JPH02160026A - Hydrophilic separation membrane - Google Patents

Hydrophilic separation membrane

Info

Publication number
JPH02160026A
JPH02160026A JP31578488A JP31578488A JPH02160026A JP H02160026 A JPH02160026 A JP H02160026A JP 31578488 A JP31578488 A JP 31578488A JP 31578488 A JP31578488 A JP 31578488A JP H02160026 A JPH02160026 A JP H02160026A
Authority
JP
Japan
Prior art keywords
polymer
hydrophilic
membrane
copolymer
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31578488A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishii
清 石井
Makoto Tamada
玉田 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP31578488A priority Critical patent/JPH02160026A/en
Publication of JPH02160026A publication Critical patent/JPH02160026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a separation membrane having superior performance by producing a membrane from a soln. contg. a hydrophobic polymer, a hydrophilic polymer and a hydrophilic-hydrophobic copolymer. CONSTITUTION:A hydrophobic polymer such as polysulfone or polyether sulfone, a hydrophilic polymer such as a cellulose polymer or aliphatic polyimide and a copolymer having repeating units of the hydrophobic polymer and repeating units of the hydrophilic polymer are dissolved in a solvent such as N-N- dimethylacetamide and a separation membrane is produced from the resulting soln. by a phase transformation method. This membrane has a microscopically ununiform hydrophilic-hydrophohic phase separated structure, high porosity and superior performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は親水性分離膜に関するものであり、更に詳しく
は、疎水性重合体、親水性重合体及び親水・疎水型共重
合体の三成分を含む溶液から相変換法によって製造され
る親水性分離膜に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hydrophilic separation membrane, and more specifically, it relates to a hydrophilic separation membrane. The present invention relates to a hydrophilic separation membrane manufactured by a phase conversion method from a solution containing .

〔従来の技術及び発明が解決しようとする課題〕膜分離
技術は、その省エネルギー性、コンパクト性といった面
で注目され、目覚ましく進展してきた。このようなシス
テムに用いられる選択透過性分離膜の膜素材としては多
種類のポリマーが研究開発され、セルロース系、ポリア
ミド系、ポリアクリロニトリル系、ポリカーボネート系
、ポリフェニレンオキサイド系、ポリサルホン系などの
ポリマーが使用されている。
[Prior art and problems to be solved by the invention] Membrane separation technology has attracted attention for its energy saving and compactness, and has made remarkable progress. Many types of polymers have been researched and developed as membrane materials for permselective separation membranes used in such systems, including cellulose-based, polyamide-based, polyacrylonitrile-based, polycarbonate-based, polyphenylene oxide-based, and polysulfone-based polymers. has been done.

なかでも、ポリサルホン系をはじめ、ポリカーボネート
系、ポリフェニレンオキサイド系、含フッ素系なとの疎
水性ポリマーは、元来エンジニャリングプラスチックと
して使用されているものであるが、耐熱性及び機械的性
質が優れていることから分離膜の素材としても使用され
るようになってきている。
Among them, hydrophobic polymers such as polysulfone, polycarbonate, polyphenylene oxide, and fluorine-containing polymers are originally used as engineering plastics, but they have excellent heat resistance and mechanical properties. Because of this, it is also being used as a material for separation membranes.

しかし、酢酸セルロース等の親水性樹脂に比較し、ボー
リサルホン系樹脂等の疎水性樹脂は、極めて疎水性であ
るため、このような樹脂から成る分離膜は「−度乾燥す
ると水でぬれに(い」、「透水性能が低い」、「膜面に
疎水性溶質が付着して汚染されやすい」など数多くの問
題点があった。
However, compared to hydrophilic resins such as cellulose acetate, hydrophobic resins such as borisulfone resins are extremely hydrophobic, so separation membranes made of such resins do not become wet with water after being dried. '', ``poor water permeability'', and ``hydrophobic solutes adhere to the membrane surface, making it susceptible to contamination''.

この様な問題点を解決するため、疎水性樹脂膜を改良す
る方法が、種々提案されている。
In order to solve these problems, various methods have been proposed to improve hydrophobic resin films.

以下、疎水性樹脂の中でも特に耐熱性に優れたポリサル
ホン系樹脂から成る分離膜を例に、これまで提案されて
きた親水化方法を概説する。
Hereinafter, the hydrophilization methods that have been proposed so far will be outlined, taking as an example a separation membrane made of polysulfone resin, which has particularly excellent heat resistance among hydrophobic resins.

芳香族ポリサルホンポリマーに親水基や親水性ポリマー
を導入して親水化ポリサルホン膜を提供する方法として
、例えば特公昭53−13679号、特開昭59−19
6322号公報などは、ポリマー主鎖にスルホン酸基を
、特開昭57−174104号公報はポリマー主鎖にポ
リエチレンイミンポリマーtiを、それぞれ導入もしく
はグラフトして親水化された芳香族ポリサルホンポリマ
ーから逆浸透膜などを提供する方法を提案している。こ
れらの方法はいずれも芳香族ポリサルホンポリマー主鎖
の芳香環に、親水基もしくは親水性ポリマーを共有結合
によりランダムに、均一に結合させる改質手段であるこ
とから、改質されていないポリマーから成る膜に比較し
て、耐熱性などの物性が低下することは避けられない。
As a method for providing a hydrophilic polysulfone membrane by introducing a hydrophilic group or a hydrophilic polymer into an aromatic polysulfone polymer, for example, Japanese Patent Publication No. 53-13679 and Japanese Patent Application Laid-open No. 59-19
6322, etc., a sulfonic acid group is introduced into the polymer main chain, and JP-A-57-174104 is a polymer backbone polymer made from an aromatic polysulfone polymer that has been made hydrophilic by introducing or grafting a polyethyleneimine polymer ti to the polymer main chain. We are proposing a method of providing a permeable membrane. All of these methods are modification methods in which hydrophilic groups or hydrophilic polymers are randomly and uniformly bonded to the aromatic rings of the main chain of aromatic polysulfone polymers through covalent bonds, so they are made of unmodified polymers. It is inevitable that physical properties such as heat resistance will be lower than that of membranes.

