JP2613764B2 - Separation membrane - Google Patents

Separation membrane

Info

Publication number
JP2613764B2
JP2613764B2 JP61232904A JP23290486A JP2613764B2 JP 2613764 B2 JP2613764 B2 JP 2613764B2 JP 61232904 A JP61232904 A JP 61232904A JP 23290486 A JP23290486 A JP 23290486A JP 2613764 B2 JP2613764 B2 JP 2613764B2
Authority
JP
Japan
Prior art keywords
polysulfone
polymer
separation membrane
hydrophilic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61232904A
Other languages
Japanese (ja)
Other versions
JPS6388003A (en
Inventor
善次郎 本田
真 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61232904A priority Critical patent/JP2613764B2/en
Publication of JPS6388003A publication Critical patent/JPS6388003A/en
Application granted granted Critical
Publication of JP2613764B2 publication Critical patent/JP2613764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (技術の背景) 本発明は親水性グラフトポリマーを含むポリサルホン
系樹脂から成る新規な分離膜に関するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to a novel separation membrane composed of a polysulfone resin containing a hydrophilic graft polymer.

膜分離技術は、その省エネルギー性,コンパクト性と
いった面で注目され、めざましく進展してきた。このよ
うなシステムに用いられる選択透過性分離膜の膜素材と
しては多種類のポリマーが研究開発され、セルロース
系,ポリアミド系,ポリアクリロニトリル系,ポリカー
ボネート系,ポリフエニレンオキサイド系、ポリサルホ
ン系などのポリマーが使用されている。
Membrane separation technology has attracted attention in terms of energy saving and compactness, and has made remarkable progress. Various types of polymers have been researched and developed as membrane materials for the permselective separation membrane used in such systems, and polymers such as cellulose, polyamide, polyacrylonitrile, polycarbonate, polyphenylene oxide, and polysulfone polymers have been developed. Is used.

なかでも、ポリサルホン系をはじめ、ポリカーボネー
ト系,ポリフエニレンオキサイド系,含フッ素系などの
疎水性ポリマーは、元来エンジニアリングプラスチック
として使用されているものであるが、耐熱性および機械
的性質がすぐれていることから分離膜の素材としても使
用されるようになってきている。
Among them, hydrophobic polymers such as polysulfone, polycarbonate, polyphenylene oxide, and fluorine-containing polymers are originally used as engineering plastics, but have excellent heat resistance and mechanical properties. As a result, they are also being used as materials for separation membranes.

これらの膜素材の中で芳香族ポリサルホン系の膜は機
械的強度が大きく、耐熱性,耐薬品性が優れているもの
として注目されてきている。
Among these film materials, aromatic polysulfone-based films have been attracting attention as having high mechanical strength and excellent heat resistance and chemical resistance.

(従来技術およびその欠点) しかしながら芳香族ポリサルホン系樹脂は親水性が低
く、水に濡れにくい素材であるために、これを素材とし
た分離膜は親水性素材から成る分離膜に比べて著しく透
水速度が低く、過効率が悪い。
(Prior art and its disadvantages) However, since aromatic polysulfone resin is a material having low hydrophilicity and is hardly wetted by water, a separation membrane made of this resin has a significantly higher water permeation rate than a separation membrane made of a hydrophilic material. But the efficiency is poor.

そこでこれまで芳香族ポリサルホンの分離膜の透水性
能を向上させるべく種々の試みがなされて来た。
Therefore, various attempts have been made to improve the water permeability of the aromatic polysulfone separation membrane.

たとえば特開昭58−104940では分子量10万以上のポリ
ビニルピロリドンを含有するポリサルホン系分離膜とそ
の製造方法がある。しかしながら10万以上の分子量を有
する親水性ポリマーを製膜用溶液(ドープと呼ぶ)に添
加するこの方法においては、ドープのポリマー密度を増
大させることになり、このようなドープから製膜された
ポリサルホン系分離膜は添加された親水性高分子が膜全
体中にそのまま残存しており、その後の使用においても
除去されないため著しく緻密な構造となって透水速度は
かえって低下してしまう。
For example, JP-A-58-104940 discloses a polysulfone-based separation membrane containing polyvinylpyrrolidone having a molecular weight of 100,000 or more and a method for producing the same. However, in this method in which a hydrophilic polymer having a molecular weight of 100,000 or more is added to a film-forming solution (referred to as a dope), the polymer density of the dope is increased, and polysulfone formed from such a dope is used. The added hydrophilic polymer remains as it is in the entire membrane of the system separation membrane, and is not removed during subsequent use, so that the system separation membrane becomes extremely dense and the water permeation rate is rather reduced.

