JPH0376969B2 - - Google Patents

Info

Publication number
JPH0376969B2
JPH0376969B2 JP59121419A JP12141984A JPH0376969B2 JP H0376969 B2 JPH0376969 B2 JP H0376969B2 JP 59121419 A JP59121419 A JP 59121419A JP 12141984 A JP12141984 A JP 12141984A JP H0376969 B2 JPH0376969 B2 JP H0376969B2
Authority
JP
Japan
Prior art keywords
membrane
separation
semipermeable
polymer
semipermeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59121419A
Other languages
Japanese (ja)
Other versions
JPS61402A (en
Inventor
Makoto Tamada
Hitoshi Tsugaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59121419A priority Critical patent/JPS61402A/en
Publication of JPS61402A publication Critical patent/JPS61402A/en
Publication of JPH0376969B2 publication Critical patent/JPH0376969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0231Dense layers being placed on the outer side of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (技術の背景) 本発明は新規な構造を有する非対称分離用半透
膜に関するものである。近年、半透膜を用いた分
離技術である逆浸透法や限外過法は各種の分野
において実用化されており、その多様な用途に
夫々適する素材から作られた半透膜が上市されて
いる。特に限外過法に用いられる半透膜の材料
としてよく知られているものにポリアクリロニト
リル系、セルロース系、ポリスルホン系などがあ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Background) The present invention relates to a semipermeable membrane for asymmetric separation having a novel structure. In recent years, reverse osmosis and ultrafiltration methods, which are separation technologies using semipermeable membranes, have been put into practical use in various fields, and semipermeable membranes made from materials suitable for each of these various uses have been put on the market. There is. In particular, well-known materials for semipermeable membranes used in ultrafiltration methods include polyacrylonitrile, cellulose, and polysulfone.

これらの膜素材の中で芳香族ポリスルホン系の
膜は機械的強度が大きく、耐熱性、耐薬品性が優
れているものとして注目されてきている。
Among these membrane materials, aromatic polysulfone-based membranes are attracting attention as they have high mechanical strength and excellent heat resistance and chemical resistance.

(従来技術およびその欠点) しかしながら芳香族ポリスルホン系樹脂は親水
性が低く、水に濡れにくい素材であるために、こ
れを素材とした分離用半透膜は親水性素材から成
る分離用半透膜に比べて著しく透水速度が低く、
過効率が悪い。
(Prior art and its drawbacks) However, aromatic polysulfone resin has low hydrophilicity and is a material that is difficult to wet with water. The water permeability rate is significantly lower than that of
Overefficiency is bad.

そこでこれまで芳香族ポリスルホンの分離膜の
透水性能を向上させるべく種々の試みがなされて
来た。
Therefore, various attempts have been made to improve the water permeability of aromatic polysulfone separation membranes.

たとえば特開昭58−104940では分子量10万以上
のポリビニルピロリドンを含有するポリスルホン
系分離膜とその製造方法がある。しかしながら10
万以上の分子量を有する親水性ポリマーを製膜用
溶液(ドープと呼ぶ)に添加するこの方法におい
ては、ドープのポリマー密度を増大させることに
なり、このようなドープから製膜されたポリスル
ホン系分離膜は添加された親水性高分子が膜全体
中にそのまま残存しており、その後の使用におい
ても除去されないため著しくち密な構造となつて
透水速度はかえつて低下してしまう。
For example, JP-A-58-104940 describes a polysulfone separation membrane containing polyvinylpyrrolidone with a molecular weight of 100,000 or more and a method for producing the same. However 10
In this method, a hydrophilic polymer with a molecular weight of 10,000 or more is added to a membrane-forming solution (called a dope), which increases the polymer density of the dope. The added hydrophilic polymer remains in the entire membrane and is not removed even during subsequent use, resulting in an extremely dense structure and a reduction in water permeation rate.

一方、オリゴマー程度の分子量を有するポリエ
チレングリコールをポリスルホン溶液に添加して
ドープとして用いる方法が特開昭54−26283に開
示されている。しかしながらこの方法では製膜の
凝固浴として水を用いており、オリゴマー程度の
ポリエチレングリコールでは膜中に残存すること
なくすべて水中に溶出してしまい、実質的にポリ
スルホン膜の親水性は高められず、著しい透水速
度の向上は望めない。
On the other hand, JP-A-54-26283 discloses a method in which polyethylene glycol having a molecular weight comparable to that of an oligomer is added to a polysulfone solution and used as a dope. However, this method uses water as a coagulation bath for membrane formation, and oligomer-level polyethylene glycol does not remain in the membrane and is completely eluted into the water, so the hydrophilicity of the polysulfone membrane cannot be substantially increased. No significant improvement in water permeation rate can be expected.