更に、咳ポリマーに対して導入された親水基の比率が多
い場合には、得られた膜が水により膨潤してしまうなど
、著しい膜の物性変化を伴う改質法だと言える。
Furthermore, if the ratio of hydrophilic groups introduced to the cough polymer is high, the resulting membrane will swell with water, which can be said to be a modification method that involves significant changes in the physical properties of the membrane.

一方、親水性のポリマーを芳香族ポリサルホンポリマー
にブレンドした混合ポリマーから成る親水化ポリサルホ
ン膜も、種々提案されている。例えば、特開昭57−5
0507号公報は、セルロース誘導体を、特開昭60−
206404号公報は、エチレン−ビニルアルコール系
共重合体を、それぞれブレンドした混合ポリマーから成
る親水化ポリサルホン膜を提案している。しかし、実質
的な親水化ポリサルホン膜を得るために、かなりの量の
異種ポリマーをブレンドしなければならず、芳香族ポリ
サルホンポリマーのような分子凝集力が大きいポリマー
との均一なブレンド物を得ることは難しかった。特に、
極性有機溶剤とポリマーを含有する製膜用溶液を、水を
主成分とするポリマーの非溶剤と接触させ、ポリマーを
凝固成形することにより上記の親水化ポリサルホン膜を
作製しようとする場合、均一な製膜用溶液が得にくい上
に、放置中にゲル化や相分離が発生し易いなど溶液の安
定性に問題があったり、非溶剤との接触によりポリマー
が凝固する際に異種ポリマーとの分離が生じて膜の構造
が不均一となる可能性もあった。この様に異種ポリマー
の添加は、物性の劣るポリマーの添加効果に加、えて、
不均質な膜構造の生成によっても、膜の耐熱性、耐薬品
性などの物性の劣化を惹き起こすと考えられた。
On the other hand, various hydrophilized polysulfone membranes made of mixed polymers in which a hydrophilic polymer is blended with an aromatic polysulfone polymer have also been proposed. For example, JP-A-57-5
No. 0507 discloses that cellulose derivatives are
Publication No. 206404 proposes a hydrophilized polysulfone membrane made of a mixed polymer in which ethylene-vinyl alcohol copolymers are blended. However, in order to obtain a substantially hydrophilized polysulfone membrane, a significant amount of different polymers must be blended, and it is difficult to obtain a homogeneous blend with polymers with high molecular cohesion, such as aromatic polysulfone polymers. was difficult. especially,
When attempting to produce the above-mentioned hydrophilized polysulfone membrane by bringing a membrane-forming solution containing a polar organic solvent and a polymer into contact with a non-solvent of a polymer whose main component is water and coagulating the polymer, a uniform In addition to being difficult to obtain membrane-forming solutions, there are problems with the stability of the solutions, such as gelation and phase separation when left standing, and separation from different types of polymers when the polymer solidifies due to contact with non-solvents. There was also the possibility that this would cause the film structure to become non-uniform. In this way, the addition of different polymers not only has the effect of adding polymers with inferior physical properties, but also
It was thought that the formation of a non-uniform film structure also caused deterioration of the film's physical properties such as heat resistance and chemical resistance.

上記の提案に対して、ポリサルホンポリマーの物性を損
なわず、膜表面の親水化を行う方法として、例えば特開
昭60−87803号公報は、ポリサルホン膜を形成し
、次いで膜形状のままクロロスルホン酸によりポリマー
をスルホン化する方法を、特開昭59−186604号
公報は、ポリナルホン膜を陽光柱プラズマ処理する方法
をそれぞれ提案している。しかし、この様な方法は、膜
の形成か終了した製品もしくは半製品のみを対象とし、
特殊な方法と装置を必要とする繁雑な方法であり、一般
的ではなかった。
In response to the above proposal, as a method for making the membrane surface hydrophilic without impairing the physical properties of the polysulfone polymer, for example, JP-A-60-87803 proposes forming a polysulfone membrane, and then adding chlorosulfonic acid to the membrane while maintaining the membrane shape. JP-A No. 59-186604 proposes a method of sulfonating a polymer by subjecting a polynalfone film to a positive column plasma treatment. However, such methods are only applicable to products or semi-finished products that have undergone film formation.
It was a complicated method that required special methods and equipment, and was not common.

本発明の目的とするところは、疎水性樹脂膜の持つ優れ
た耐熱性、機械的強度といった物性をほとんど損なうこ
となしに、物性の優れた、透過性能が良好な分離膜とし
て新規な親水性膜を提供することにある。
The purpose of the present invention is to develop a new hydrophilic membrane as a separation membrane with excellent physical properties and good permeability without substantially impairing the physical properties such as the excellent heat resistance and mechanical strength that hydrophobic resin membranes have. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記に鑑みて鋭意研究した結果、疎水性
重合体、親水性重合体及び親水・疎水型共重合体の三種
の重合体を含む溶液から相変換法によって製膜すること
により、優れた性能を有する分離膜が得られることを見
い出し、本発明を完成するに至った。
As a result of intensive research in view of the above, the present inventors found that by forming a film by a phase conversion method from a solution containing three types of polymers: a hydrophobic polymer, a hydrophilic polymer, and a hydrophilic/hydrophobic copolymer. They discovered that a separation membrane with excellent performance can be obtained and completed the present invention.

即ち、本発明は、疎水性重合体(A)、親水性重合体(
B)、及び疎水性重合体(A)の繰り返し単位の少なく
とも1種と親水性重合体(B)の繰り返し単位の少なく
とも1種とを共に有する共重合体(C)とを含む溶液か
ら相変換法で製膜されることを特徴とする親水性分離膜
に係わるものである。
That is, the present invention provides a hydrophobic polymer (A), a hydrophilic polymer (
B), and a copolymer (C) having at least one repeating unit of the hydrophobic polymer (A) and at least one repeating unit of the hydrophilic polymer (B). The present invention relates to a hydrophilic separation membrane characterized by being formed by a method.