一方、オリゴマー程度の分子量を有するポリエチレン
グリコールをポリサルホン溶液に添加してドープとして
用いる方法が特開昭54−26283に開示されている。しか
しながら、この方法では製膜の凝固浴として水を用いて
おり、オリゴマー程度のポリエチレングリコールでは膜
中に残存することなくすべて水中に溶出してしまい、実
質的にポリサルホン膜の親水性は高められず、著しい透
水速度の向上は望めない。
On the other hand, JP-A-54-26283 discloses a method in which polyethylene glycol having a molecular weight of about an oligomer is added to a polysulfone solution and used as a dope. However, in this method, water is used as a coagulation bath for film formation, and polyethylene glycol of the order of oligomers is completely eluted in water without remaining in the film, and the hydrophilicity of the polysulfone film is not substantially increased. However, a remarkable improvement in water permeability cannot be expected.

また、特開昭57−174104ではポリサルホン系ポリマー
のベンゼン環に反応製の官能基を導入し、このポリマー
溶液から湿式製膜後、前記の官能基と反応しうる親水性
物質の溶液で処理して架橋変性する方法が開示されてい
る。しかしながら、この方法では得られる分離膜がほと
んど逆浸透膜に限られてしまい、広範囲の種類の分類膜
を製造することは極めて困難である。
In JP-A-57-174104, a functional group produced by a reaction is introduced into a benzene ring of a polysulfone-based polymer. After wet film formation from this polymer solution, the polymer is treated with a solution of a hydrophilic substance capable of reacting with the functional group. A cross-linking modification method is disclosed. However, the separation membrane obtained by this method is almost limited to a reverse osmosis membrane, and it is extremely difficult to produce a wide variety of classification membranes.

また、ポリサルホン系ポリマーのベンゼン環は概して
反応性が低く、導入しうる官能基の種類も限られ、また
導入率の制御も極めて困難で、場合によっては過度に親
水化されて機械的強度や耐熱性が著しく低下することが
ある。
In addition, the benzene ring of polysulfone polymers generally has low reactivity, the types of functional groups that can be introduced are limited, and it is extremely difficult to control the introduction ratio. In some cases, the benzene ring is excessively hydrophilized, resulting in mechanical strength and heat resistance. Properties may be significantly reduced.

(本発明の構成) 本発明者らは、上記のような問題を解消して高い透水
速度を有し、かつポリサルホン系ポリマー特有の耐熱性
・耐薬品性および高い機械的強度を有するポルサルホン
系樹脂製分離膜において鋭意検討した結果、親水性共重
合体を幹ポリマーとし、ポリサルホン系ポリマーを枝ポ
リマーとする親水性グラフトポリマーを含有するポリサ
ルホン系樹脂製分離膜を発明した。
(Constitution of the present invention) The present inventors have solved the above problems and have a high water permeation rate, and a porsulfone-based resin having heat resistance, chemical resistance and high mechanical strength unique to polysulfone-based polymers. As a result of intensive studies on a separation membrane made of a resin, a separation membrane made of a polysulfone-based resin containing a hydrophilic graft polymer having a hydrophilic copolymer as a trunk polymer and a polysulfone-based polymer as a branch polymer was invented.

すなわち本考案は、全重合度が100より大きく、その
うち親水性成分の重合度が全重合度の50%以上を占める
親水性共重合体を幹ポリマーとし、重合度が30以上100
以下のポリサルホン系ポリマーを枝ポリマーとする親水
性グラフトポリマーを含有するポリサルホン系樹脂の溶
液より湿式製膜されることを特徴とするポリサルホン系
樹脂製分離用膜。である。
That is, in the present invention, a hydrophilic copolymer in which the total degree of polymerization is greater than 100, of which the degree of polymerization of the hydrophilic component accounts for 50% or more of the total degree of polymerization, is used as the trunk polymer, and the degree of polymerization is 30 or more and
A polysulfone-based resin separation membrane, which is formed by a wet membrane from a solution of a polysulfone-based resin containing a hydrophilic graft polymer having the following polysulfone-based polymer as a branch polymer. It is.

本発明でいうポリサルホン系ポリマーとしては下記式
(I)〜(III)の構造を有する芳香族ポリサルホン系
ポリマーが代表的なものである。
As the polysulfone-based polymer referred to in the present invention, an aromatic polysulfone-based polymer having a structure represented by the following formulas (I) to (III) is typical.

本発明では上記のようなポリサルホン系ポリマーの末
端を親水性共重合体に化学結合させたグラフトポリマー
を含むポリサルホン系樹脂を膜素材として用いる。グラ
フトポリマーを含有するポリサルホン系樹脂を製造する
為には、反応性の官能基を側鎖に有する共重合体と、前
記官能基と反応しうる官能基を末端に有するポリサルホ
ン系ポリマーとを反応させるか、又はビニル基を末端に
有するポリサルホン系ポリマーをビニル系モノマー又は
オリゴマーと共重合させる。具体的な反応性の官能基
と、これと反応しうる末端基の組み合せは公知の有機化
学反応から以下のような例が揚げられる。
In the present invention, a polysulfone-based resin containing a graft polymer in which the terminal of the above-mentioned polysulfone-based polymer is chemically bonded to a hydrophilic copolymer is used as a film material. In order to produce a polysulfone-based resin containing a graft polymer, a copolymer having a reactive functional group on a side chain is reacted with a polysulfone-based polymer having a functional group capable of reacting with the functional group at a terminal. Alternatively, a polysulfone-based polymer having a vinyl group at the terminal is copolymerized with a vinyl-based monomer or oligomer. Specific examples of the combination of a reactive functional group and a terminal group capable of reacting with the functional group include the following examples from a known organic chemical reaction.

