, and the polysulfone film formed from such a dope increases. In system separation membranes, the added hydrophilic polymer remains in the entire membrane and is not removed even during subsequent use, resulting in an extremely dense structure that actually reduces the water permeation rate.

一方、オリゴマー程度の分子量を有するポリエチレング
リコールをポリスルホン溶液に添加してドープとして用
いる方法が特開昭54−26283に開示されている。
On the other hand, JP-A-54-26283 discloses a method in which polyethylene glycol having a molecular weight comparable to that of an oligomer is added to a polysulfone solution and used as a dope.

しかしながらこの方法では製膜の凝固浴として水を用い
ており、オリゴマー程度のポリエチレングリコールでは
膜中に残存することなくすべて水中に溶出してし1い、
実質的にポリスルホン膜の親水性は高められず、著しい
透水速度の向上は望めない。
However, this method uses water as a coagulation bath for film formation, and oligomer-level polyethylene glycol does not remain in the film and completely dissolves into the water.
The hydrophilicity of the polysulfone membrane is not substantially increased, and no significant improvement in water permeation rate can be expected.

筐たジャーナルオプアプライドボリマーサイエンス20
巻(1976) 2377〜2394には分子!1万〜
4万のポリビニルピロリドンを親水性高分子として製膜
用ドープ中に多量に含有させて中空繊維膜の可紡性の改
良を企図した報告がなされているが、この場合は膜表面
には緻密層ができず、本発明のような非対称構造にはt
らない。
Keita Journal Op Applied Polymer Science 20
Volume (1976) 2377-2394 contains molecules! 10,000~
There has been a report that attempts to improve the spinnability of hollow fiber membranes by incorporating a large amount of polyvinylpyrrolidone as a hydrophilic polymer into a membrane-forming dope, but in this case, a dense layer was formed on the membrane surface. t
No.

(本発明の構成) 本発明者らは上記のよつな問題を解消してr過動率がよ
く、しかも透水速度の大きい疎水性高分子物質を主体と
する非対称構造を有する分離用生膜について鋭意検討し
た結果、分離用半透膜の膜厚方向において、緻密層側の
膜表面から5μm以内に親水性高分子が存在し、かつ5
μmから裏面1ではこれが存在しないような新規な構造
を有する非対称分離膜を発明した。
(Structure of the present invention) The present inventors solved the above-mentioned problems and developed a biomembrane for separation having an asymmetric structure mainly composed of a hydrophobic polymer substance with good r-permeability and high water permeation rate. As a result of intensive studies, we found that hydrophilic polymers exist within 5 μm from the membrane surface on the dense layer side in the membrane thickness direction of the semipermeable membrane for separation, and
We have invented an asymmetric separation membrane with a novel structure in which this does not exist on the back surface 1 from μm.

すなわち本発明は「表面が緻密層、裏面が多孔層である
非対称構造を有する疎水性高分子物質を主体とする分離
用半透膜であって、緻密層側だけが該疎水性高分子物質
と不溶化処理された親水性高分子物質との混合物からな
ることを特徴とする分離用半透膜。」である。
In other words, the present invention is a semipermeable separation membrane mainly composed of a hydrophobic polymer substance having an asymmetric structure with a dense layer on the surface and a porous layer on the back side, in which only the dense layer side is composed of the hydrophobic polymer substance. A semipermeable membrane for separation comprising a mixture with an insolubilized hydrophilic polymer substance.

本発明でい9疎水性高分子としては下記式(1ン〜(r
l)の構造を有する芳香族ポリスルホン系高分子が代表
的なものである。
In the present invention, the hydrophobic polymer has the following formula (1-(r)
An aromatic polysulfone polymer having the structure l) is representative.

+0+5O7−・・・(1) CR2 (x)0−@=S o、−@)−0−・・−([1)本
発明に用いられる不溶化処理される水溶性高分子として
はポリビニルピロリドンが代表的なものであり、ビニル
ピロリドンを重合して得られる水溶性高分子で、平均分
子量が7万以下、1万以上のものが最適である。平均分
子量が7万を越えると、m1述したごとく膜のポリマー
密度が大きくなりすぎて透水速度はかえって低下してし
貰う。
+0+5O7-...(1) CR2 (x)0-@=S o, -@)-0-...-([1) As the water-soluble polymer to be insolubilized used in the present invention, polyvinylpyrrolidone is used. It is a typical water-soluble polymer obtained by polymerizing vinylpyrrolidone, and the optimal one is one with an average molecular weight of 70,000 or less and 10,000 or more. If the average molecular weight exceeds 70,000, the polymer density of the membrane becomes too large as mentioned above, and the water permeation rate is rather reduced.