本発明でいう疎水性重合体(A)としては、ASTMの
0570に従った水中浸漬(23°C124時間)によ
る吸水率が5%以下である耐熱性重合体が特に好適に用
いられる。このような疎水性重合体としては分子量5.
000−1.000.000のものが好ましく、具体例
としては、ポリサルホン、ポリエーテルサルホン、ポリ
フェニレンオキシド、ポリアセタール、トリアセテート
、テフロンなどが挙げられる。これらを本発明で用いた
場合には特に耐薬品性、耐熱性、機械的強度等が優れた
タフな親水性分離膜が得られる。上記の重合体以外にも
親水性重合体(B)と比べて吸水率が低いか、又は水と
の接触角がより大きい重合体を用いてもよい。例えば、
アクリル系重合体、ポリエステル系重合体やポリオレフ
ィン系重合体等も本発明でいう疎水性重合体(A)とし
て用いることができる。
As the hydrophobic polymer (A) in the present invention, a heat-resistant polymer having a water absorption rate of 5% or less when immersed in water (23° C. for 124 hours) according to ASTM 0570 is particularly preferably used. Such hydrophobic polymers have a molecular weight of 5.
000-1.000.000, and specific examples include polysulfone, polyethersulfone, polyphenylene oxide, polyacetal, triacetate, and Teflon. When these are used in the present invention, a tough hydrophilic separation membrane particularly excellent in chemical resistance, heat resistance, mechanical strength, etc. can be obtained. In addition to the above-mentioned polymers, a polymer having a lower water absorption rate or a larger contact angle with water than the hydrophilic polymer (B) may be used. for example,
Acrylic polymers, polyester polymers, polyolefin polymers, and the like can also be used as the hydrophobic polymer (A) in the present invention.

一方、本発明でいう親水性重合体(B)としては分子量
t、ooo−t、ooo、oooのものが好ましく、具
体例としては、セルロース系高分子や脂肪族並びに芳香
族ポリアミド、及び下記式(1)で表される繰り返し単
位の1種又は2種以上を有する親水性重合体等を用いる
ことができる。
On the other hand, the hydrophilic polymer (B) in the present invention preferably has a molecular weight of t, ooo-t, ooo, ooo, and specific examples include cellulose polymers, aliphatic and aromatic polyamides, and the following formula: A hydrophilic polymer having one or more repeating units represented by (1) can be used.

CR,−C11□−・・・(1) (ここでR1は水素又はメチル基である。またhは OOM (Mは水素、又はカルボン酸イオンとイオン結合するア
ルカリ金属又は塩基性物質である)。
CR, -C11□-...(1) (Here, R1 is hydrogen or a methyl group. Also, h is OOM (M is hydrogen, or an alkali metal or basic substance that ionically bonds with a carboxylic acid ion) .

0ORs (Riは炭素原子l乃至20個を有する脂肪族炭化水素
基である)。
0ORs (Ri is an aliphatic hydrocarbon group having 1 to 20 carbon atoms).

C0NR4R5 (Ra、 Rsは各々水素又は炭素原子1乃至20個を
有する脂肪族炭化水素基である)。
C0NR4R5 (Ra, Rs are each hydrogen or an aliphatic hydrocarbon group having 1 to 20 carbon atoms).

(R9は炭素原子1乃至20個を有する脂肪族炭化水素
基、nは4〜6の整数、xOはハロゲンイオンである)
(R9 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, n is an integer of 4 to 6, and xO is a halogen ion)
.

(nはO(原子価結合)〜10の整数。Hは水素、又は
スルホン酸イオンとイオン結合するアルカリ金属又は塩
基性物質である)。
(n is an integer from O (valence bond) to 10; H is hydrogen, or an alkali metal or basic substance that ionically bonds with the sulfonate ion).

(R,、R1及びR3は各々炭素原子l乃至20個を有
する脂肪族炭化水素基であり、X はハロゲンイオンで
ある)。
(R, , R1 and R3 are each an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and X is a halogen ion).

(R1゜は炭素原子1乃至20個を存する脂肪族炭化水
素基であり、xOはハロゲンイオンである) である。) 以上の他に前述の疎水性重合体(A)がスルホン化され
たものも親水性重合体(8)として用いることが出来る
(R1° is an aliphatic hydrocarbon group containing 1 to 20 carbon atoms, and xO is a halogen ion). ) In addition to the above, a sulfonated version of the hydrophobic polymer (A) described above can also be used as the hydrophilic polymer (8).

次に本発明の親水−疎水型共重合体(C)としては疎水
性重合体(A)の繰り返し単位の少なくとも1種と親水
性重合体(B)の繰り返し単位の少なくとも1種とを共
に有する共重合体が用いられる。この共重合体(C)の
役割りには後で述べるように重合体(^)と重合体(I
I)の相溶化促進、即ち互いに混ざりやすくする働きも
含まれている。従って重合体(^)又は重合体(B)の
繰り返し単位の中でも各々の重合体中で七ツマー単位で
70モル%以上を占める繰り返し単位を共に有している
ことが共重合体(C)においては好ましい、また重合体
(A)の繰り返し単位と重合体(B)の繰り返し単位の
共重合体(C)中で占める割合はモル比で80 : 2
0〜20 : 80の範囲にあることが望ましい。更に
共重合体(C)の分子構造としてはランダム共重合体、
グラフト共重合体、ブロック共重合体が挙げられ、好ま
しくはグラフト共重合体、ブロック共重合体が挙げられ
る。
Next, the hydrophilic-hydrophobic copolymer (C) of the present invention has at least one repeating unit of the hydrophobic polymer (A) and at least one repeating unit of the hydrophilic polymer (B). Copolymers are used. The role of this copolymer (C) is explained later in that the copolymer (^) and polymer (I)
It also includes the function of promoting compatibilization (I), that is, making it easier to mix with each other. Therefore, among the repeating units of polymer (^) or polymer (B), copolymer (C) has a repeating unit that accounts for 70 mol% or more of heptad units in each polymer. is preferable, and the ratio of repeating units of polymer (A) and repeating units of polymer (B) in copolymer (C) is 80:2 in molar ratio.
It is desirable to be in the range of 0 to 20:80. Furthermore, the molecular structure of the copolymer (C) is a random copolymer,
Examples include graft copolymers and block copolymers, preferably graft copolymers and block copolymers.

また共重合体(C)の分子量としてはio、ooo〜1
 、000 、000の範囲が好ましい。
The molecular weight of the copolymer (C) is io, ooo~1
,000,000 is preferred.