(1)末端基が水酸基又はアルカリアルコラート基の場
合: 酸ハライド基,酸無水物基,グリシジル基,ハロメチ
ル基,スルホニルハライド基などの官能基。
(1) When the terminal group is a hydroxyl group or an alkali alcoholate group: a functional group such as an acid halide group, an acid anhydride group, a glycidyl group, a halomethyl group, and a sulfonyl halide group.

(2)末端基がハロゲン化アルキル基又はハロゲン化ア
リール基の場合: CH2 nOM基(Mはアルカリ金属,nはO(原子価結
合)又は正の整数)、アミノ基(これは第1,第2もしく
は第3級であってよい)などの官能基。
(2) When the terminal group is a halogenated alkyl group or a halogenated aryl group: CH 2 n OM group (M is an alkali metal, n is O (valence bond) or a positive integer), amino group (this is , Secondary or tertiary).

(3)末端基がアミノ基の場合: ハロゲン化アルキル基,酸ハライド基などの官能。(3) When the terminal group is an amino group: Functionality such as a halogenated alkyl group and an acid halide group.

(4)末端基がエポキシ基の場合: アミノ基,アルコラート基などの官能基。(4) When the terminal group is an epoxy group: a functional group such as an amino group or an alcoholate group.

(5)末端基がカルボニル基の場合: −NHNH2基,水酸基などの官能基。(5) When the terminal group is a carbonyl group: -NHNH 2 group, hydroxyl group or other functional group.

(6)末端基がカルボキシル基の場合: 水酸基などの官能基。(6) When the terminal group is a carboxyl group: a functional group such as a hydroxyl group.

また、ポリサルホン系ポリマーへの末端基,共重合体
への官能基の導入方法も公知の有機化学反応を用いて行
なえばよく、特に限定しないが、前者の場合ポリサルホ
ン系ポリマーの重合度をできるだけ低下させないような
条件で反応を行なう必要がある。また後者の場合、共重
合前に行なうか、共重合後に行なうかは後述する親水性
成分の種類によって適宜選択する必要があり、また共重
合後に行なう場合には親水性成分の官能基を好ましくな
い方向に変化させたり、あるいは重合度を低下させたり
することのないように適当な反応条件を設定する必要が
ある。
The method for introducing a terminal group into the polysulfone-based polymer and a functional group into the copolymer may be performed by using a known organic chemical reaction, and is not particularly limited. In the former case, the degree of polymerization of the polysulfone-based polymer is reduced as much as possible. It is necessary to carry out the reaction under conditions that do not allow the reaction. In the latter case, it is necessary to appropriately select whether to perform before copolymerization or after copolymerization depending on the type of a hydrophilic component described later, and when performing after copolymerization, the functional group of the hydrophilic component is not preferable. It is necessary to set appropriate reaction conditions so as not to change in the direction or decrease the degree of polymerization.

もちろん、反応性の官能基あるいは末端基を既に有し
ている市販のモノマー,オリゴマーあるいはポリサルホ
ン系ポリマーをそのまま用いてもよい。
Of course, a commercially available monomer, oligomer or polysulfone polymer having a reactive functional group or terminal group may be used as it is.

以上述べてきたようなモノマーあるいは共重合体と末
端反応性のポリサルホン系ポリマーとを反応させて本発
明の分離膜の素材となるグラフトポリマー又はこれを含
んだポリサルホン系樹脂を製造する。
By reacting the above-mentioned monomer or copolymer with the terminal-reactive polysulfone-based polymer, a graft polymer or a polysulfone-based resin containing the graft polymer as a material of the separation membrane of the present invention is produced.

この場合、注意しなければならないのはポリサルホン
系ポリマーの末端基の片側のみが反応しうるような反応
条件を設定するということである。もし両末端基が反応
にあずかることになると架橋反応が起こり、溶媒に不溶
性のゲル状物となって本発明の分離膜を製造する為の湿
式製膜法に用いることができなくなってしまう。従って
予め反応性の末端基をポリサルホン系ポリマーの片側の
みに導入しておくか、又は両末端基のうち一方の末端基
のみを活性化させるか、どちらかの方法を適用する。
In this case, care must be taken that reaction conditions are set such that only one side of the terminal group of the polysulfone-based polymer can react. If both terminal groups take part in the reaction, a cross-linking reaction takes place, resulting in a gel which is insoluble in a solvent and cannot be used in the wet membrane formation method for producing the separation membrane of the present invention. Therefore, either a method of previously introducing a reactive terminal group to only one side of the polysulfone-based polymer or a method of activating only one of both terminal groups is applied.