また7万以下の平均分子量でもオリゴマー程度の、すな
わち数千のオーダーの分子量では水溶性が高すぎて、製
膜過程における水中への浸漬でほとんど完全に抽出され
てしまい、膜の親水化および透水性能は改善されない。
In addition, even if the average molecular weight is 70,000 or less, molecular weights on the order of oligomers, that is, molecular weights on the order of several thousand, are too water-soluble and are almost completely extracted when immersed in water during the membrane forming process, making the membrane hydrophilic and water permeable. Performance is not improved.

次に本発明の一実施態様として疎水性高分子が芳香族ポ
リスルホンであり、親水性高分子が不溶化処理されたポ
リビニルピロリドンである事例について詳細に説明する
Next, as one embodiment of the present invention, a case in which the hydrophobic polymer is aromatic polysulfone and the hydrophilic polymer is insolubilized polyvinylpyrrolidone will be described in detail.

本発明の分離用半透膜の前駆体膜を製造するためのドー
プ組成としては、ドープの総重量に対し不溶化処理てれ
てないポリビニルピロリドンが3重嘱チ以下含有されて
いることが望ましい。3重7%を越えると膜構造の破壊
が認められるよりになり不都合である。
The dope composition for producing the precursor membrane for the semipermeable separation membrane of the present invention preferably contains 3 or less times of polyvinylpyrrolidone that has not been insolubilized based on the total weight of the dope. If it exceeds 7% by weight, the membrane structure will be destroyed, which is disadvantageous.

″ffcff間に用いるドープ中の不溶化処理されてな
い親水性ポリマーと疎水性ポリマーをあわせた総ポリマ
ー重量をドープの総i&量に対して10〜30重責チに
なるように極性有機溶剤に溶解させることが1筐しい。
``Dissolve in a polar organic solvent such that the total polymer weight of the uninsolubilized hydrophilic polymer and hydrophobic polymer in the dope used during ``ffcff'' is 10 to 30 times the total weight of the dope. That's one thing.

極性有機溶剤としては、例えばN、N−ジメチルアセト
アミド、N、N−ジメチルホルムアミド、N−メチル−
2−ピロリドン、ジメチルスルホキシド、スルホラン、
2−ピロリドン、ヘキサメチルホスホルアミド等を例示
することができるが、特にこれらに限定されるものでは
ない。またこのような極性有機溶剤に、疎水性ポリマー
あるいは不溶化処理されてない親水ポリマーのどちらか
一方の非溶剤を添加したり、あるいは電解質などを添加
したジすることもできる。
Examples of the polar organic solvent include N,N-dimethylacetamide, N,N-dimethylformamide, and N-methyl-
2-pyrrolidone, dimethyl sulfoxide, sulfolane,
Examples include 2-pyrrolidone and hexamethylphosphoramide, but are not particularly limited to these. It is also possible to add a non-solvent of either a hydrophobic polymer or a hydrophilic polymer that has not been insolubilized to such a polar organic solvent, or to add an electrolyte or the like.

以上説明してきたドープから本発明の非対称分離用半透
膜の前駆体膜を製膜するにあたっては、従来から用いら
れている非対称分離用半透膜の製造方法を採用すること
ができる。
In forming the precursor membrane of the semipermeable membrane for asymmetric separation of the present invention from the dope described above, a conventional method for producing a semipermeable membrane for asymmetric separation can be employed.

シート状あるいは管状に分離膜を形成させるには、シー
ト状あるいは管状の適当な支持体(7’(とえはガラス
板あるいは管、不織布、布など)上にドープを淳さ数十
ミクロン−数百ミクロンの範囲で適当な方法により流延
し、しかる後に凝固剤浴に浸漬してゾル−ゲル相変換に
よる非対称膜を製造する。また公知方法でドープを中空
糸状成形ノズルを経て紡糸することにより、非対称の中
空糸状膜の製造が可能である。
To form a separation membrane in the form of a sheet or tube, the dope is poured onto a suitable support (for example, a glass plate or tube, nonwoven fabric, cloth, etc.) in the form of a sheet or tube. The dope is cast in a range of 100 microns by an appropriate method, and then immersed in a coagulant bath to produce an asymmetric membrane by sol-gel phase conversion.Also, by spinning the dope through a hollow fiber forming nozzle in a known manner. , it is possible to produce asymmetric hollow fiber membranes.

製膜に用いられる凝固剤としては芳香族ポリスルホンの
非溶剤であり、極性有機溶剤と混ざりやすい、例えば水
、食塩や界面活性剤などの電解質の水浴液、極性有機溶
剤の希薄水溶液あるいは芳香族ポリスルホンの非浴剤又
はその水浴液などが例示されるが、特に一般的には水が
用いられる。
The coagulant used in film formation is a non-solvent for aromatic polysulfone that easily mixes with polar organic solvents, such as water, a water bath solution of electrolytes such as salt or surfactants, dilute aqueous solutions of polar organic solvents, or aromatic polysulfone. Examples include non-bath additives or water bath solutions thereof, but water is particularly commonly used.

以上述べて来た製膜法によって得られた非対称膜は、そ
の−!までも分離用半透膜として使用可能であり、また
膜構造も本発明の分離用半透膜の基本構造、すなわち表
面緻冨層のみが疎水性高分子と親水性高分子の混合物か
ら成る非対称構造となっでいる。しかしながらこの膜で
は本質的に親水性高分子が不溶化されてい11い為、高
温の熱水あるいは溶剤による洗浄にさらしたり、長期間
の水処理に使用した場合膜中の親水性高分子が徐々に溶
出して親水性が低下し、C過性能も低下するという不都
合を生じる。
The asymmetric membrane obtained by the membrane forming method described above is -! The basic structure of the semipermeable separation membrane of the present invention is an asymmetric membrane in which only the surface dense layer is composed of a mixture of hydrophobic and hydrophilic polymers. It has a structure. However, in this membrane, the hydrophilic polymer is essentially not insolubilized, so if it is exposed to high-temperature hot water or solvent cleaning, or used for long-term water treatment, the hydrophilic polymer in the membrane will gradually disappear. This results in a disadvantage that hydrophilicity decreases due to elution and C-permeability also decreases.

そこで不発明の分離用半透膜とする為には上記の前駆体
膜を、膜中の親水性高分子が不溶化する条件で不溶化処
理する必要がある。
Therefore, in order to obtain an inventive semipermeable membrane for separation, it is necessary to insolubilize the above precursor membrane under conditions that insolubilize the hydrophilic polymer in the membrane.

不溶化処理としては、ポリビニルピロリドンを用いた場
合には前駆体膜を強塩基や過硫酸塩の水溶液に浸漬して
90〜100℃で加熱するなど、公知のポリビニルピロ
リドンの不溶化処理条件でm]駆体膜を処理する方法が
挙げられるが、その他の架橋剤や放射線照射等の方法を
用いてもよい。
When polyvinylpyrrolidone is used, the insolubilization treatment is performed under known insolubilization treatment conditions for polyvinylpyrrolidone, such as immersing the precursor film in an aqueous solution of a strong base or persulfate and heating it at 90 to 100°C. Although a method of treating body membranes is mentioned, other methods such as crosslinking agents and radiation irradiation may also be used.

(本発明による効果) このようにして製造された本発明の分離用半透膜は、膜
表面側が極度に親水化されており、かつこの親水性が熱
水洗浄や長期間の水処理によってもほとんど低下するこ
となく、従って初期の高透水性が損われないという特徴
を有する。しかも芳香族ポリスルホ/の特徴である優れ
た耐熱性、耐薬品性は維持されているので、従来の親水
性高分子ペースの分離用半透膜、例えばセルロースアセ
テートからなる分離用半透膜が耐えられなかりたような
過酷な条件下の膜分離操作に有効に使用することかでき
る。
(Effects of the present invention) The semipermeable membrane for separation of the present invention manufactured in this way has an extremely hydrophilic membrane surface side, and this hydrophilicity can be maintained even by hot water washing or long-term water treatment. It has the characteristic that there is almost no deterioration, and therefore the initial high water permeability is not impaired. Moreover, the excellent heat resistance and chemical resistance characteristic of aromatic polysulfo/ are maintained, so conventional semipermeable membranes for separation based on hydrophilic polymers, such as semipermeable membranes for separation made of cellulose acetate, are resistant. It can be effectively used for membrane separation operations under harsh conditions that would otherwise be impossible.

次に実施例によυ本発明を具体的に説明するが、純水透
水係数(Lp)+Lpの経時低下率い、および卵白アル
ブミンの排除率(Ro)はそれぞれ(但しf過10分後
のLp値をLo、7時間後のLp値を特徴とする特許 で定義されたものである。
Next, the present invention will be specifically explained with reference to Examples. It is defined in a patent characterized by the value Lo and the Lp value after 7 hours.

実施例1 (1)式の芳香族ポリスルホン(商品名Vlctrex
300pICI社製)18重量部と平均分子IL4万の
ポリビニルピロリドン(以下PvPと略すAldrtc
h社製)2重量部を2−ピロリドンを主とする混合溶剤
80重量部に溶解した。このドープの粘度は25℃で1
4000センチボイズであった。これをポリエステル不
織布上に厚み150μm で流延し、室温雰囲気中で2
0秒間放置後、10℃の水中に浸漬して非対称膜を得た
。得られた不織布で補強された非対称膜をさらに90℃
熱水に15分間浸漬し完全に脱溶剤した。この膜のLo
は4.5?!7ml・日・+に9/i、その低下率βは
4.2チであった。
Example 1 Aromatic polysulfone of formula (1) (trade name: Vlctrex
300p manufactured by ICI) and 18 parts by weight of polyvinylpyrrolidone (hereinafter abbreviated as PvP) with an average molecular IL of 40,000.
(manufactured by Company H) was dissolved in 80 parts by weight of a mixed solvent mainly containing 2-pyrrolidone. The viscosity of this dope is 1 at 25°C.
It was 4000 centiboise. This was cast onto a polyester nonwoven fabric to a thickness of 150 μm, and
After being left for 0 seconds, it was immersed in water at 10°C to obtain an asymmetric membrane. The asymmetric membrane reinforced with the obtained nonwoven fabric was further heated at 90°C.
It was immersed in hot water for 15 minutes to completely remove the solvent. The Lo of this film
Is it 4.5? ! 7ml/day/+ was 9/i, and the rate of decrease β was 4.2ch.

また烏は100%であった。また元素分析から求めた膜
0)PVP 含有率は7.2%(N含有率で0.91%
)であった。
In addition, the rate for crows was 100%. In addition, the film 0)PVP content determined from elemental analysis was 7.2% (N content was 0.91%).
)Met.

この前躯体膜を5重量部の過硫酸アンモニウムを含む水
溶液中に浸漬し90℃に30分間加熱した。
This precursor film was immersed in an aqueous solution containing 5 parts by weight of ammonium persulfate and heated to 90° C. for 30 minutes.

得られた分離用非対称膜のL(1,は5.5めr・日・
kgムその低下率βは3.1%であった。また馬は94
%であった。元素分析から求めた膜のN含有率は0.9
0チであった。
L of the obtained asymmetric membrane for separation (1, is 5.5 days)
The rate of decrease β in kg was 3.1%. Also, the horse is 94
%Met. The N content of the film determined from elemental analysis is 0.9
It was 0chi.

実施例2 実施例1の分離用非対称膜を60重量部のアセトンを含
む水溶液中に室温で5日間浸漬した。取シ出した膜のN
含有率を元素分析で求めると0.85チであり、膜中の
PvPの不溶化はほとんど完全であることがわかった。
Example 2 The asymmetric separation membrane of Example 1 was immersed in an aqueous solution containing 60 parts by weight of acetone at room temperature for 5 days. N of the membrane taken out
The content was found to be 0.85% by elemental analysis, indicating that the insolubilization of PvP in the film was almost complete.

また膜性能もほとんど変わらなかった。Furthermore, there was almost no change in membrane performance.

比較例1 実施例1の前駆体膜を実施例2と同様に処理したところ
、膜中のN含有率は0.07%に低下しており、膜性能
も著しく劣化していた。
Comparative Example 1 When the precursor film of Example 1 was treated in the same manner as in Example 2, the N content in the film was reduced to 0.07%, and the film performance was also significantly deteriorated.

比較例2 pvpを添加せず混合溶剤を82重量部とする以外は実
施例1と同様の方法で製膜し、その後過硫酸アンモニウ
ム水溶液で実施例1と同様の処理を行った。得られた膜
のLll、は4. s 7?!”/ぜ・日・kg/li
、%は100%であったが、低下率βは27%であり、
透水速度の経時低下が著しい。この膜のN含有率は0.
06%であった。
Comparative Example 2 A film was formed in the same manner as in Example 1 except that PVP was not added and the mixed solvent was changed to 82 parts by weight, and then treated in the same manner as in Example 1 with an aqueous ammonium persulfate solution. Lll of the obtained film is 4. s 7? ! ”/ze・day・kg/li
,% was 100%, but the decrease rate β was 27%,
Water permeation rate decreases significantly over time. The N content of this film is 0.
It was 0.6%.

実施例3 支持体に表面が平滑なガラス板を用いる以外は実施例1
と同様の方法で前駆体膜を製膜した。この補強材のない
非対称膜を実施例1と同様に不溶化処理した。この膜を
充分乾燥し、膜表面の全反射赤外吸収(ATR−IRと
略す)スペクトルを測定したところ第1図が得られた。
Example 3 Example 1 except that a glass plate with a smooth surface is used as the support.
A precursor film was formed in the same manner as described above. This asymmetric membrane without reinforcing material was subjected to insolubilization treatment in the same manner as in Example 1. This film was sufficiently dried and the total reflection infrared absorption (abbreviated as ATR-IR) spectrum of the film surface was measured, and the result shown in FIG. 1 was obtained.

不溶化したPvPに由来するカルボニル基の吸収が17
00cm−1に認められる。ところが同じ膜の裏面のA
TR−IRスペクトルを測定してみると第2図のよりに
カルボニル基の吸収が全く認められない。
The absorption of carbonyl groups derived from insolubilized PvP is 17
00 cm-1. However, A on the back side of the same membrane
When the TR-IR spectrum was measured, as shown in FIG. 2, no absorption of carbonyl groups was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例3において作製された本発明の分離用非
対称半透膜の表面のATR−IRスペクトルである。 第2図は間膜の裏面のATR−IRスペクトルである。
FIG. 1 is an ATR-IR spectrum of the surface of the asymmetric semipermeable membrane for separation of the present invention prepared in Example 3. FIG. 2 is an ATR-IR spectrum of the back surface of the mesentery.

Claims (4)

【特許請求の範囲】[Claims] (1)表面が緻密層、裏面が多孔層である非対称構造を
有する疎水性高分子物質を主体とする分離用半透膜であ
って、緻密層側だけが該疎水性高分子物質と不溶化処理
された親水性高分子物質との混合物から成ることを特徴
とする分離用半透膜。
(1) A semipermeable membrane for separation mainly made of a hydrophobic polymer substance with an asymmetric structure in which the front side is a dense layer and the back side is a porous layer, and only the dense layer side is insolubilized with the hydrophobic polymer substance. A semipermeable membrane for separation, characterized in that it is made of a mixture with a hydrophilic polymeric substance.
(2)疎水性高分子が構造式( I )、(II)又は(II
I)のいずれか1つのくり返し単位を有する芳香族ポリ
スルホンであることを特徴とする特許請求の範囲第1項
記載の分離用半透膜。 ▲数式、化学式、表等があります▼・・・( I ) ▲数式、化学式、表等があります▼・・・(II) ▲数式、化学式、表等があります▼・・・(III)
(2) The hydrophobic polymer has the structural formula (I), (II) or (II)
The semipermeable membrane for separation according to claim 1, which is an aromatic polysulfone having any one repeating unit of I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(III)
(3)親水性高分子が平均分子量7万以下のポリビニル
ピロリドンを不溶化処理したものであることを特徴とす
る特許請求の範囲第1項記載の分離用半透膜。
(3) The semipermeable membrane for separation according to claim 1, wherein the hydrophilic polymer is insolubilized polyvinylpyrrolidone having an average molecular weight of 70,000 or less.
(4)製膜用溶液として、溶液の総重量に対し0.5重
量%以上3重量%以下の不溶化処理されていない親水性
高分子を含む高分子溶液を用いて湿式製膜した後、この
膜(前駆体膜と称す)を該親水性高分子が不溶化する条
件下で処理して該親水性高分子を不溶化した特許請求の
範囲第1項記載の分離用半透膜。
(4) After wet film forming using a polymer solution containing a hydrophilic polymer that has not been insolubilized in an amount of 0.5% to 3% by weight based on the total weight of the solution as a film forming solution, The semipermeable membrane for separation according to claim 1, wherein the membrane (referred to as a precursor membrane) is treated under conditions to insolubilize the hydrophilic polymer.
JP60177069A 1985-08-12 1985-08-12 Semi-permeable membrane for separation Granted JPS6238205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177069A JPS6238205A (en) 1985-08-12 1985-08-12 Semi-permeable membrane for separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177069A JPS6238205A (en) 1985-08-12 1985-08-12 Semi-permeable membrane for separation

Publications (2)

Publication Number Publication Date
JPS6238205A true JPS6238205A (en) 1987-02-19
JPH0554372B2 JPH0554372B2 (en) 1993-08-12

Family

ID=16024575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177069A Granted JPS6238205A (en) 1985-08-12 1985-08-12 Semi-permeable membrane for separation

Country Status (1)

Country Link
JP (1) JPS6238205A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397205A (en) * 1986-10-15 1988-04-27 Toray Ind Inc Treatment of polysulfone resin semipermeable membrane
EP0571871A2 (en) * 1992-05-26 1993-12-01 SEITZ-FILTER-WERKE Gmbh und Co. Method for preparing a hydrophilic membrane
US5279739A (en) * 1991-08-19 1994-01-18 Koch Membrane Systems, Inc. Durable filtration membrane having optimized molecular weight
EP0615778A1 (en) * 1993-03-19 1994-09-21 GAMBRO DIALYSATOREN GMBH & CO. KG Process for making hydrophilic membranes
JPH06339620A (en) * 1993-11-29 1994-12-13 Toray Ind Inc Method for treating polysulfone resin semipermeable membrane
US5401410A (en) * 1992-06-12 1995-03-28 Gambro Dialysatoren Gmbh & Co. Kg Membrane and process for the production thereof
KR100231908B1 (en) * 1991-03-28 1999-12-01 히라이 가쯔히꼬 Selectively transmissive polysulfonic hollow fiber membrane and method of manufacture thereof
FR2850297A1 (en) * 2003-01-29 2004-07-30 Aquasource Production of membranes for nanofiltration, ultrafiltration or microfiltration modules comprises persulfate treatment of a membrane comprising a hydrophobic polymer blended or coated with a hydrophilic polymer
JP2005348874A (en) * 2004-06-09 2005-12-22 Toyobo Co Ltd Polysulfone based permselective hollow yarn membrane
JP2008521598A (en) * 2004-12-03 2008-06-26 シーメンス・ウォーター・テクノロジーズ・コーポレイション Membrane post-treatment
WO2010035754A1 (en) * 2008-09-26 2010-04-01 旭化成ケミカルズ株式会社 Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
JP2011033640A (en) * 2000-03-08 2011-02-17 Dionex Corp Method and apparatus for gas-assisted suppressed chromatography
WO2020002185A1 (en) * 2018-06-27 2020-01-02 Lanxess Deutschland Gmbh Alkali-stable nanofiltration composite membrane and method of manufacture thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053331B2 (en) * 1986-10-15 1993-01-14 Toray Industries
JPS6397205A (en) * 1986-10-15 1988-04-27 Toray Ind Inc Treatment of polysulfone resin semipermeable membrane
KR100231908B1 (en) * 1991-03-28 1999-12-01 히라이 가쯔히꼬 Selectively transmissive polysulfonic hollow fiber membrane and method of manufacture thereof
US5279739A (en) * 1991-08-19 1994-01-18 Koch Membrane Systems, Inc. Durable filtration membrane having optimized molecular weight
EP0571871A3 (en) * 1992-05-26 1994-01-12 Seitz Filter Werke
US5376274A (en) * 1992-05-26 1994-12-27 Seitz-Filter-Werke Gmbh & Co. Hydrophilic membrane and method for its production
EP0571871A2 (en) * 1992-05-26 1993-12-01 SEITZ-FILTER-WERKE Gmbh und Co. Method for preparing a hydrophilic membrane
US5401410A (en) * 1992-06-12 1995-03-28 Gambro Dialysatoren Gmbh & Co. Kg Membrane and process for the production thereof
EP0615778A1 (en) * 1993-03-19 1994-09-21 GAMBRO DIALYSATOREN GMBH & CO. KG Process for making hydrophilic membranes
JPH06339620A (en) * 1993-11-29 1994-12-13 Toray Ind Inc Method for treating polysulfone resin semipermeable membrane
JP2011033640A (en) * 2000-03-08 2011-02-17 Dionex Corp Method and apparatus for gas-assisted suppressed chromatography
FR2850297A1 (en) * 2003-01-29 2004-07-30 Aquasource Production of membranes for nanofiltration, ultrafiltration or microfiltration modules comprises persulfate treatment of a membrane comprising a hydrophobic polymer blended or coated with a hydrophilic polymer
WO2004078327A1 (en) * 2003-01-29 2004-09-16 Aquasource Method of producing membranes for filtration modules which are intended, for example, for water treatment
JP2005348874A (en) * 2004-06-09 2005-12-22 Toyobo Co Ltd Polysulfone based permselective hollow yarn membrane
JP2008521598A (en) * 2004-12-03 2008-06-26 シーメンス・ウォーター・テクノロジーズ・コーポレイション Membrane post-treatment
WO2010035754A1 (en) * 2008-09-26 2010-04-01 旭化成ケミカルズ株式会社 Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
JP5431347B2 (en) * 2008-09-26 2014-03-05 旭化成ケミカルズ株式会社 Porous membrane, method for producing porous membrane, method for producing clarified liquid, and porous membrane module
US8883066B2 (en) 2008-09-26 2014-11-11 Asahi Kasei Chemicals Corporation Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
US9126148B2 (en) 2008-09-26 2015-09-08 Asahi Kasei Chemicals Corporation Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
US9174172B2 (en) 2008-09-26 2015-11-03 Asahi Kasei Chemicals Corporation Porous membrane, process for producing porous membrane, process for producing clarified liquid, and porous-membrane module
WO2020002185A1 (en) * 2018-06-27 2020-01-02 Lanxess Deutschland Gmbh Alkali-stable nanofiltration composite membrane and method of manufacture thereof
CN112334218A (en) * 2018-06-27 2021-02-05 朗盛德国有限责任公司 Base-stable nanofiltration composite membrane and method for manufacturing the same
US20210252458A1 (en) * 2018-06-27 2021-08-19 Bl Technologies, Inc. Alkali-Stable Nanofiltration Composite Membrane and Method of Manufacture Thereof
JP2021528241A (en) * 2018-06-27 2021-10-21 ビーエル テクノロジーズ、インコーポレイテッド Alkaline-stable nano-filtration composite membranes and their manufacturing methods
CN112334218B (en) * 2018-06-27 2022-11-01 Bl 科技公司 Alkali-stable nanofiltration composite membrane and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0554372B2 (en) 1993-08-12

Similar Documents

Publication Publication Date Title
JPH0218695B2 (en)
JP3248632B2 (en) Asymmetric semipermeable membranes of aromatic polycondensates, methods for their preparation and their use
JPH0451214B2 (en)
JPS6238205A (en) Semi-permeable membrane for separation
EP1080777A1 (en) Ultrafiltration membrane and method for producing the same, dope composition used for the same
JPH05184891A (en) Polyacrylonitrile copolymer permselective membrane and its production
DE60015215T2 (en) Solvent resistant microporous polybenzimidazole membranes
JPH0757825B2 (en) Polysulfone resin porous membrane
JPS6397205A (en) Treatment of polysulfone resin semipermeable membrane
JPH02160026A (en) Hydrophilic separation membrane
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JPH0675667B2 (en) Method for producing semi-permeable membrane of polysulfone resin
JPH0317532B2 (en)
JPH053335B2 (en)
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JPH0376969B2 (en)
JP2001149763A (en) Semipermeable membrane and production method for semipermeable membrane
JP2873967B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPS63258603A (en) Aromatic polymer membrane
JPH03254826A (en) Preparation of polysulfone semipermeable membrane
JPH06339620A (en) Method for treating polysulfone resin semipermeable membrane
JPS62168503A (en) Separation membrane
JPH06343842A (en) Cellulose acetate hollow fiber separation membrane
JPS6399325A (en) Hollow yarn membrane of polysulfone resin and production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term