以上説明してきたような重合体(A)、 (B)、 (
C)を適当な溶液にして相変換法によって本発明の分N
膜は製膜される。このとき溶液中の重合体(A)、 (
B)、 (C)の含有量は疎水性重合体(A)5〜30
重量%、親水性重合体(B)1〜20重量%、共重合体
(C) 0.5〜20重量%の範囲が好ましい。
Polymers (A), (B), (
C) is made into a suitable solution and the amount N of the present invention is obtained by a phase conversion method.
The membrane is formed. At this time, the polymer (A) in the solution, (
The content of B) and (C) is 5 to 30% of the hydrophobic polymer (A).
The preferable range is 1 to 20% by weight of the hydrophilic polymer (B) and 0.5 to 20% by weight of the copolymer (C).

また用いられる溶剤としては、例えばN、N−ジメチル
アセトアミド、N、N−ジメチルホルムアミド、N−メ
チル−2−ピロリドン、2−ピロリドン、ジメチルスル
ホキシド、スルホラン、テトラヒドロフラン等の水に可
溶な溶媒(これらを第1群の溶媒とする)や、塩化メチ
レン、クロロホルムなどの水に不溶のハロゲン系炭化水
素の溶媒(これらを第■群の溶媒とする)が挙げられる
が、重合体(A)、 (n)、 (c)をすべて溶解で
きるものであれば特に限定されない。第1群の溶媒を用
いる場合は、これに前述のポリマー混合物を溶解し、必
要に応じて電解質あるいは水溶性の宜溶媒(例えば、水
又はアルコール類やケトン類など)を同時に溶解混合し
た製膜用溶液(これをドープと呼ぶ)を調製する。
Examples of solvents that can be used include water-soluble solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, 2-pyrrolidone, dimethylsulfoxide, sulfolane, and tetrahydrofuran. are the first group of solvents) and water-insoluble halogenated hydrocarbon solvents such as methylene chloride and chloroform (these are the first group of solvents). There is no particular limitation as long as it can dissolve all of n) and (c). When using the first group of solvents, the above-mentioned polymer mixture is dissolved therein, and if necessary, an electrolyte or a water-soluble solvent (for example, water, alcohols, ketones, etc.) is simultaneously dissolved and mixed to form a film. A solution (this is called a dope) is prepared.

シート状、あるいは管状に分lT1膜を形成させるには
、シート状あるいは管状の適当な支持体(例えばガラス
板あるいは管、不織布、布など)上に、前記ドープを厚
さ数十−〜数百μの範囲で適当な方法により流延し、必
要に応じて一定時間一定条件の雰囲気(例えば、貧溶媒
の蒸気を含有する空気)に放置後、貧溶媒(主に水)か
ら成る凝固浴中に浸漬してゾル−ゲル相変換による湿式
又は乾湿式製膜を行う。また、公知の方法でドープを中
空系成形ノズルを経て紡糸することにより中空糸膜の製
造が可能である。
In order to form a T1 film in the form of a sheet or a tube, the dope is placed on a suitable support (for example, a glass plate or tube, non-woven fabric, cloth, etc.) in the form of a sheet or tube to a thickness of several tens to several hundreds. µ by an appropriate method, and if necessary, left in an atmosphere under certain conditions (for example, air containing vapor of a poor solvent) for a certain period of time, and then placed in a coagulation bath consisting of a poor solvent (mainly water). Wet or dry-wet film formation is performed by immersing the material in water and performing sol-gel phase conversion. Further, a hollow fiber membrane can be manufactured by spinning the dope through a hollow molding nozzle using a known method.

また、第■群の溶媒を用いる場合は、第1群と同様にし
て調整したドープを、第1群の場合と同様の方法でシー
ト状、管状、あるいは中空系状に流延又は吐出し、一定
時間、一定条件の雰囲気にさらすことによって液−液相
分離(相変換)を起こさせ、更に溶媒を蒸発させて行く
ことにより、最終的に比較的多孔質の分離膜を得ること
ができる。これは酢酸セルロース系メンブレンフィルタ
ーの乾式製膜法とほとんど同様の方法である。
In addition, when using the solvent of Group Ⅰ, the dope prepared in the same manner as in Group 1 is cast or discharged in the form of a sheet, a tube, or a hollow system in the same manner as in Group 1, By exposing the membrane to an atmosphere under certain conditions for a certain period of time to cause liquid-liquid phase separation (phase conversion) and further evaporating the solvent, a relatively porous separation membrane can finally be obtained. This method is almost the same as the dry film forming method for cellulose acetate membrane filters.

以上のような方法で製膜される際、凝固浴浸漬中や洗浄
工程で前述の重合体(B)の一部が溶出しうる。例えば
凝固浴や洗浄液に水を用い、重合体(B)が水溶性高分
子の場合等において重合体(B)の溶出が起きる。しか
しながら、前述の共重合体(C)の働きにより重合体(
B)の一部は膜中に残存する。重合体(B)が膜中に残
存することによって膜の孔表面の親水化が効果的になさ
れる。かつ重合体(B)の一部が溶出することによって
膜の開孔率も増大する。また共重合体(C)がブロック
又はグラフト共重合体の場合ミクロ相分離の働きによっ
て膜の網目構造を形成するポリマーの凝集体の内部は疎
水性重合体(A)に富み、凝集体の表面は親水性重合体
(B)で覆われるというミクロ相分離構造が期待できる
。この構造によって本発明の膜においては疎水性重合体
の高い機械的強度や耐熱性があまり損なわれることなく
高い透水性、耐汚染性が発揮される。ただし、膜中の親
水性成分があまり多過ぎるのは好ましくなく、膜中の重
合体(B)と共重合体(C)の親水性成分を合わせた重
量が膜の全重量の60%以下であることが望ましい。
When a film is formed by the method described above, a part of the above-mentioned polymer (B) may be eluted during immersion in a coagulation bath or during a washing process. For example, elution of the polymer (B) occurs when water is used in the coagulation bath or washing liquid and the polymer (B) is a water-soluble polymer. However, due to the action of the above-mentioned copolymer (C), the polymer (
A part of B) remains in the film. When the polymer (B) remains in the membrane, the pore surfaces of the membrane are effectively made hydrophilic. In addition, the porosity of the membrane also increases due to the elution of a portion of the polymer (B). In addition, when the copolymer (C) is a block or graft copolymer, the interior of the polymer aggregate that forms the network structure of the membrane due to the action of microphase separation is rich in hydrophobic polymer (A), and the surface of the aggregate can be expected to have a microphase-separated structure covered with the hydrophilic polymer (B). Due to this structure, the membrane of the present invention exhibits high water permeability and stain resistance without significantly impairing the high mechanical strength and heat resistance of the hydrophobic polymer. However, it is not preferable that the hydrophilic component in the membrane is too large, and the combined weight of the hydrophilic components of the polymer (B) and copolymer (C) in the membrane should be 60% or less of the total weight of the membrane. It is desirable that there be.