また、公知のグラフト反応がそうであるように、上記
の方法で製造されたポリマー生成物も常に100%グラフ
トポリマーであるとは限らない。すなわち残存モノマー
又は残存共重合体を再沈法等で除去した後のポリマー生
成物中には未反応のポリサルホン系ポリマーとグラフト
ポリマーの両方が混在しうる。本発明ではポリマー生成
物すなわち親水性ポリサルホン系樹脂中のグラフトポリ
マーの割合が少なくとも20モル%以上、好ましくは40モ
ル%以上になるようにグラフト反応の条件を調整する必
要がある。もし20モル%未満しかグラフトポリマーが含
まれていないとポリサルホン系樹脂の親水性をあまり向
上させることはできず、従ってこのような樹脂から製造
された分離膜は透水速度が低い場合が多い。
Also, as is the case with known grafting reactions, polymer products prepared by the above methods are not always 100% grafted polymers. That is, both the unreacted polysulfone-based polymer and the graft polymer may be present in the polymer product after the residual monomer or the residual copolymer has been removed by a reprecipitation method or the like. In the present invention, it is necessary to adjust the conditions of the graft reaction so that the proportion of the graft polymer in the polymer product, that is, the hydrophilic polysulfone-based resin is at least 20 mol% or more, preferably 40 mol% or more. If the content of the graft polymer is less than 20 mol%, the hydrophilicity of the polysulfone-based resin cannot be improved so much, and the separation membrane produced from such a resin often has a low water permeation rate.

またグラフトポリマーの構造,組成も樹脂の親水性即
ち分離膜の透水性能に影響を与える。本発明では全重合
度が100より大きく、そのうち親水性成分の重合度が全
重合度の50%以上を占める親水性共重合体を幹ポリマー
とし、重合度30以上100以下のポリサルホン系ポリマー
を枝ポリマーとするグラフトポリマーである必要があ
る。
The structure and composition of the graft polymer also affect the hydrophilicity of the resin, that is, the water permeability of the separation membrane. In the present invention, a hydrophilic copolymer, in which the total degree of polymerization is greater than 100, of which the degree of polymerization of the hydrophilic component accounts for 50% or more of the total degree of polymerization, is used as a trunk polymer, and a polysulfone-based polymer having a degree of polymerization of 30 to 100 is used. It must be a graft polymer to be a polymer.

従って例えば幹ポリマーの全重合度が120のときは親
水性成分の重合度は60以上であり、他の共重合成分の一
部又は全部にポリサルホン系ポリマーが末端基で結合す
ることになる。またポリサルホン系ポリマーの重合度が
30未満である場合は、ポリサルホン系ポリマーの耐熱性
や機械的強度を充分に発揮させることが出来ない。
Therefore, for example, when the total degree of polymerization of the backbone polymer is 120, the degree of polymerization of the hydrophilic component is 60 or more, and the polysulfone-based polymer is bonded to a part or all of the other copolymerized components by a terminal group. In addition, the degree of polymerization of the polysulfone polymer is
If it is less than 30, the heat resistance and mechanical strength of the polysulfone polymer cannot be sufficiently exhibited.

また、ポリサルホン系ポリマーの重合度を100より大
きくすることは現在の重合技術では極めて困難であり、
これに対して30以上100以下に重合度を制御することは
技術的にも経済的にも容易であり、工業的な利点が大き
い。
In addition, it is extremely difficult to increase the degree of polymerization of the polysulfone-based polymer to more than 100 with current polymerization technology,
In contrast, controlling the degree of polymerization to 30 or more and 100 or less is technically and economically easy, and has great industrial advantages.

また前記の幹ポリマー中の親水性成分としては下記の
構造の1種又は2種以上を繰り返し単位として有してい
ることが好ましい。
The hydrophilic component in the trunk polymer preferably has one or more of the following structures as a repeating unit.

ここでR1は水素又はメチル基であり、R2 (但し、R3,R4,R5及びR6はそれぞれ、炭素原子1〜
20個を有する脂肪族炭化水素基、Mは水素、アルカリ金
属又は塩基性物質、nは0〜10の整数、mは4〜6の整
数、X はハロゲンイオンである。) である。
Where R1Is hydrogen or a methyl group, and RTwoIs  (However, RThree, RFour, RFiveAnd R6Represents carbon atoms 1 to
Aliphatic hydrocarbon groups having 20 groups, M is hydrogen, alkali gold
Genus or basic substance, n is an integer of 0 to 10, m is an integer of 4 to 6
Number, X Is a halogen ion. ).