またジヤーナル・オブ・アプライド・ポリマー
サイエンス20巻(1976)2377〜2394には分子量1
万〜4万のポリビニルピロリドンを親水性高分子
として製膜用ドープ中に多量に含有させて中空繊
維膜の可紡性の改良を企図した報告がなされてい
るが、この場合は膜表面には緻密層ができず、本
発明のような非対称構造にはならない。
Also, Journal of Applied Polymer Science Vol. 20 (1976) 2377-2394 has a molecular weight of 1.
There have been reports of attempts to improve the spinnability of hollow fiber membranes by incorporating a large amount of polyvinylpyrrolidone as a hydrophilic polymer into a membrane-forming dope. A dense layer is not formed, and an asymmetric structure as in the present invention is not obtained.

(本発明の構成) 本発明者らは上記のような問題を解消して過
効率がよく、しかも透水速度の大きい疎水性高分
子物質を主体とする非対称構造を有する分離用半
膜について鋭意検討した結果、分離用半透膜の膜
厚方向において、緻密層側の膜表面から5μm以
内に親水性高分子が存在し、かつ5μmから裏面
まではこれが存在しないような新規な構造を有す
る非対称分離膜を発明した。
(Structure of the present invention) The present inventors have earnestly studied a separation semi-membrane having an asymmetric structure mainly composed of a hydrophobic polymer substance that solves the above-mentioned problems and has good overefficiency and a high water permeation rate. As a result, in the membrane thickness direction of the semipermeable separation membrane, a hydrophilic polymer exists within 5 μm from the membrane surface on the dense layer side, and it does not exist from 5 μm to the back surface, resulting in an asymmetric separation with a new structure. Invented membrane.

すなわち本発明は「表面が緻密層、裏面が多孔
層である非対称構造を有する疎水性高分子物質を
主体とする分離用半透膜であつて、緻密層側だけ
が該疎水性高分子物質と親水性高分子物質との混
合物からなることを特徴とする分離用半透膜。」
である。
In other words, the present invention is a semipermeable membrane for separation mainly composed of a hydrophobic polymer substance having an asymmetric structure with a dense layer on the surface and a porous layer on the back side, in which only the dense layer side is composed of the hydrophobic polymer substance. A semipermeable membrane for separation characterized by being made of a mixture with a hydrophilic polymeric substance.
It is.

本発明でいう疎水性高分子としては下記式
()〜()の構造を有する芳香族ポリスルホ
ン系高分子が代表的なものである。
As the hydrophobic polymer in the present invention, aromatic polysulfone polymers having the structures of the following formulas () to () are representative.

本発明に用いられる水溶性高分子としてはポリ
ビニルピロリドンが代表的なものであり、ビニル
ピロリドンを重合して得られる水溶性高分子で、
平均分子量が7万以下、1万以上のものが最適で
ある。平均分子量が7万を越えると、前述したご
とく膜のポリマー密度が大きくなりすぎて透水速
度はかえつて低下てしまう。また7万以下の平均
分子量でもオリゴマー程度の、すなわち数千のオ
ーダーの分子量では水溶性が高すぎて、製膜過程
における水中への浸漬でほとんど完全に抽出され
てしまい、膜の親水性および透水性能は改善され
ない。
Polyvinylpyrrolidone is a typical water-soluble polymer used in the present invention, and is a water-soluble polymer obtained by polymerizing vinylpyrrolidone.
It is optimal that the average molecular weight is 70,000 or less and 10,000 or more. If the average molecular weight exceeds 70,000, the polymer density of the membrane becomes too large as described above, and the water permeation rate is rather reduced. Furthermore, even if the average molecular weight is 70,000 or less, molecular weights on the order of oligomers, that is, molecular weights on the order of several thousand, are too water-soluble and are almost completely extracted when immersed in water during the membrane forming process, resulting in poor membrane hydrophilicity and water permeability. Performance is not improved.