〔発明の効果〕〔Effect of the invention〕

本発明の親水性分離膜は従来のミクロ的に均一な親水性
分離膜(例えば酢酸セルロース膜、あるいは従来法に仕
る親水化ポリサルホン膜)と異なり、ミクロ的に不均一
な親水−疎水相分離構造を有する膜となっており、開孔
率も高い。
The hydrophilic separation membrane of the present invention differs from conventional microscopically uniform hydrophilic separation membranes (e.g., cellulose acetate membranes or hydrophilic polysulfone membranes used in conventional methods) to allow microscopically heterogeneous hydrophilic-hydrophobic phase separation. The membrane has a structure and has a high porosity.

更に詳しく説明すると、 ■ 疎水性重合体(A)と親水性重合体(B)のブレン
ド溶液から相変換法によって製膜する際に起きる可能性
のあるマクロな相不離による膜構造の劣化を重合体(A
)の操り返し単位の少なくとも一種と重合体(B)の繰
り返し単位の少なくとも一種を有する両親媒性共重合体
(C)の共存で防止すると同時に、 ■ 重合体(B)が水溶性ポリマーの場合、使用中に膜
から徐々に溶出して失われるのを防止する効果が期待さ
れる。
To explain in more detail, (1) the deterioration of the membrane structure due to macroscopic phase separation that may occur when forming a membrane from a blended solution of a hydrophobic polymer (A) and a hydrophilic polymer (B) by a phase conversion method; Union (A
) and at least one repeating unit of polymer (B). At the same time, when the polymer (B) is a water-soluble polymer, , is expected to have the effect of preventing gradual elution and loss from the membrane during use.

■ 次に両親媒性共重合体(C)がブロック又はグラフ
ト共重合体で、ミクロ相分離によって疎水性の骨格と親
水性の表面をもつ膜を形成する際に、共重合体(C)の
疎水性成分を持つ疎水性重合体(A)と共重合体(C)
の親水性成分を持つ親水性重合体([l)の共存によっ
て、共重合体(C)のミクロ相分離を促進する効果が期
待され、更に、 ■ 重合体(A)、 (B)、 (C)の混合比を変え
ることによって孔径と開孔率を変えることができ、高透
水性の膜をつくることができる。
■Next, the amphiphilic copolymer (C) is a block or graft copolymer, and when a membrane with a hydrophobic skeleton and a hydrophilic surface is formed by microphase separation, the copolymer (C) Hydrophobic polymer (A) and copolymer (C) with hydrophobic components
The coexistence of the hydrophilic polymer ([l) having a hydrophilic component is expected to have the effect of promoting microphase separation of the copolymer (C). By changing the mixing ratio of C), the pore size and porosity can be changed, making it possible to create a membrane with high water permeability.

この結果本発明の膜は透水速度が高<lりれも付きにく
い性質を有していると同時に、膜の機械的強度や耐熱性
は疎水性分離膜(例えばポリサルホン膜)のそれらに匹
敵しうる性能を有している。従って従来の親水性分離膜
や疎水性分離膜では満足な結果が得られなかったような
分野に有効に使用することが出来る。
As a result, the membrane of the present invention has a high water permeation rate and is resistant to leakage, while its mechanical strength and heat resistance are comparable to those of hydrophobic separation membranes (for example, polysulfone membranes). It has excellent performance. Therefore, it can be effectively used in fields where conventional hydrophilic separation membranes and hydrophobic separation membranes have not yielded satisfactory results.

〔実施例〕〔Example〕

次に実施例により本発明を具体的に説明するが、本発明
はこれらの実施例に限定されるものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 末端が水酸基である下記式(II) で表される反復単位を有するポリエーテルサルホン(P
ESと略す、 Victrex 5003P+ IcI
社製)15gをジメチルスルホキシド(DMSOと略す
)7.0−に溶解し、ビニルピロリドン15gを加えて
撹拌しつつN2ガスを10分間吹き込んだ、この溶液ヲ
70°Cに昇温後、アブビスイソブチロニトリル0、3
8gを加えて4時間撹拌した。室温に戻し0.2gのハ
イドロキノンを添加後、50gの溶液を採取した。この
溶液に疎水性重合体(A)として上記(n)式で表され
る反復単位を有する高分子量タイプのPE5(Vict
rex 5200P、 IC1社製) lOg 。
Example 1 Polyethersulfone (P
Abbreviated as ES, Victrex 5003P+ IcI
15g of dimethyl sulfoxide (abbreviated as DMSO) was dissolved in 7.0-g of dimethyl sulfoxide (abbreviated as DMSO), 15g of vinylpyrrolidone was added, and N2 gas was blown in for 10 minutes while stirring. After heating this solution to 70°C, Abvis Isobutyronitrile 0,3
8 g was added and stirred for 4 hours. After returning to room temperature and adding 0.2 g of hydroquinone, 50 g of solution was collected. In this solution, as a hydrophobic polymer (A), a high molecular weight type PE5 (Vict
rex 5200P, manufactured by IC1) lOg.

DMSo 30g、アセトン10.より成る溶液を混合
し、−昼夜撹拌して、均一な溶液を得た。この溶液を濾
過、脱泡後、ポリエステル不織布(MP−80K、日本
バイリーン社製)上に厚さ150 taに流延し、一定
容囲気下に一定時間さらした後、10’Cの水中に浸漬
することにより非対称分離膜を得た。
DMSo 30g, acetone 10. The solutions were mixed and stirred overnight to obtain a homogeneous solution. After filtering and degassing this solution, it was cast onto a polyester nonwoven fabric (MP-80K, manufactured by Nippon Vilene Co., Ltd.) to a thickness of 150 ta, exposed to a certain volume of air for a certain period of time, and then immersed in water at 10'C. By doing so, an asymmetric separation membrane was obtained.