本発明では以上説明してきたようなグラフトポリマー
を含有するポリサルホン系樹脂の溶液を用いて湿式製膜
法により本発明の分離膜を製造する。
In the present invention, the separation membrane of the present invention is manufactured by a wet membrane forming method using a solution of the polysulfone resin containing the graft polymer as described above.

ポリサルホン系樹脂溶液(以後ドープと称す)中の樹
脂濃度は、製造しようとする分離膜が高分画性の限外
過膜ないしは精密過膜の場合には5重量%以上30重量
%未満であることが好ましい。低分画性の限外過膜や
逆浸透膜を製造する場合には10重量%以上40重量%未満
であることが好ましい。
The resin concentration in the polysulfone-based resin solution (hereinafter referred to as "dope") is 5% by weight or more and less than 30% by weight when the separation membrane to be produced is a high-fraction ultra- or ultra-fine membrane. Is preferred. In the case of producing a low-fraction ultra-permeability membrane or a reverse osmosis membrane, the content is preferably from 10% by weight to less than 40% by weight.

また用いる溶媒は親水性ポリサルホン系樹脂を溶解す
る有機溶剤であれば特に限定しないが、例えばN,N-ジメ
チルアセトアミド、N,N-ジメチルホルムアミド、N-メチ
ル−2−ピロリドン、ジメチルスルホキシド、2−ピロ
リドン等を例示することができる。また、このような極
性有機溶剤に被溶剤や電解質などを添加したりすること
もできる。
The solvent used is not particularly limited as long as it is an organic solvent that dissolves the hydrophilic polysulfone-based resin.For example, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, 2- Examples include pyrrolidone. Further, a solvent or an electrolyte may be added to such a polar organic solvent.

以上説明して来たドープから本発明の分離膜を製膜す
るにあたっては従来から用いられている湿式製膜法を採
用することができる。
In forming the separation membrane of the present invention from the dope described above, a conventionally used wet film formation method can be employed.

シート状あるいは管状に分離膜を形成させるには、シ
ート状あるいは管状の適当な支持体(たとえばガラス板
あるいは管,不織布,布など)上にドープを厚さ数十ミ
クロン〜数百ミクロンの範囲で適当な方法により流延
し、しかる後に凝固剤浴に浸漬してゾルーゲル相変換に
よる分離膜を製造する。また公知方法でドープを中空糸
成形ノズルを経て紡糸することにより、中空糸分離膜の
製造が可能である。
In order to form the separation membrane into a sheet or a tube, a dope having a thickness of several tens to several hundreds of microns is coated on a suitable support in the form of a sheet or a tube (for example, a glass plate or a tube, a nonwoven fabric, a cloth, etc.). It is cast by an appropriate method and then dipped in a coagulant bath to produce a separation membrane by sol-gel phase conversion. Further, by spinning the dope through a hollow fiber forming nozzle by a known method, a hollow fiber separation membrane can be produced.

製膜に用いられる凝固剤としてはポリサルホン系樹脂
の非溶剤であり、極性有機溶剤と混ざりやすい、例えば
水、食塩や界面活性剤などの電解質の水溶液,極性有機
溶剤の水溶液あるいは親水性ポリサルホン系樹脂の非溶
剤又はその水溶液などが例示されるが、特に一般的には
水が用いられる。
The coagulant used for film formation is a non-solvent of polysulfone resin and is easily mixed with a polar organic solvent. For example, an aqueous solution of an electrolyte such as water, salt, a surfactant, an aqueous solution of a polar organic solvent, or a hydrophilic polysulfone resin Examples thereof include a non-solvent and an aqueous solution thereof, and water is particularly generally used.

(本発明による効果) 本発明の分離膜の特徴は以上述べて来たような親水性
ポリサルホン系樹脂溶液を湿式製膜することによって発
現する。すなわち親水性グラフトポリマーの存在によ
り、湿式製膜時に親水性幹ポリマーに富む成分とポリサ
ルホン系ポリマーに富む成分とにミクロ相分離し、しか
もポリサルホン系ポリマーの水中での凝集スピードが著
しく速い為、親水性幹ポリマーがポリサルホン系ポリマ
ーマトリックス表面に押し出されることになる。この結
果、得られた分離膜の微孔表面は親水性幹ポリマー成分
に富み、親水性が著しく向上し、分離膜の透水速度も極
めて高いものとなる。しかも分離膜の構造を実質的に決
定しているポリマーマトリックスがポリサルホン系ポリ
マーから形成されている為、分離膜の機械的強度のみな
らず、耐熱性や耐薬品性もポリサルホン系ポリマーのそ
れに匹敵するレベルに達することになる。従って、従来
の親水性ポリマーベースの分離膜、例えばセルロースア
セテートからなる分離膜が耐えられなかったような過酷
な条件下の膜分離操作に有効に使用することが出来る。
(Effects of the Present Invention) The characteristics of the separation membrane of the present invention are manifested by wet-forming a hydrophilic polysulfone-based resin solution as described above. That is, the presence of the hydrophilic graft polymer causes microphase separation into a component rich in a hydrophilic stem polymer and a component rich in a polysulfone polymer during wet film formation, and the aggregation speed of the polysulfone polymer in water is extremely high. The trunk polymer will be extruded onto the polysulfone-based polymer matrix surface. As a result, the microporous surface of the obtained separation membrane is rich in the hydrophilic stem polymer component, the hydrophilicity is remarkably improved, and the water permeability of the separation membrane is extremely high. Moreover, since the polymer matrix that substantially determines the structure of the separation membrane is formed from a polysulfone-based polymer, not only the mechanical strength of the separation membrane but also heat resistance and chemical resistance are comparable to those of the polysulfone-based polymer. Level. Therefore, it can be effectively used for a membrane separation operation under severe conditions where a conventional separation membrane based on a hydrophilic polymer, for example, a separation membrane made of cellulose acetate cannot withstand.