次に本発明の一実施態様として疎水性高分子が
芳香族ポリスルホンであり、親水性高分子がポリ
ビニルピロリドンである事例について詳細に説明
する。
Next, as one embodiment of the present invention, a case in which the hydrophobic polymer is aromatic polysulfone and the hydrophilic polymer is polyvinylpyrrolidone will be described in detail.

分離用半透膜を製造するためのドープ組成とし
ては、ドープの総重量に対し上記のポリビニルピ
ロリドンが3重量%以下含有されていることが望
ましい。3重量%を越えると走査型電子顕微鏡に
よる膜断面の写真である第1図に示すごとく、膜
構造の破壊が認められるようになり不都合であ
る。
The dope composition for producing a semipermeable membrane for separation preferably contains 3% by weight or less of the above-mentioned polyvinylpyrrolidone based on the total weight of the dope. If the amount exceeds 3% by weight, the membrane structure will be destroyed, which is disadvantageous, as shown in FIG. 1, which is a photograph of a cross section of the membrane taken with a scanning electron microscope.

また本発明に用いるドープ中の親水性ポリマー
と疎水性ポリマーをあわせた総ポリマー重量をド
ープの総重量に対して10〜30重量%になるように
極性有機溶剤に溶解させることが望ましい。極性
有機溶剤としては、例えばN,N−ジメチルアセ
トアミド、N,N−ジメチルホルムアミド、N−
メチル−2−ピロリドン、ジメチルスルホキシ
ド、スルホラン、2−ピロリドン、ヘキサメチル
ホスホルアミド等を例示することができるが、特
にこれらに限定されるものではない。またこのよ
うな極性有機溶剤に、疎水性ポリマーあるいは親
水性ポリマーのどちらか一方の非溶剤を添加した
り、あるいは電解質などを添加したりすることも
できる。
Further, it is desirable that the total polymer weight of the hydrophilic polymer and hydrophobic polymer in the dope used in the present invention is 10 to 30% by weight based on the total weight of the dope, and is dissolved in the polar organic solvent. Examples of the polar organic solvent include N,N-dimethylacetamide, N,N-dimethylformamide, N-
Examples include methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, 2-pyrrolidone, hexamethylphosphoramide, etc., but are not particularly limited to these. Furthermore, a non-solvent of either a hydrophobic polymer or a hydrophilic polymer, or an electrolyte or the like may be added to such a polar organic solvent.

以上説明してきたドープから本発明の非対称分
離用半透膜を製膜するにあたつては、従来から用
いられている非対称分離用半透膜の製造方法を採
用することができる。
In producing the semipermeable membrane for asymmetric separation of the present invention from the dope described above, a conventional method for producing a semipermeable membrane for asymmetric separation can be employed.

シート状あるいは管状に分離膜を形成させるに
は、シート状あるいは管状の適当な支持体(たと
えばガラス板あるいは管、不織布、布など)上に
ドープを厚さ数十ミクロン〜数百ミクロンの範囲
で適当な方法により流延し、しかる後に凝固剤浴
に浸漬してゾルーゲル相変換による非対称分離用
半透膜を製造する。また公知方法でドープを中空
系状成形ノズルを経て紡糸することにより、非対
称の中空系状分離用半透膜の製造が可能である。
To form a separation membrane in the form of a sheet or tube, a dope is applied to a thickness of several tens of microns to several hundred microns on a suitable support (for example, a glass plate or tube, nonwoven fabric, cloth, etc.) in the form of a sheet or tube. The membrane is cast by an appropriate method and then immersed in a coagulant bath to produce a semipermeable membrane for asymmetric separation by sol-gel phase conversion. In addition, by spinning the dope through a hollow shaped nozzle using a known method, it is possible to produce an asymmetric semipermeable hollow membrane for separation.

製膜に用いられる凝固剤としては芳香族ポリス
ルホンの非溶剤であり、極性有機溶剤と混ざりや
すい、例えば水、食塩や界面活性剤などの電解質
の水溶液、極性有機溶剤の希薄水溶液あるいは芳
香族ポリスルホンの非溶剤又はその水溶液などが
例示されるが、特に一般的には水が用いられる。
The coagulant used in film formation is a non-solvent for aromatic polysulfone, which easily mixes with polar organic solvents, such as water, aqueous solutions of electrolytes such as salt and surfactants, dilute aqueous solutions of polar organic solvents, or aromatic polysulfone. Examples include non-solvents and aqueous solutions thereof, and water is particularly commonly used.

本発明の非対称分離用半透膜の特徴は、以上述
べて来たような製模法によつて発現する。すなわ
ちその特徴は、膜表面にはフーリエ変換赤外吸収
ATRスペクトル分析による親水性高分子の存在
が認められるが、膜裏面にはその存在が認められ
ないという非対称構造である。第2図は本発明の
非対称分り膜の膜表面のフーリエ変換赤外吸収
ATRスペクトル(以下FT−IR ATRスペクトル
と称する)でたて軸は透過率(%)、横軸は波数
(cm-1)である。この図では親水性ポリマーポリ
ビニルピロリドンのアミドのカルボニル基の吸収
を示すアミドI吸収帯1660cm-1(第2図中矢印)
が明確に認められる。一方第3図は同じ膜の裏面
のスペクトルであるが、同様の吸収は全く認めら
れなかつた。
The characteristics of the semipermeable membrane for asymmetric separation of the present invention are manifested by the manufacturing method described above. In other words, the characteristic is that the film surface has Fourier transform infrared absorption.
Although the presence of hydrophilic polymers is confirmed by ATR spectroscopy, their presence is not observed on the back surface of the membrane, indicating an asymmetric structure. Figure 2 shows the Fourier transform infrared absorption of the membrane surface of the asymmetric membrane of the present invention.
In the ATR spectrum (hereinafter referred to as FT-IR ATR spectrum), the vertical axis is transmittance (%) and the horizontal axis is wave number (cm -1 ). In this figure, the amide I absorption band 1660 cm -1 (arrow in Figure 2) shows the absorption of the carbonyl group of the amide of the hydrophilic polymer polyvinylpyrrolidone.
is clearly recognized. On the other hand, FIG. 3 shows the spectrum of the back surface of the same film, but no similar absorption was observed at all.

(本発明による効果) このように膜表面側が極度に親水化されている
ことにより元来疎水性である芳香族ポリスルホン
系分離用半透膜が著しく親水化されていることが
明らかであり、透水性能が改善される。しかも芳
香族ポリスルホンの特徴である優れた耐熱性、耐
薬品性は維持されているので、従来の親水性高分
子ベースの分離用半透膜、例えばセルロースアセ
テートからなる分離用半透膜が耐えられなかつた
ような過酷な条件下の膜分離操作に有効に使用す
ることができる。
(Effects of the present invention) It is clear that by making the membrane surface side extremely hydrophilic, the aromatic polysulfone-based semipermeable membrane for separation, which is originally hydrophobic, has become extremely hydrophilic. Performance is improved. Moreover, the excellent heat resistance and chemical resistance that are characteristic of aromatic polysulfone are maintained, so that conventional semipermeable membranes for separation based on hydrophilic polymers, such as semipermeable membranes for separation made of cellulose acetate, can withstand them. It can be effectively used for membrane separation operations under harsh conditions such as

次に実施例により本発明を具体的に説明する
が、純水透水係数(Lp)、Lpの経時低下率(β)、
および卵白アルブミンの排除率(Ro)はそれぞ
れ Lp=純水の透水量(m3)/有効膜面積
(m2)×透水時間(日)×過圧力(Kg/cm2) (但し過10分後のLp値をLo p、7時間後のLp値
をL〓pとする。) β=L0P−L〓/P/L0P×100、 および Ro=(1−透過水中の卵白アルブミン濃度
/原液中の卵白アルブミン濃度)×100 で定義されたものである。
Next, the present invention will be specifically explained with reference to Examples.
and ovalbumin rejection rate (Ro) , respectively . The Lp value after 7 hours is L o p , and the Lp value after 7 hours is L〓 p .) β = L 0 / P - L / P / L 0 / P × 100, and Ro = (1 - The ovalbumin concentration in the stock solution/the ovalbumin concentration in the stock solution) x 100.

実施例 1 ()式の芳香族ポリスルホン(商品名
Victrex 300p ICI社製)18重量部と平均分子量
4万のポリビニルピロリドン(以下PVPと略す
Aldvich社製)2重量部を2−ピロリドンを主と
する混合溶剤80重量部に溶解した。このドープの
粘度は25℃で14000センチポイズであつた。これ
をポリエステル不織布上に厚み150μmで流延し、
室温雰囲気中で20秒間放置後、10℃の水中に浸漬
して非対称分離用半透膜を得た。得られた不織布
で補強された非対称分離用半透膜をさらに90℃熱
水に15分間浸漬し完全に脱溶剤した。この膜の
Lo pは4.5m3/m2・日・Kg/cm2(25℃)、その低下率β
は4.2%であつた。またRoは100%であつた。ま
た元素分析から求めた膜のPVP含有率は4.5%で
あつた。
Example 1 Aromatic polysulfone of formula () (trade name
Victrex 300p manufactured by ICI) 18 parts by weight and polyvinylpyrrolidone (hereinafter abbreviated as PVP) with an average molecular weight of 40,000.
(manufactured by Aldvich) was dissolved in 80 parts by weight of a mixed solvent mainly containing 2-pyrrolidone. The viscosity of this dope was 14,000 centipoise at 25°C. This was cast onto a polyester nonwoven fabric to a thickness of 150 μm,
After being left in a room temperature atmosphere for 20 seconds, it was immersed in water at 10°C to obtain a semipermeable membrane for asymmetric separation. The semipermeable membrane for asymmetric separation reinforced with the obtained nonwoven fabric was further immersed in hot water at 90°C for 15 minutes to completely remove the solvent. of this membrane
L o p is 4.5m 3 /m 2・day・Kg/cm 2 (25℃), its decreasing rate β
was 4.2%. Moreover, Ro was 100%. Furthermore, the PVP content of the film determined from elemental analysis was 4.5%.

実施例 2 実施例1の非対称分離膜を90℃の熱水に50時間
浸漬したところ、Lo pは4.88m3/m2・日・Kg/cmでβ
は3.7%Roは100%であり、膜性能の劣化は認め
られなかつた。またPVP含有率も4.8%で、実質
的にPVPの溶出は認められなかつた。
Example 2 When the asymmetric separation membrane of Example 1 was immersed in hot water at 90°C for 50 hours, L o p was 4.88 m 3 /m 2 ·day · Kg/cm and β
was 3.7%, and Ro was 100%, and no deterioration in membrane performance was observed. Furthermore, the PVP content was 4.8%, and virtually no PVP elution was observed.

比較例 1 平均分子量70万のPVP(和光純薬製)を用いる
以外は実施例1と同様の方法で製膜した。得られ
た膜のRoは100℃であつたが、Lo pは1.01m3/m2
日・Kg/cm2に低下した。
Comparative Example 1 A film was formed in the same manner as in Example 1 except that PVP (manufactured by Wako Pure Chemical Industries, Ltd.) having an average molecular weight of 700,000 was used. The Ro of the obtained film was 100°C, but the L o p was 1.01m 3 /m 2 .
It decreased to 1 day・Kg/cm 2 .

比較例 2 平均分子量4万のPVP(Aldrich社製)を4.2重
量部、混合溶剤を77.8重量部用いる以外は実施例
1と同様の方法で製膜した。得られた膜のRoは
96%に低下し、Lo pも2.72m3/m2・日・Kg/cm2に低下
した。
Comparative Example 2 A film was formed in the same manner as in Example 1, except that 4.2 parts by weight of PVP (manufactured by Aldrich) having an average molecular weight of 40,000 and 77.8 parts by weight of a mixed solvent were used. The Ro of the obtained film is
It decreased to 96%, and L o p also decreased to 2.72m 3 /m 2 ·day · Kg/cm 2 .

比較例 3 PVPを添加せず混合溶剤を82重量部にする以
外は実施例1と同様の方法で製膜した。得られた
膜のLo pは4.77m3/m2・日・Kg/cm2、Roの阻止率100
%であつたが、低下率βは26.6%であり、透水速
度の経時低下が著しい。
Comparative Example 3 A film was formed in the same manner as in Example 1 except that PVP was not added and the mixed solvent was changed to 82 parts by weight. The L op of the obtained membrane was 4.77 m 3 /m 2 ·day · Kg/cm 2 , and the rejection rate of Ro was 100.
%, but the decrease rate β was 26.6%, and the water permeation rate decreased significantly over time.