更に、90’Cで15分間熱水洗浄を行った後、純水透
水係数(LP) 、Lpの経時低下率(β)及び卵白ア
ルブミンの排除率(Ro)を測定した。
Furthermore, after washing with hot water at 90'C for 15 minutes, the pure water permeability coefficient (LP), the rate of decrease in Lp over time (β), and the rejection rate of ovalbumin (Ro) were measured.

各パラメーターの定義は以下の通りである。The definition of each parameter is as follows.

(但し濾過1時間後のり、をり、l、3時間後のし。(However, 1 hour after filtration, glue, 1, and 3 hours after filtration.

をLP3とする。)、及び その結果LP’ =8.7m27m”−日・kg/cm
2.  β=4.0%及びRo=90%という優れた性
能を有していた。
Let be LP3. ), and the result LP' = 8.7m27m"-day kg/cm
2. It had excellent performance of β=4.0% and Ro=90%.

また、この分離膜を乾燥して膜素材ポリマーをDMSO
di(重水素置換DMSO)に溶解し、HNMR(10
0MH2)で分析したところポリビニルピロリドン(P
VP)成分が28重量%存在していることが判明した。
In addition, this separation membrane is dried and the membrane material polymer is dissolved in DMSO.
di (deuterium-substituted DMSO), HNMR (10
When analyzed with 0MH2), polyvinylpyrrolidone (P
VP) component was found to be present in an amount of 28% by weight.

これを更にアセトン水溶液で抽出処理するとPvP成分
は16重量%に減少し、PvPホモポリマー(即ち親水
性重合体(B))は12重量%含まれていたことがわか
った。
When this was further extracted with an aqueous acetone solution, the PvP component was reduced to 16% by weight, and it was found that the PvP homopolymer (ie, hydrophilic polymer (B)) was contained at 12% by weight.

また、先の反応混合物の残りを水で再沈し、更に水でソ
ックスレー抽出後乾燥し270MHz H−NMRと有
機溶剤系GPCで分析したところ下記の構造を有するブ
ロック共重合体(即ち共重合体(C))であった。
In addition, the remainder of the reaction mixture was reprecipitated with water, further Soxhlet-extracted with water, dried, and analyzed by 270 MHz H-NMR and organic solvent-based GPC. (C)).

−(−C1hCII +−TrCHICIIO比較例1 実施例1で用いた高分子量タイプのPu5(Victr
ex5200P)の溶液のみから実施例1と同様の方法
で分#i膜を製膜した。この分離膜はり、’ =9.6
m”/l12・日・kg/cra″であるがβ=20%
であり純水透水速度の低下が著しい。
-(-C1hCII +-TrCHICIIO Comparative Example 1 High molecular weight type Pu5 (Victr
EX5200P) was used to form a #i membrane in the same manner as in Example 1. This separation membrane beam, ' = 9.6
m"/l12・day・kg/cra", but β=20%
Therefore, the pure water permeation rate is significantly reduced.

実施例2 末端が水酸基である前記式(II)で表される繰り返し
単位を有するPus (Victrex 5003[’
)200gをD?ISO600−とクロルベンゼン30
0 mlの混合溶媒に室温で溶解し、これに0.5Nの
NaOH水溶液50−を滴下して室温で2時間撹拌し末
端がナトリウムフェルレート型のPESの溶液を得た。
Example 2 Pus (Victrex 5003['
) 200g to D? ISO600- and chlorobenzene 30
It was dissolved in 0 ml of a mixed solvent at room temperature, and 0.5N NaOH aqueous solution 50- was added dropwise thereto and stirred at room temperature for 2 hours to obtain a solution of PES with sodium ferulate terminals.

これにベンジルクロリド4gを添加後室部で1時間、7
0″Cで2時間撹拌しPI!Sの片側末端をベンジルエ
ーテル型に変えた。この溶液に0.5N Na0115
0m1を滴下し、1時間撹拌後クロロメチルスチレン6
gを滴下し、室温で1時間、70°Cで3時間反応させ
PESのもつ一方の末端にビニル基を導入した。この反
応混合物をメタノール/水(8:2(容積比))の混合
液で再沈後、ポリマーを濾過回収して乾燥した。このポ
リマーを270MIIzの)I −NMRで分析したと
ころ片末端にベンジルエーテル基、他の片末端にビニル
基(スチリル基)が導入されているPESマクロマーで
あることが確認された。
After adding 4 g of benzyl chloride to this, it was kept in the chamber for 7 hours.
Stirring at 0''C for 2 hours changed one end of PI!S to benzyl ether type. 0.5N Na0115 was added to this solution.
0ml was added dropwise, and after stirring for 1 hour, chloromethylstyrene 6
g was added dropwise and reacted at room temperature for 1 hour and at 70°C for 3 hours to introduce a vinyl group into one end of PES. This reaction mixture was reprecipitated with a mixed solution of methanol/water (8:2 (volume ratio)), and the polymer was collected by filtration and dried. When this polymer was analyzed by I-NMR (270 MIIz), it was confirmed that it was a PES macromer having a benzyl ether group introduced at one end and a vinyl group (styryl group) introduced at the other end.

このPESマクロマー170gとビニルピロリドン17
0gをDNSO800fに溶解し、N2ガスを吹き込ん
だ。この溶液を70“Cに昇温し重合開始剤としてアブ
ビスイソブチロニトリル2.1gを添加して5時間重合
させた。室温に戻し2gのハイドロキノンを添加後50
gの溶液を採取し実施例1と同様のVictrex 5
200P(疎水性重合体(A))の溶液50gと混合し
、実施例1と同様にして非対称分離膜を得た。この膜は
LF′=12113/l112・日・kg/cm”。
170g of this PES macromer and 17g of vinylpyrrolidone
0g was dissolved in DNSO800f, and N2 gas was blown into the solution. This solution was heated to 70"C, 2.1g of abbisisobutyronitrile was added as a polymerization initiator, and polymerized for 5 hours. After returning to room temperature and adding 2g of hydroquinone,
A solution of g was collected and placed in the same Victrex 5
The mixture was mixed with 50 g of a solution of 200P (hydrophobic polymer (A)) to obtain an asymmetric separation membrane in the same manner as in Example 1. This film has a LF′=12113/l112·day·kg/cm”.

β=1.2%であり、透水性能が優れていた。またこの
分離膜のRoは90%であり、この性能は80°Cの熱
水に30日間浸漬した後も変わらなかった。
β=1.2%, and the water permeability was excellent. Further, the Ro of this separation membrane was 90%, and this performance remained unchanged even after being immersed in hot water at 80°C for 30 days.

また、この分離膜の組成分析を実施例1と同様の方法で
行ったところPvP成分は28重量%であり、このうち
19重量%は下記の特性を有するグラフト共重合体(共
重合体(C))中のpvpで、9重量%はPvPホモポ
リマー(親水性重合体(B))であった。
Furthermore, when the composition of this separation membrane was analyzed in the same manner as in Example 1, the PvP component was 28% by weight, of which 19% by weight was a graft copolymer (copolymer (C)) having the following properties. )), 9% by weight of the pvp was PvP homopolymer (hydrophilic polymer (B)).

PE5−PVPグラフト共重合体: M−二140.000 MN= 70,000 MW/MN=2.0 pvp含有率 37重量% 幹ポリ? −: PVP、 MN=26,000技ポリ
マー:PEs、 MN=15.000枝の数=3 実施例3 実施例1のブロック共重合体(共重合体(C))25g
、 PVPホモポリマー(親水性重合体(B)) (分
子ff110,000.アルドリッチ社製) 25g 
、 Victrex5200P (疎水性重合体(A)
)150gを、DNSo 600gと分子量200のポ
リエチレングリコール(PEGと略す) 200gの混
合溶媒に溶解し、均一な製膜用溶液(ドープ)を得た。
PE5-PVP graft copolymer: M-2 140.000 MN = 70,000 MW/MN = 2.0 pvp content 37% by weight Trunk poly? -: PVP, MN=26,000 Polymer: PEs, MN=15,000 Number of branches=3 Example 3 25 g of the block copolymer of Example 1 (copolymer (C))
, PVP homopolymer (hydrophilic polymer (B)) (molecule ff 110,000, manufactured by Aldrich) 25 g
, Victrex 5200P (hydrophobic polymer (A)
) was dissolved in a mixed solvent of 600 g of DNSo and 200 g of polyethylene glycol (abbreviated as PEG) having a molecular weight of 200 to obtain a uniform film-forming solution (dope).

このドープを濾過、脱泡後、中空糸製造用環状ノズルか
ら押出し、中空糸内部にはDMSO/水−1:1 (重
量比)を送液して凝固させ、外部からは水を凝固液とし
て凝固させた。
After filtering and defoaming, this dope is extruded from an annular nozzle for manufacturing hollow fibers, and DMSO/water - 1:1 (weight ratio) is sent inside the hollow fibers to coagulate it, and water is supplied from the outside as a coagulation liquid. It solidified.

得られた中空系膜の内径は470urB、膜厚は155
−で、LP’ =22m’/m”−日・kg/cm”、
  β=1.0%及びRe”’70%という優れた性能
を有していた。
The inner diameter of the obtained hollow membrane was 470 urB, and the thickness was 155 mm.
-, LP' = 22 m'/m"-day kg/cm",
It had excellent performance of β=1.0% and Re'''70%.

尚、PvPホモポリマーの膜内含有率は10重量%(ブ
ロック共重合体中のPvPと合わせると14重量%)で
あった。
The content of PvP homopolymer in the film was 10% by weight (14% by weight when combined with PvP in the block copolymer).

比較例2 ブロック共重合体を加えないこと以外は実施例3と同様
の方法で中空系膜を作製した。この膜のLP’ =10
m3/m” ・日・kg/cI112.β=10%であ
り、実施例3の1模より性能は劣っていた。
Comparative Example 2 A hollow membrane was produced in the same manner as in Example 3 except that the block copolymer was not added. LP' of this film = 10
m3/m”・day・kg/cI112.β=10%, and the performance was inferior to the first model of Example 3.

尚、pvpホモポリマーの膜内含有率は3重量%という
低い値であった。
The content of pvp homopolymer in the film was as low as 3% by weight.

手続ネ甫正書(自発) 平成1年12月22日 ■、 事件の表示 特願昭63−315704号 2、 発明の名称 親水性分離膜 3、 補正をする者 事件との関係  特許出願人 (290)ダイセル化学工業株式会社 4、代理人Procedure Nefu Seisho (self-motivated) December 22, 1999 ■, Incident display Patent Application No. 63-315704 2. Name of the invention Hydrophilic separation membrane 3. Person making the amendment Relationship to the case Patent applicant (290) Daicel Chemical Industries, Ltd. 4. Agent

Claims (1)

【特許請求の範囲】 1、疎水性重合体(A)、親水性重合体(B)、及び疎
水性重合体(A)の繰り返し単位の少なくとも1種と親
水性重合体(B)の繰り返し単位の少なくとも1種とを
共に有する共重合体(C)とを含む溶液から相変換法で
製膜されることを特徴とする親水性分離膜。 2、共重合体(C)がブロック又はグラフト共重合体で
ある請求項1記載の親水性分離膜。 3、膜中の親水性重合体(B)と共重合体(C)の親水
性成分を合わせた重量が膜の全重量の60%以下である
請求項1記載の親水性分離膜。
[Scope of Claims] 1. At least one of the hydrophobic polymer (A), the hydrophilic polymer (B), and the repeating unit of the hydrophobic polymer (A) and the repeating unit of the hydrophilic polymer (B) A hydrophilic separation membrane characterized in that it is formed by a phase conversion method from a solution containing a copolymer (C) having at least one of the above. 2. The hydrophilic separation membrane according to claim 1, wherein the copolymer (C) is a block or graft copolymer. 3. The hydrophilic separation membrane according to claim 1, wherein the combined weight of the hydrophilic components of the hydrophilic polymer (B) and copolymer (C) in the membrane is 60% or less of the total weight of the membrane.
JP31578488A 1988-12-14 1988-12-14 Hydrophilic separation membrane Pending JPH02160026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31578488A JPH02160026A (en) 1988-12-14 1988-12-14 Hydrophilic separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31578488A JPH02160026A (en) 1988-12-14 1988-12-14 Hydrophilic separation membrane

Publications (1)

Publication Number Publication Date
JPH02160026A true JPH02160026A (en) 1990-06-20

Family

ID=18069515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31578488A Pending JPH02160026A (en) 1988-12-14 1988-12-14 Hydrophilic separation membrane

Country Status (1)

Country Link
JP (1) JPH02160026A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022406A1 (en) * 1995-12-15 1997-06-26 Research Corporation Technologies, Inc. Self-wetting membranes from engineering plastics
US5700902A (en) * 1995-07-27 1997-12-23 Circe Biomedical, Inc. Block copolymers
US5798437A (en) * 1996-07-29 1998-08-25 Circe Biomedical, Inc. Thermoplastic block copolymers
US5885456A (en) * 1996-08-09 1999-03-23 Millipore Corporation Polysulfone copolymer membranes and process
US6113785A (en) * 1995-10-09 2000-09-05 Asahi Kasei Kogyo Kabushiki Kaisha Polysulfone membrane for purifying blood
US6495043B1 (en) * 1998-04-23 2002-12-17 Kalsep Limited Membrane which comprises a blend of a polysulphone or a polyether sulphone and polyethylene oxide/polypropylene oxide substituted ethylene diamine
JP2010504189A (en) * 2006-09-22 2010-02-12 ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー Porous membrane and manufacturing method thereof
CN106422817A (en) * 2015-06-25 2017-02-22 帕尔公司 Self-wetting porous membranes (ii)
JP2017052928A (en) * 2015-06-25 2017-03-16 ポール・コーポレーションPall Corporation Self-wetting porous membranes (i)
CN107641178A (en) * 2016-07-20 2018-01-30 中国科学院上海应用物理研究所 Polyether sulfone graft N vinylpyrrolidone copolymer, film and preparation method
WO2019130686A1 (en) * 2017-12-27 2019-07-04 住友電気工業株式会社 Filtration membrane for use in treatment of oil-containing wastewater, and filtration module for use in treatment of oil-containing wastewater

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700902A (en) * 1995-07-27 1997-12-23 Circe Biomedical, Inc. Block copolymers
US6113785A (en) * 1995-10-09 2000-09-05 Asahi Kasei Kogyo Kabushiki Kaisha Polysulfone membrane for purifying blood
WO1997022406A1 (en) * 1995-12-15 1997-06-26 Research Corporation Technologies, Inc. Self-wetting membranes from engineering plastics
US5798437A (en) * 1996-07-29 1998-08-25 Circe Biomedical, Inc. Thermoplastic block copolymers
US5885456A (en) * 1996-08-09 1999-03-23 Millipore Corporation Polysulfone copolymer membranes and process
US6495043B1 (en) * 1998-04-23 2002-12-17 Kalsep Limited Membrane which comprises a blend of a polysulphone or a polyether sulphone and polyethylene oxide/polypropylene oxide substituted ethylene diamine
JP2010504189A (en) * 2006-09-22 2010-02-12 ゲーカーエスエス・フォルシュユングスツェントルウム ゲーエストハフト ゲーエムベーハー Porous membrane and manufacturing method thereof
CN106422817A (en) * 2015-06-25 2017-02-22 帕尔公司 Self-wetting porous membranes (ii)
JP2017052928A (en) * 2015-06-25 2017-03-16 ポール・コーポレーションPall Corporation Self-wetting porous membranes (i)
JP2017061670A (en) * 2015-06-25 2017-03-30 ポール・コーポレーションPall Corporation Self wettable porous film (ii)
US9724649B2 (en) 2015-06-25 2017-08-08 Pall Corporation Self-wetting porous membranes (I)
US10239023B2 (en) 2015-06-25 2019-03-26 Pall Corporation Self-wetting porous membranes (II)
CN107641178A (en) * 2016-07-20 2018-01-30 中国科学院上海应用物理研究所 Polyether sulfone graft N vinylpyrrolidone copolymer, film and preparation method
WO2019130686A1 (en) * 2017-12-27 2019-07-04 住友電気工業株式会社 Filtration membrane for use in treatment of oil-containing wastewater, and filtration module for use in treatment of oil-containing wastewater
JPWO2019130686A1 (en) * 2017-12-27 2020-11-19 住友電気工業株式会社 Filtration membrane for oil-impregnated wastewater treatment and filtration module for oil-impregnated wastewater treatment

Similar Documents

Publication Publication Date Title
EP0394193B1 (en) Coated membranes
JPH10137565A (en) Polysulfone copolymer film and its production
JP3171947B2 (en) Polyacrylonitrile copolymer selectively permeable membrane and method for producing the same
JPH06254158A (en) Diaphragm and its preparation
JPH02160026A (en) Hydrophilic separation membrane
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
JPS6238205A (en) Semi-permeable membrane for separation
JPS62201603A (en) Hydrophilic polysulfone membrane
JPH022862A (en) Modified separating membrane
JPH0751632B2 (en) Hydrophilized polyethylene sulfone membrane
JPS6223403A (en) Porous hollow yarn membrane and its preparation
US10752716B2 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
JPS63258603A (en) Aromatic polymer membrane
JPH0376969B2 (en)
JP3165740B2 (en) Separation membrane and method for producing the same
Cabasso Practical aspects in the development of a polymer matrix for ultrafiltration
JPS62168503A (en) Separation membrane
JPS63258930A (en) Aromatic polymer
JP2885878B2 (en) Separation membrane
JPH05228351A (en) Production of structure resistant to solvent
JP2613764B2 (en) Separation membrane
JPH06339620A (en) Method for treating polysulfone resin semipermeable membrane
JPS60206404A (en) Permselective membrane and its prepration
JPS59139902A (en) Preparation of permselective membrane
CN117815944A (en) Preparation method of high-performance polysulfone block copolymer nanofiltration membrane