次に実施例により本発明を具体的に説明するが、純水
透水係数(Lp),Lpの経時低下率(β)、および卵白ア
ルブミンの排除率(Ro)はそれぞれ (但し過1時間後のLp値を▲L1 p▼,3時間後のLp値を
▲L3 p▼とする。) で定義されたものである。
Next, the present invention will be specifically described by way of examples. The pure water permeability coefficient (Lp), the rate of decrease in Lp with time (β), and the rejection rate of ovalbumin (Ro) are respectively (Except the Lp value of the over 1 hour after ▲ L 1 p ▼, the Lp value after 3 hours ▲ L 3 p ▼ to.) Is defined by

また、フィルムの接触角はエルマのゴニオメーター式
接触角測定器G−I型により25℃における水との接触角
を測定した。
As for the contact angle of the film, the contact angle with water at 25 ° C. was measured with an Elma goniometer-type contact angle measuring device GI.

ポリマーの重合度はKNAUER社製の蒸気浸透圧計により
測定し、幹ポリマーとグラフトポリマーの構造及び組成
は元素分析及びNMR(100MHz又は270MHz)により決定し
た。
The degree of polymerization of the polymer was measured with a vapor osmometer manufactured by KNAUER, and the structures and compositions of the trunk polymer and the graft polymer were determined by elemental analysis and NMR (100 MHz or 270 MHz).

また分離膜の過吸着量の測定は150ppmのチトクロムC
リン酸バッファー溶液(25℃)を用いて行なった。
The amount of over-adsorption on the separation membrane was measured using 150 ppm cytochrome C.
This was performed using a phosphate buffer solution (25 ° C.).

すなわち過前のチロクロムC溶液の濃度をC1ppm,容
量をV1m1(約50m1)とし、これを有効膜面積Scm2(15.
2cm2)の分離膜にて加圧3kg/cm2で容量V2m1(約10m1)
まで過、濃縮したとき、濃縮後の濃度C2ppm,透過液の
容量V3m1,濃度C3ppmを用いて、分離膜表面への吸着量m
(μg/cm2)を次式により算出することが出来る。ただ
し、この場合吸着が有効膜面積で生じていると仮定して
いる。
That is, the concentration of the previous tyrochrome C solution was C 1 ppm, the capacity was V 1 m1 (about 50 m1), and the effective film area Scm 2 (15.
2 cm 2 ) Separation membrane with a pressure of 3 kg / cm 2 and capacity V 2 m1 (about 10 m1)
When concentrated and concentrated, the concentration C 2 ppm after concentration, the volume of the permeate V 3 m1, and the concentration C 3 ppm, the amount of adsorption m on the separation membrane surface
(Μg / cm 2 ) can be calculated by the following equation. However, in this case, it is assumed that the adsorption occurs in the effective film area.

(実施例) 次に実施例によってこの発明をさらに具体的に説明す
る。
(Examples) Next, the present invention will be described more specifically with reference to examples.

実施例1 末端が水酸基である(I)式のポリサルホン系ポリマ
ー(Victrex 5003p,インペリアルケミカルインダストリ
ーズ社製,重合度52) 60gをジメチルスルホキシド(以下DMSO)400m1と塩化ベ
ンゼン(以下phCl)200m1の混合溶液に室温で溶解し、
これに0.5NのNaOH水溶液13m1を加えて室温で2hr反応さ
せ、末端がナトリウムフェノレート型のポリサルホン系
ポリマーの溶液Aを得た。
Example 1 A mixed solution of 60 g of polysulfone polymer (Victrex 5003p, manufactured by Imperial Chemical Industries, Ltd., degree of polymerization 52) of formula (I) having a hydroxyl group at its terminal is 400 m1 of dimethyl sulfoxide (hereinafter, DMSO) and 200 m1 of benzene chloride (hereinafter, phCl). At room temperature,
13 ml of 0.5N NaOH aqueous solution was added thereto and reacted at room temperature for 2 hours to obtain a solution A of a polysulfone-based polymer having a terminal of sodium phenolate.