実施例 3 支持体に表面が平滑なガラス板を用いる以外は
実施例1と同様の方法で製膜した。この補強材の
ない非対称分離膜を充分乾燥し膜表面のATR−
IRスペクトルを測定してみたところ第2図が得
られた。PVPの吸収帯が明確である。ところが
同じ膜の裏面のATR−IRスペクトルを測定して
みると第3図に示すようにPVPの吸収帯が見ら
れなかつた。また第4図はここで得られた半透膜
の断面の構造を示す電子顕微鏡写真であり、第1
図に示すような膜構造の破壊は認められない。な
お、第1図は上側が膜の表面緻密層、第4図は下
側が膜の表面緻密層である。
Example 3 A film was formed in the same manner as in Example 1 except that a glass plate with a smooth surface was used as the support. After thoroughly drying this asymmetric separation membrane without reinforcing material, the ATR-
When we measured the IR spectrum, we obtained Figure 2. The absorption band of PVP is clear. However, when we measured the ATR-IR spectrum of the back side of the same film, no PVP absorption band was observed, as shown in Figure 3. Fig. 4 is an electron micrograph showing the cross-sectional structure of the semipermeable membrane obtained here;
No destruction of the membrane structure as shown in the figure was observed. In addition, in FIG. 1, the upper side is the surface dense layer of the membrane, and in FIG. 4, the lower side is the surface dense layer of the membrane.

実施例 4 親水性高分子としてポリ(2−ビニルピリジ
ン)(Aldrich社製)を用いる以外は実施例1と
同様の方法で製膜した。得られた膜のLo pは7.56
m3/m2・日・Kg/cm2という大きな値を示し、かつ
Roは100%であつた。元素分析から求めた膜のポ
リビニルピリジン含有率は2.9%であつた。
Example 4 A film was formed in the same manner as in Example 1, except that poly(2-vinylpyridine) (manufactured by Aldrich) was used as the hydrophilic polymer. The L o p of the obtained membrane is 7.56
It shows a large value of m 3 /m 2・day・Kg/cm 2 , and
Ro was 100%. The polyvinylpyridine content of the film determined from elemental analysis was 2.9%.

実施例 5 支持体として表面が平滑なガラス板を用いて実
施例4の膜を作製した。充分水洗して乾燥した後
膜表面のATR−IRスペクトルを測定したところ
第5図に示すように1440cm-1(第5図中矢印)に
ピリジン環の吸収帯が認められた。ところが同じ
膜の裏面のATR−IRスペクトルを測定したとこ
ろ第6図に示すように1440cm-1のところにピリジ
ン環の吸収帯が見られなかつた。
Example 5 The membrane of Example 4 was prepared using a glass plate with a smooth surface as a support. After thoroughly washing with water and drying, the ATR-IR spectrum of the membrane surface was measured, and as shown in FIG. 5, an absorption band of pyridine rings was observed at 1440 cm -1 (arrow in FIG. 5). However, when the ATR-IR spectrum of the back surface of the same film was measured, no absorption band of the pyridine ring was observed at 1440 cm -1 as shown in Figure 6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は比較例2において支持体として表面が
平滑なガラス板を用いて作製された膜の断面の走
査型電子顕微鏡写真である。第2図は実施例3で
作製した膜の表面のFT−IR ATRスペクトルで
ある。第3図は同じ膜の裏面のFT−IR ATRス
ペクトルである。第4図は実施例3において得ら
れた膜の断面の走査型電子顕微鏡写真である。第
5図は実施例5において得られた膜の表面の、第
6図は同膜の裏面のFT−IR ATRスペクトルで
ある。
FIG. 1 is a scanning electron micrograph of a cross section of a membrane prepared in Comparative Example 2 using a glass plate with a smooth surface as a support. FIG. 2 is an FT-IR ATR spectrum of the surface of the film produced in Example 3. Figure 3 is an FT-IR ATR spectrum of the back side of the same film. FIG. 4 is a scanning electron micrograph of a cross section of the membrane obtained in Example 3. FIG. 5 shows the FT-IR ATR spectrum of the front surface of the film obtained in Example 5, and FIG. 6 shows the FT-IR ATR spectrum of the back surface of the same film.

Claims (1)

【特許請求の範囲】 1 表面が緻密層、裏面が多孔層である非対称構
造を有する疎水性高分子物質を主体とする分離用
半透膜であつて、緻密層側だけが該疎水性高分子
物質と親水性高分子物質との混合物からなること
を特徴とする分離用半透膜。 2 疎水性高分子が構造式()、()又は
()のいずれか1つのくり返し単位を有する芳
香族ポリスルホンであることを特徴とする特許請
求の範囲第1項記載の分離用半透膜。 3 親水性高分子が平均分子量7万以下のポリビ
ニルピロリドンであることを特徴とする特許請求
の範囲第1項記載の分離用半透膜。 4 親水性高分子がポリビニルピリジン又はビニ
ルピリジン共重合体であることを特徴とする特許
請求の範囲第1項記載の分離用半透膜。 5 製膜用溶液として、溶液の総重量に対し0.5
重量%以上3重量%以下の親水性高分子を含有す
る高分子溶液を用いる特許請求の範囲第1項記載
の分離用半透膜。
[Scope of Claims] 1. A semipermeable separation membrane mainly composed of a hydrophobic polymer substance having an asymmetric structure with a dense layer on the front side and a porous layer on the back side, wherein only the dense layer side contains the hydrophobic polymer substance. A semipermeable membrane for separation comprising a mixture of a substance and a hydrophilic polymer substance. 2. The semipermeable membrane for separation according to claim 1, wherein the hydrophobic polymer is an aromatic polysulfone having a repeating unit of any one of structural formulas (), (), or (). 3. The semipermeable membrane for separation according to claim 1, wherein the hydrophilic polymer is polyvinylpyrrolidone with an average molecular weight of 70,000 or less. 4. The semipermeable membrane for separation according to claim 1, wherein the hydrophilic polymer is polyvinylpyridine or vinylpyridine copolymer. 5 As a membrane forming solution, 0.5% of the total weight of the solution
The semipermeable membrane for separation according to claim 1, which uses a polymer solution containing a hydrophilic polymer in an amount of at least 3% by weight.
JP59121419A 1984-06-13 1984-06-13 Semipermeable membrane for separation Granted JPS61402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121419A JPS61402A (en) 1984-06-13 1984-06-13 Semipermeable membrane for separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121419A JPS61402A (en) 1984-06-13 1984-06-13 Semipermeable membrane for separation

Publications (2)

Publication Number Publication Date
JPS61402A JPS61402A (en) 1986-01-06
JPH0376969B2 true JPH0376969B2 (en) 1991-12-09

Family

ID=14810683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121419A Granted JPS61402A (en) 1984-06-13 1984-06-13 Semipermeable membrane for separation

Country Status (1)

Country Link
JP (1) JPS61402A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505428B2 (en) * 1986-10-15 1996-06-12 東レ株式会社 Low-temperature dissolving stock solution and method for producing the same
US5009688A (en) * 1988-09-28 1991-04-23 Asahi Glass Company, Ltd. Process for producing porous glass
JP2005524521A (en) * 2002-05-03 2005-08-18 ポール コーポレイション Mixed polymer filter media for treating aqueous fluids
JP4853300B2 (en) * 2007-01-18 2012-01-11 富士電機株式会社 Control method of inverter device for electric vehicle
JP5596441B2 (en) * 2010-07-02 2014-09-24 ダイセン・メンブレン・システムズ株式会社 Hollow fiber type NF membrane
CN108722207B (en) * 2018-05-30 2021-03-09 哈尔滨工业大学(威海) Preparation method of Janus composite membrane

Also Published As

Publication number Publication date
JPS61402A (en) 1986-01-06

Similar Documents

Publication Publication Date Title
US6986844B2 (en) Solvent-resistant microporous polybenzimidazole membranes and modules
US5928774A (en) Highly asymmetric ultrafiltration membranes
Xu et al. Poly (vinyl chloride)(PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent
US7226541B2 (en) Membrane polymer compositions
US6165363A (en) Hollow fiber type filtration membrane
EP0480039B1 (en) Composite membrane
JPH09136985A (en) Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof
US5112487A (en) Porous membrane and production process thereof
JPH0554372B2 (en)
DE60015215T2 (en) Solvent resistant microporous polybenzimidazole membranes
JPH0376969B2 (en)
JPH02160026A (en) Hydrophilic separation membrane
JPH0478729B2 (en)
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
Cabasso Practical aspects in the development of a polymer matrix for ultrafiltration
KR100426183B1 (en) A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same
JP2868558B2 (en) Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane
JP2819713B2 (en) Porous membrane and method for producing the same
JPH0756084B2 (en) Polysulfone resin hollow system and method for producing the same
JPS63258603A (en) Aromatic polymer membrane
JP3524637B2 (en) Method for producing polymer porous membrane
WO1995015808A1 (en) Production of membranes
JPH11169693A (en) Film-forming solution and film-forming method
JPH07121342B2 (en) Liquid mixture separation method
JPS61197006A (en) Production of precision filter membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term