一方、幹ポリマーとして下記の組成(重合度149)を
有する ランダム共重合体を公知のラジカル共重合法により合成
し、この50gをDMSO200m1とPhCl100m1の混合溶媒に溶解
し溶液Bを得た。この溶液を室温で前述の溶液Aにゆっ
くり加え、室温で1hr,700℃で2hr反応させた後、濃硫酸
0.5m1を加えて反応を停止した。
On the other hand, it has the following composition (degree of polymerization 149) as a trunk polymer A random copolymer was synthesized by a known radical copolymerization method, and 50 g of this was dissolved in a mixed solvent of 200 ml of DMSO and 100 ml of PhCl to obtain a solution B. This solution was slowly added to the above solution A at room temperature, and reacted at room temperature for 1 hour and at 700 ° C. for 2 hours.
The reaction was stopped by adding 0.5 ml.

反応混合物をメタノール/水=80/20(容積比)にて再
沈後、遠心分離にてメタノール/水=80/20による洗浄
をくり返し残存する未反応の親水性幹ポリマーを完全に
除去した。精製後のポリマー生成物を分析したところ、
下記の組成を有するグラフトポリマーであった。
After the reaction mixture was reprecipitated with methanol / water = 80/20 (volume ratio), washing with methanol / water = 80/20 was repeated by centrifugation to completely remove the remaining unreacted hydrophilic stem polymer. When the polymer product after purification was analyzed,
It was a graft polymer having the following composition.

このグラフトポリマーをDMSOに15重量%ポリマー濃度
で溶解し、この溶液をガラス板上に400μmに流延後、9
0℃にてゆっくりとDMSOを蒸発させて非多孔質のフイル
ムを作製した。ガラス板からフイルムをはく離後エタノ
ール/水=50/50(容積比)に24hr浸漬してDMSOを完全
に除去後、50℃にて24hr乾燥し接触角を測定したところ
57°という低い値を示しグラフトポリマーが親水性であ
ることがわかった。
This graft polymer was dissolved in DMSO at a polymer concentration of 15% by weight, and the solution was cast on a glass plate to 400 μm.
DMSO was slowly evaporated at 0 ° C. to produce a non-porous film. After peeling the film from the glass plate, it was immersed in ethanol / water = 50/50 (volume ratio) for 24 hours to completely remove DMSO, dried at 50 ° C. for 24 hours, and measured the contact angle.
The value was as low as 57 °, indicating that the graft polymer was hydrophilic.

この親水性グラフトポリマーの15重量部をN−メチル
−2−ピロリドンを主とする混合溶媒85重量部に溶解し
た後、ポリエステル不織布上に厚み150μmで流延出
し、10℃の水中に浸漬して分離膜を得た。この分離膜の
過吸着量mを測定したところ22μg/cm2であり、内眼
でもチトクロムCによる膜表面の染色は認められなかっ
た。また▲L1 p▼は10m3/m2・日・kg/cm2,βは3%で
あり、高い透水速度と経時安定性を示した。
After dissolving 15 parts by weight of this hydrophilic graft polymer in 85 parts by weight of a mixed solvent mainly composed of N-methyl-2-pyrrolidone, it is cast on a polyester nonwoven fabric at a thickness of 150 μm, and immersed in water at 10 ° C. A separation membrane was obtained. When the amount of excessive adsorption m of this separation membrane was measured, it was 22 μg / cm 2 , and no staining of the membrane surface with cytochrome C was observed even in the inner eye. ▲ L 1 p was 10 m 3 / m 2 · day · kg / cm 2 and β was 3%, indicating a high water permeation rate and stability over time.

比較例1 グラフトポリマーの代わりに実施例1のグラフト反応
に用いたポリサルホン系ポリマー(Vict−rex5003p)を
用いる以外は実施例1と同様の方法でフイルムと分離膜
を作製した。
Comparative Example 1 A film and a separation membrane were prepared in the same manner as in Example 1 except that the polysulfone polymer (Vict-rex5003p) used in the graft reaction of Example 1 was used instead of the graft polymer.

フイルムの接触角は76°であり著しく疎水性であっ
た。また分離膜もm=74μg/cm2という高い吸着量を示
し膜表面はチトクロムCによって赤く染色されてしまっ
た。一方▲L1 p▼は7.1m3/m2・日・kg/cm2と低く、β
も20%であり透水速度の経時低下が著しかった。
The contact angle of the film was 76 ° and was extremely hydrophobic. The separation membrane also showed a high adsorption amount of m = 74 μg / cm 2, and the membrane surface was stained red with cytochrome C. On the other hand, ▲ L 1 p ▼ is as low as 7.1 m 3 / m 2 · day · kg / cm 2 and β
Was 20%, and the water permeation rate decreased significantly with time.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】全重合度が100より大きく、そのうち親水
性成分の重合度が全重合度の50%以上を占める親水性共
重合体を幹ポリマーとし、重合度が30以上100以下のポ
リサルホン系ポリマーを枝ポリマーとする親水性グラフ
トポリマーを含有するポリサルホン系樹脂の溶液より湿
式製膜されることを特徴とするポリサルホン系樹脂製分
離用膜。
1. A polysulfone system having a total polymerization degree of more than 100, of which a hydrophilic copolymer occupying 50% or more of the total polymerization degree of a hydrophilic component as a trunk polymer, and having a polymerization degree of 30 or more and 100 or less. A separation membrane made of polysulfone-based resin, which is formed by a wet method from a solution of a polysulfone-based resin containing a hydrophilic graft polymer having a polymer as a branch polymer.
【請求項2】親水性成分が下記の構造の1種又は2種以
上を繰り返し単位として有することを特徴とする特許請
求の範囲第1項記載のポリサルホン系樹脂製分離用膜。 ここでR1は水素又はメチル基であり、R2 (但し、R3,R4,R5及びR6はそれぞれ、炭素原子1〜20
個を有する脂族族炭化水素基、Mは水素、アルカリ金属
又は塩基性物質、nは0〜10の整数、mは4〜6の整
数、X はハロゲンイオンである。) である。
2. The method according to claim 1, wherein the hydrophilic component has one or more of the following structures:
Patent application characterized by having the above as a repeating unit
2. The separation membrane made of a polysulfone resin according to claim 1.Where R1Is hydrogen or a methyl group, and RTwoIs (However, RThree, RFour, RFiveAnd R6Each represents a carbon atom of 1 to 20
Alicyclic hydrocarbon group, M is hydrogen, alkali metal
Or a basic substance, n is an integer of 0 to 10, and m is an integer of 4 to 6.
Number, X Is a halogen ion. ).
【請求項3】ポリサルホン系ポリマーが、以下の(I)
〜(III)のうち少なくとも1種類の繰り返し単位を有
することを特徴とする特許請求の範囲第1項記載のポリ
サルホン系樹脂製分離用膜。
3. The polysulfone polymer has the following (I):
The polysulfone-based resin separation membrane according to claim 1, wherein the separation membrane has at least one type of repeating unit selected from (III) to (III).
JP61232904A 1986-09-30 1986-09-30 Separation membrane Expired - Fee Related JP2613764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232904A JP2613764B2 (en) 1986-09-30 1986-09-30 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232904A JP2613764B2 (en) 1986-09-30 1986-09-30 Separation membrane

Publications (2)

Publication Number Publication Date
JPS6388003A JPS6388003A (en) 1988-04-19
JP2613764B2 true JP2613764B2 (en) 1997-05-28

Family

ID=16946657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232904A Expired - Fee Related JP2613764B2 (en) 1986-09-30 1986-09-30 Separation membrane

Country Status (1)

Country Link
JP (1) JP2613764B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2365022B1 (en) 2010-03-11 2012-10-03 Gambro Lundia AB Process for preparing graft copolymers by reactive blending

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932784B2 (en) * 1991-09-20 1999-08-09 松下電器産業株式会社 Induction heating cooker

Also Published As

Publication number Publication date
JPS6388003A (en) 1988-04-19

Similar Documents

Publication Publication Date Title
Park et al. Polysulfone-graft-poly (ethylene glycol) graft copolymers for surface modification of polysulfone membranes
US4207182A (en) Polymeric compositions for membranes
US5401410A (en) Membrane and process for the production thereof
US5505851A (en) Semipermeable membranes of homogeneously miscible polymer alloys
EP0426118A2 (en) Sulfonated hexafluoro bis-A polysulfone membranes and process for fluid separations
US5082565A (en) Semipermeable membrane made from polyether ketones
JPH06335522A (en) Blood compatible material
JPS62201603A (en) Hydrophilic polysulfone membrane
US5128378A (en) Cation exchanger
JPH02160026A (en) Hydrophilic separation membrane
JP2613764B2 (en) Separation membrane
JPS62168503A (en) Separation membrane
KR102328470B1 (en) Copolymers and trimers based on chlorotrifluoroethylene and vinyl chloride and their uses
EP3621997B1 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
JPH022862A (en) Modified separating membrane
JPH0751632B2 (en) Hydrophilized polyethylene sulfone membrane
JPH0952031A (en) Semipermeable membrane and its manufacture
JP3948993B2 (en) Polysulfone copolymer
JPH08176B2 (en) Aromatic polymer film
JPS62199621A (en) Aromatic polysulfone resin provided with hydrophilicity
JPH0747654B2 (en) Multilayered ion exchange membrane
JPH02294338A (en) Novel multi-layered ion exchange membrane
JPH07121346B2 (en) Selective permeable membrane
JPH07116300B2 (en) Method for producing graft polymer
CN117679977A (en) Polysulfate blending ultrafiltration membrane and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees