JPS6388003A - Separation membrane - Google Patents

Separation membrane

Info

Publication number
JPS6388003A
JPS6388003A JP61232904A JP23290486A JPS6388003A JP S6388003 A JPS6388003 A JP S6388003A JP 61232904 A JP61232904 A JP 61232904A JP 23290486 A JP23290486 A JP 23290486A JP S6388003 A JPS6388003 A JP S6388003A
Authority
JP
Japan
Prior art keywords
polymer
polysulfone
tables
formulas
polymerization degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61232904A
Other languages
Japanese (ja)
Other versions
JP2613764B2 (en
Inventor
Zenjiro Honda
善次郎 本田
Makoto Tamada
玉田 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61232904A priority Critical patent/JP2613764B2/en
Publication of JPS6388003A publication Critical patent/JPS6388003A/en
Application granted granted Critical
Publication of JP2613764B2 publication Critical patent/JP2613764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a separation membrane made of a hydrophilic polysulfone resin having high water permeability, by applying a wet film forming method to a solution containing a graft polymer having a hydrophilic copolymer of a specific polymerization degree as a main polymer and a polysulfone polymer of a specific polymerization degree as a branch polymer. CONSTITUTION:An aqueous sodium hydroxide solution is added to a solvent solution containing a polysulfone polymer with a polymerization degree of 30-200 having, for example, a hydroxyl group at the terminal thereof to perform reaction to prepare a solution A of polysulfone polymer wherein terminal is of sodium phenolate-type. As a main polymer, a hydrophilic copolymer wherein a polymerization degree is larger than 100 and the polymerization degree of a hydrophilic component occupies 50.% or more of the total polymerization degree, for example, a random copolymer having a composition represented by formula I is used to prepare a solution B which is, in turn, added to the solution A to be reacted therewith and, after purification, a graft polymer is obtained. This polymer is dissolved in a solvent to be cast onto a polyester nonwoven fabric, and the coated fabric is immersed in water to obtain a separation membrane.

Description

【発明の詳細な説明】 (技術の背景) 本発明は親水性グラフトポリマーを含むポリサルホン系
樹脂から成る新規な分離膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Background) The present invention relates to a novel separation membrane made of a polysulfone resin containing a hydrophilic graft polymer.

膜分離技術は、その省エネルギー性、コンパクト性とい
った面で注目され、めざましく進展してきた。このよう
なシステムに用いられる選択透過性分M膜の膜素材とし
ては多種類のポリマーが研究開発され、セルロース系、
ポリアミド系、ポリアクリロニトリル系、ポリカーボネ
ート系、ポリ   ”フェニレンオキサイド系、ポリサ
ルホン系などのポリマーが使用されている。
Membrane separation technology has attracted attention for its energy saving and compactness, and has made remarkable progress. Many types of polymers have been researched and developed as membrane materials for selectively permeable M membranes used in such systems, including cellulose,
Polymers such as polyamide, polyacrylonitrile, polycarbonate, polyphenylene oxide, and polysulfone are used.

なかでも、ポリサルホン系をはじめ、ポリカーボネート
系、ポリフェニレンオキサイド系、含フッ素系などの疎
水性ポリマーは、元来エンジニャリングプラスチックと
して使用されているものであるが、耐熱性および機械的
性質がすぐれていることから分離膜の素材としても使用
されるようになってきている。
Among these, hydrophobic polymers such as polysulfone, polycarbonate, polyphenylene oxide, and fluorine-containing polymers are originally used as engineering plastics, but they have excellent heat resistance and mechanical properties. Because of this, it is also being used as a material for separation membranes.

これらの膜素材の中で芳香族ポリサルホン系の膜は機械
的強度が大きく、耐熱性、耐薬品性が優れているものと
して注目されてきている。
Among these membrane materials, aromatic polysulfone membranes are attracting attention as they have high mechanical strength, excellent heat resistance, and chemical resistance.

(従来技術およびその欠点) しかしながら芳香族ポリサルホン系樹脂は親水性が低く
、水に濡れにくい素材であるために、これを素材とした
分離膜は親水性素材から成る分離膜に比べて著しく透水
速度が低く、−過動率が悪い。
(Prior art and its disadvantages) However, aromatic polysulfone resin has low hydrophilicity and is a material that is difficult to wet with water, so separation membranes made of this resin have a significantly higher water permeation rate than separation membranes made of hydrophilic materials. - low hyperactivity rate.

そこでこれまで芳香族ポリサルホンの分離膜の透水性能
を向上させるべく種々の試みがなされて来た。
Therefore, various attempts have been made to improve the water permeability of aromatic polysulfone separation membranes.

たとえば特開昭58−104940では分子量lO万以
上のポリビニルピロリドンを含有するポリサルホン系分
離膜とその製造方法がある。しかしながらlO万以上の
分子量を有する親水性ポリマーを製膜用溶液(ドープと
呼ぶ)に添加するこの方法においては、ドープのポリマ
ー密度を増大させることになり、このようなドープがら
製膜されたポリサルホン系分M膜は添加された親水性高
分子が膜全体中にそのまま残存しており、その後の使用
においても除去されないため著しく緻密な構造となって
透水速度はかえって低下してしまう。
For example, JP-A-58-104940 discloses a polysulfone separation membrane containing polyvinylpyrrolidone having a molecular weight of 10,000 or more and a method for producing the same. However, in this method of adding a hydrophilic polymer having a molecular weight of 10,000 or more to a film-forming solution (called a dope), the polymer density of the dope increases, and the polysulfone film formed from such a dope increases. In the system M membrane, the added hydrophilic polymer remains throughout the membrane and is not removed even during subsequent use, resulting in an extremely dense structure and a decrease in water permeation rate.

一方、オリゴマー程度の分子量を有するポリ、エチレン
グリコールをポリサルホン溶液に添加してドープとして
用いる方法が特開昭54−26’283に開示されてい
る。しかしながら、この方法では製膜の凝固浴として水
を用いており、オリゴマー′程度のポリエチレングリコ
ールでは膜中に残存することなくすべて水中に溶出して
しまい、実質的にポリサルホン膜の親水性は高められず
、著しい透水速度の向上は望めない。
On the other hand, JP-A-54-26-283 discloses a method in which polyethylene glycol having a molecular weight comparable to that of an oligomer is added to a polysulfone solution and used as a dope. However, this method uses water as a coagulation bath for membrane formation, and oligomers of polyethylene glycol do not remain in the membrane and are all eluted into the water, which does not substantially increase the hydrophilicity of the polysulfone membrane. Therefore, no significant improvement in water permeation rate can be expected.

また、特開昭57−174104ではポリサルホン系ポ
リマーのベンゼン環に反応性の官能基を導入し、このポ
リマー溶液から湿式製膜後、前記の官能基と反応しうる
親水性物質の溶液で処理して架橋変性する方法が開示さ
れている。しかしながら、この方法では得られる分離膜
がほとんど逆浸透膜に限られてしまい、広範囲の種類の
分類膜を製造することは極めて困難である。
Furthermore, in JP-A-57-174104, a reactive functional group was introduced into the benzene ring of a polysulfone polymer, and after wet film formation from this polymer solution, it was treated with a solution of a hydrophilic substance that could react with the functional group. A method for crosslinking modification is disclosed. However, with this method, the separation membranes obtained are mostly limited to reverse osmosis membranes, and it is extremely difficult to produce a wide variety of classification membranes.

また、ポリサルホン系ポリマーのベンゼン環は概して反
応性が低く、導入しつる官能基の種類も限られ、また導
入率の制御ら極めて困難で、場合によっては過度に親水
化されて機械的強度や耐熱性が著しく低下することがあ
る。
In addition, the benzene ring of polysulfone polymers generally has low reactivity, and the types of functional groups that can be introduced are limited, and it is extremely difficult to control the introduction rate. There may be a marked decrease in sexual performance.

(本発明の構成) 本発明者らは、上記のような問題を解消して高い透水速
度を有し、かつポリサルホン系ポリマー特有の耐熱性・
耐薬品性および高い機械的強度を有するポリサルホン系
樹脂製分離膜について鋭意検討した結果、親水性共重合
体を幹ポリマーとし、ポリサルホン系ポリマーを枝ポリ
マーとするグラフトポリマーを含有する親水性ポリサル
ホン系樹脂製分離膜を発明した。
(Structure of the present invention) The present inventors have solved the above problems, have high water permeation rate, and have heat resistance and heat resistance peculiar to polysulfone polymers.
As a result of intensive studies on polysulfone-based resin separation membranes that have chemical resistance and high mechanical strength, we have developed a hydrophilic polysulfone-based resin containing a graft polymer in which a hydrophilic copolymer is used as a backbone polymer and a polysulfone-based polymer is used as a branch polymer. invented a manufactured separation membrane.

すなわち本発明は、「全重合度が100より太き(、そ
のうち親水性成分の重合度が全重合度の50%以上を占
める親水性共重合体を幹ポリマ−−とじ、重合度30以
上200以下のポリサルホン系ポリマーを技ポリマーと
するグラフトポリマーを含有する現水性ポリサルホン系
樹脂の溶液より湿式製膜されることを特徴とするポリサ
ルホン系樹脂製分離用模。Jである。
In other words, the present invention is directed to ``a hydrophilic copolymer having a total degree of polymerization of more than 100 (of which the degree of polymerization of the hydrophilic component accounts for 50% or more of the total degree of polymerization) is bound with a backbone polymer, and the degree of polymerization is 30 or more and 200 or more. A separation mold made of polysulfone resin, characterized in that it is wet film-formed from a solution of a water-based polysulfone resin containing a graft polymer using the following polysulfone polymer as a technical polymer.

本発明でいうポリサルホン系ポリマーとしては下記式(
[)〜(I[I)の構造を有する芳香族ポリサルホン系
ポリマーが代表的なものである。
The polysulfone polymer referred to in the present invention has the following formula (
Aromatic polysulfone polymers having structures of [) to (I[I) are representative.

本発明では上記のようなポリサルホン系ポリマーの末端
を親水性共重合体に化学結合さ仕たグラフトポリマーを
含むポリサルホン系樹脂を模索材として用いる。グラフ
トポリマーを含有するポリサルホン系樹脂を製造する為
には、反応性の官能基を側鎖に有する共重合体と、前記
官能基と反応しうる官能基を末端に有するポリサルホン
系ポリマーとを反応させるか、又はビニル基を末端に何
するポリサルホン系ポリマーをビニル系モノマー又はオ
リゴマーと共重合させる。具体的な反応性の官能基と、
これと反応しうる末端基の組み合せは公知の有機化学反
応から以下のような例が揚げられる。
In the present invention, a polysulfone resin containing a graft polymer in which the ends of a polysulfone polymer as described above are chemically bonded to a hydrophilic copolymer is used as a probe material. In order to produce a polysulfone resin containing a graft polymer, a copolymer having a reactive functional group in its side chain is reacted with a polysulfone polymer having a functional group at its end that can react with the functional group. Alternatively, a polysulfone polymer having a vinyl group at the end is copolymerized with a vinyl monomer or oligomer. A specific reactive functional group,
Examples of combinations of terminal groups that can react with this are given below from known organic chemical reactions.

(1)末端基が水酸基又はアルカリアルコラード基の場
合・ 酸ハライド基、酸無水物基、グリシジル基、へロメチル
基、スルホニルハライド基などの官能基。
(1) When the terminal group is a hydroxyl group or an alkali alcoholade group - Functional groups such as acid halide groups, acid anhydride groups, glycidyl groups, heromethyl groups, and sulfonyl halide groups.

(2)末端基がハロゲン化アルキル基又はハロゲン化ア
リール基の場合ニ ー←CHx→−0M基(Mはアルカリ金属、nは0 (
原子価結合)又は正の整数)、アミノ基(これは第1.
第2もしくは第3級であってよい)などの官能基。
(2) When the terminal group is a halogenated alkyl group or a halogenated aryl group, Ni←CHx→-0M group (M is an alkali metal, n is 0 (
valence bond) or positive integer), amino group (this is the first .
(which may be secondary or tertiary).

(3)末端基がアミノ基の場合: ハロゲン化アルキル基、酸ハライド基などの官能基。(3) When the terminal group is an amino group: Functional groups such as halogenated alkyl groups and acid halide groups.

(4)末端基がエポキシ基の場合ニ アミノ基、アルコラード基などの官能基。(4) When the terminal group is an epoxy group, Functional groups such as amino groups and alcoholade groups.

(5)末端基がカルボニル基の場合ニ ー N HN Hを基、水酸基などの官能基。(5) When the terminal group is a carbonyl group, - N HN H-based functional groups such as hydroxyl groups.

(6)末端基がカルボキシル基の場合:水酸基などの官
能基。
(6) When the terminal group is a carboxyl group: a functional group such as a hydroxyl group.

また、ポリサルホン系ポリマーへの末端基、共重合体へ
の官能基の導入方法も公知の有機化学反応を用いて行な
えばよく、特に限定しないが、前者の場合ポリサルホン
系ポリマーの重合度をできるだけ低下させないような条
件で反応を行なう必要がある。また後者の場合、共重合
前に行なうか、共重合後に行なうかは後述する親水性成
分の種類によって適宜選択する必要があり、また共重合
後に行なう場合には親水性成分の官能基を好ましくない
方向に変化させたり、あるいは重合度を低下させたりす
ることの□ないように適当な反応条件を設定する必要が
ある。
In addition, the method for introducing terminal groups into polysulfone-based polymers and functional groups into copolymers may be carried out using known organic chemical reactions, and is not particularly limited. It is necessary to conduct the reaction under conditions that do not cause In the latter case, it is necessary to appropriately select whether to carry out the process before or after the copolymerization depending on the type of hydrophilic component, which will be described later. In addition, if the process is carried out after the copolymerization, the functional group of the hydrophilic component is undesirable. It is necessary to set appropriate reaction conditions so as not to change the direction or reduce the degree of polymerization.

らちろん、反応性の官能基あるいは末端基を既に有して
いる市販のモノマー、オリゴマーあるいはポリサルホン
系ポリマーをそのまま用いてもよい。
Of course, commercially available monomers, oligomers, or polysulfone polymers that already have reactive functional groups or terminal groups may be used as they are.

以上述べてきたようなモノマーあるいは共重合体と末端
反応性のポリサルホン系ポリマーとを反応させて本発明
の分離膜の素材となるグラフトポリマー又はこれを含ん
だポリサルホン系樹脂を製造する。
The monomer or copolymer described above is reacted with a terminally reactive polysulfone polymer to produce a graft polymer or a polysulfone resin containing the graft polymer, which is a material for the separation membrane of the present invention.

この場合、注意しなければならないのはポリサルホン系
ポリマーの末端基の片側のみが反応しうるような反応条
件を設定するということである。
In this case, care must be taken to set reaction conditions such that only one side of the terminal group of the polysulfone polymer can react.

もし両末端基が反応にあずかることになると架橋反応が
起こり、溶媒に不溶性のゲル状物となって本発明の分離
膜を製造する為の湿式製膜法に用いることかできなくな
ってしまう。従って予め反応性の末端基をポリサルホン
系ポリマーの片側のみに導入しておくか、又は両末端基
のうち一方の末端基のみを活性化させるか、どちらかの
方法を適用する。
If both terminal groups participate in the reaction, a crosslinking reaction will occur, resulting in a gel-like substance insoluble in a solvent, which can no longer be used in the wet membrane forming method for producing the separation membrane of the present invention. Therefore, either a method is applied in which a reactive end group is introduced in advance on only one side of the polysulfone polymer, or only one of both end groups is activated.

また、公知のグラフト反応がそうであるように、上記の
方法で製造されたポリマー生成−物も常に100%グラ
フトポリマーであるとは限らない。
Also, as with known grafting reactions, the polymer products produced by the above method are not always 100% grafted polymers.

すなわち残存モノマー又は残存共重合体を再沈法等で除
去した後のポリマー生成物中には未反応のポリサルホン
系ポリマーとグラフトポリマーの両方が混在しうる。本
発明ではこのポリマー生成物すなわち親水性ポリサルホ
ン系樹脂中のグラフトポリマーの割合が少なくとも20
モル%以上、好ましくは40モル%以上になるようにグ
ラフト反応の条件を調整する必要がある。もし20モル
%未満しかグラフトポリマーが含まれていないとポリサ
ルホン系樹脂の親水性をあまり向上させることはできず
、従ってこのような樹脂から製造された分離膜は透水速
度が低い場合が多い。
In other words, both the unreacted polysulfone polymer and the graft polymer may coexist in the polymer product after the remaining monomer or remaining copolymer is removed by a reprecipitation method or the like. In the present invention, the proportion of the graft polymer in the polymer product, i.e., the hydrophilic polysulfone resin, is at least 20%.
It is necessary to adjust the grafting reaction conditions so that the amount is at least mol %, preferably at least 40 mol %. If less than 20 mol % of the graft polymer is contained, the hydrophilicity of the polysulfone resin cannot be significantly improved, and therefore separation membranes manufactured from such resin often have a low water permeation rate.

またグラフトポリマーの構造1組成も樹脂の親水性即ち
分離膜の透水性能に影響を与える。本発明では全重合度
が100より大きく、そのうち親水性成分の重合度が全
重合度の50%以上を占める親水性共重合体を幹ポリマ
ーとし、重合度30以上200以下のポリサルホン系ポ
リマーを枝ポリマーとするグラフトポリマーである必要
がある。
Furthermore, the structure 1 composition of the graft polymer also affects the hydrophilicity of the resin, that is, the water permeability of the separation membrane. In the present invention, a hydrophilic copolymer with a total polymerization degree of more than 100, in which the polymerization degree of the hydrophilic component accounts for 50% or more of the total polymerization degree, is used as the main polymer, and a polysulfone-based polymer with a polymerization degree of 30 to 200 is used as a branch polymer. It must be a graft polymer.

従って例えば幹ポリマーの全重合度が120のときは親
水性成分の重合度は60以上であり、他の共重合成分の
一部又は全部にポリサルホン系ポリマーが末端基で結合
することになる。またポリサルホン系ポリマーの重合度
が30未満である場合は、ポリサルホン系ポリマーの耐
熱性や機械的強度を充分に発揮させることが出来ない。
Therefore, for example, when the total polymerization degree of the backbone polymer is 120, the polymerization degree of the hydrophilic component is 60 or more, and the polysulfone polymer is bonded to some or all of the other copolymer components through the terminal group. Further, if the degree of polymerization of the polysulfone-based polymer is less than 30, the heat resistance and mechanical strength of the polysulfone-based polymer cannot be fully exhibited.

また、ポリサルホン系ポリマーの重合度を200より大
きくすることは現在の重合技術では極めて困難であり、
これに対して30以上200以下に重合度を制御するこ
とは技術的にも経済的にも容易であり、工業的な利点が
大きい。
Furthermore, it is extremely difficult to increase the degree of polymerization of polysulfone polymers to greater than 200 using current polymerization technology.
On the other hand, controlling the degree of polymerization to 30 or more and 200 or less is technically and economically easy, and has great industrial advantages.

また前記の幹ポリマー中の親水性成分としては下記の構
造の1種又は2t1以上を繰り返し単位として有してい
ることが好ましい。
Further, the hydrophilic component in the above-mentioned backbone polymer preferably has one of the following structures or 2t1 or more as a repeating unit.

−CR,−CH,− ■ ここでR1は水素又はメチル基である。-CR, -CH, - ■ Here, R1 is hydrogen or a methyl group.

Ra 、 R?及びRoはそれぞれ炭素原子1ないし2
0個を有する脂肪族炭化 水素基であり、XOはハロゲンイオ ンである。
Ra, R? and Ro each have 1 to 2 carbon atoms
It is an aliphatic hydrocarbon group having 0 atoms, and XO is a halogen ion.

である。It is.

本発明では以上説明してきたようなグラフトポリマーを
含有するポリサルホン系樹脂の溶液を用いて湿式製膜法
により本発明の分離膜を製造する。
In the present invention, the separation membrane of the present invention is manufactured by a wet membrane forming method using a solution of a polysulfone resin containing a graft polymer as described above.

ポリサルホン系樹脂溶液(以後ドープと称す)中の樹脂
濃度は、製造しようとする分離膜が高分画性の限外濾過
膜ないしは精密S濾過膜の場合には5重量%以上30重
量%未満であることが好ましい。低分画性の限外濾過膜
や逆浸透膜を製造する場合には10重量%以上40重量
%未満であることが好ましい。
The resin concentration in the polysulfone resin solution (hereinafter referred to as dope) is 5% by weight or more and less than 30% by weight when the separation membrane to be manufactured is a high fractionation ultrafiltration membrane or precision S filtration membrane. It is preferable that there be. When manufacturing ultrafiltration membranes or reverse osmosis membranes with low fractionation properties, the content is preferably 10% by weight or more and less than 40% by weight.

また用いる溶媒は親水性ポリサルホン系樹脂を溶解する
有機溶剤であれば特に限定しないが、例えばN、N−ジ
メチルアセトアミド、N、N−ジメチルホルムアミド、
N−メチル−2−ピロリドン、ジメチルスルホキシド、
2−ピロリドン等を例示することができる。また、この
ような極性有機溶剤に非溶剤や電解質などを添加したり
することもできる。
The solvent used is not particularly limited as long as it is an organic solvent that dissolves the hydrophilic polysulfone resin, but examples include N,N-dimethylacetamide, N,N-dimethylformamide,
N-methyl-2-pyrrolidone, dimethyl sulfoxide,
Examples include 2-pyrrolidone. Moreover, a non-solvent, an electrolyte, etc. can also be added to such a polar organic solvent.

以上説明して来たドープから本発明の分離膜を製膜する
にあたっては従来から用いられている湿式製膜法を採用
することができる。
In forming the separation membrane of the present invention from the dope described above, a conventional wet film forming method can be employed.

シート状あるいは管状に分離膜を形成させるには、シー
ト状あるいは管状の適当な支持体(たとえばガラス仮あ
るいは管、不織布、布など)上にドープを厚さ数十ミク
ロン−数百ミクロンの範囲で適当な方法により流延し、
しかる後に凝固剤浴に浸漬してゾル−ゲル相変換による
分離膜を製造する。また公知方法でドープを中空糸成形
ノズルを経て紡糸することにより、中空糸分離膜の製造
が可能である。
To form a separation membrane in the form of a sheet or tube, a dope is applied to a thickness of several tens of microns to several hundred microns on a suitable sheet or tube support (e.g. glass temporary or tube, non-woven fabric, cloth, etc.). Casting by an appropriate method,
Thereafter, it is immersed in a coagulant bath to produce a separation membrane by sol-gel phase conversion. Further, a hollow fiber separation membrane can be manufactured by spinning the dope through a hollow fiber forming nozzle using a known method.

製膜に用いられる凝固剤としてはポリサルホン系樹脂の
非溶剤であり、極性有機溶剤と混ざりやすい、例えば水
、食塩や界面活性剤などの電解質の水溶液、極性有機溶
剤の水溶液あるいは親水性ポリサルホン系樹脂の非溶剤
又はその水溶液などが例示されるが、特に一般的には水
が用いられる。
Coagulants used in film formation are non-solvents for polysulfone resins and easily mix with polar organic solvents, such as water, aqueous solutions of electrolytes such as salt and surfactants, aqueous solutions of polar organic solvents, or hydrophilic polysulfone resins. Examples include non-solvents or aqueous solutions thereof, and water is particularly commonly used.

(本発明による効果) 本発明の分離膜の特徴は以上述べて来たような親水性ポ
リサルホン系樹脂溶液を湿式製膜することによって発現
する。すなわち親水性グラフトポリマーの存在により、
湿式製膜時に親水性幹ポリマーに富む成分とポリサルホ
ン系ポリマーに富む成分とにミクロ相分離し、しかもポ
リサルホン系ポリマーの水中での凝集スピードが昔しく
速い為、親水性幹ポリマーがポリサルホン系ポリマーマ
トリックス表面に押し出されることになる。この結果、
得られた分離膜の微孔表面は親水性幹ポリマー成分に富
み、親水性が著しく向上し、分離膜の透水速度も極めて
高いものとなる。しかも分離膜の構造を実質的に決定し
ているポリマーマトリックスがポリサルホン系ポリマー
から形成されている為、分離膜の機械的強度のみならず
、耐熱性や耐薬品性らポリサルホン系ポリマーのそれに
匹敵するレベルに達することになる。従って、従来の親
水性ポリマーベースの分離膜、例えばセルロースアセテ
ートからなる分離膜が耐えられなかったような過酷な条
件下の膜分離操作に存効に使用することが出来る。
(Effects of the Present Invention) The characteristics of the separation membrane of the present invention are manifested by wet membrane formation of the hydrophilic polysulfone resin solution as described above. In other words, due to the presence of the hydrophilic graft polymer,
During wet film formation, microphase separation occurs into a component rich in hydrophilic backbone polymers and a component rich in polysulfone polymers, and since the aggregation speed of polysulfone polymers in water is traditionally fast, the hydrophilic backbone polymers form a polysulfone polymer matrix. It will be pushed to the surface. As a result,
The microporous surface of the resulting separation membrane is rich in hydrophilic backbone polymer components, resulting in significantly improved hydrophilicity and extremely high water permeation rate of the separation membrane. Furthermore, since the polymer matrix that essentially determines the structure of the separation membrane is made of polysulfone polymer, the separation membrane's mechanical strength as well as heat resistance and chemical resistance are comparable to those of polysulfone polymer. level will be reached. Therefore, it can be effectively used in membrane separation operations under harsh conditions that conventional hydrophilic polymer-based separation membranes, such as separation membranes made of cellulose acetate, cannot withstand.

次に実施例により本発明を具体的に説明するが、純水透
水係数(Lp)、Lpの経時低下率(β)、および卵白
アルブミンの排除率(Ro)はそれぞれ(但し3濾過1
時間後の[、p値をt、b、a時間後のLP値をL3と
する。) で定義されたしのである。
Next, the present invention will be specifically explained with reference to Examples.
[, p value after time is t, b, LP value after a time is L3. ) is defined by .

また、フィルムの接触角はエルマのゴニオメータ−式接
触角測定器G−1型により25℃における水との接触角
をホリ定した。
The contact angle of the film was determined by measuring the contact angle with water at 25° C. using an Elma goniometer type contact angle measuring device Model G-1.

ポリマーの重合度はKNAUER社製の蒸気浸透圧計に
より測定し、幹ポリマーとグラフトポリマーの構造及び
組成は元素分析及びNMR(to。
The degree of polymerization of the polymer was measured using a steam osmometer manufactured by KNAUER, and the structure and composition of the backbone polymer and graft polymer were determined by elemental analysis and NMR (to).

MHz又は270MHz)により決定した。MHz or 270MHz).

また分離膜の?過吸着虫の測定は150ppfflのチ
トクロムCリン酸バッファー溶液(25℃)を用いて行
なった。
And the separation membrane? The measurement of hyperadsorbed insects was carried out using 150 ppffl of cytochrome C phosphate buffer solution (25°C).

すなわちS濾過能のチトクロムC78eLの濃度をCH
I)I’ll 容量をV、m/(約50m/)とし、こ
れを有効膜面積S cm”(15、2cm”)の分離膜
にて加圧3 kg/cm”で容ff1v、I11!(約
10m/)までS濾過、濃縮したとき、et縮液の濃度
Czpりm、透過液の容量V3m/、濃度C8ppmを
用いて、分離膜表面への吸着fftm(μg/cm″)
を次式により算出することが出来る。ただし、この場合
吸着が有効膜面積で生じていると仮定している。
In other words, the concentration of cytochrome C78eL with S filtration ability is CH
I) I'll The capacity is set to V, m/ (approximately 50 m/), and this is applied with a pressure of 3 kg/cm'' using a separation membrane with an effective membrane area of S cm'' (15, 2 cm''), and the volume is ff1v, I11! (approximately 10 m/), adsorption on the separation membrane surface fftm (μg/cm'') using the concentration of et condensate Czpm, the volume of permeate V3m/, and the concentration C8ppm.
can be calculated using the following formula. However, in this case it is assumed that adsorption occurs over the effective membrane area.

(実 施 例) 次に実施例によってこの発明をさらに具体的に説明する
(Examples) Next, the present invention will be explained in more detail with reference to Examples.

実施例1 末端が水酸基である(1)式のポリサルホン系ポリv−
(V 1ctrex 5003 p、インペリアルケミ
カルインダストリーズ社製1重合度52)60gをジメ
チルスルホキシド(以下DMS O)400m/と塩化
ベンゼン (以下PhC/ )200 m/の混合溶媒
に室温で溶解し、これに0.5Nの    ・NaOH
水溶液水溶液1令 せ、末端がナトリウムフェルレート型のポリサルホン系
ポリマーの溶液Aを得た。
Example 1 Polysulfone-based polyv- of the formula (1) whose terminal is a hydroxyl group
(V 1ctrex 5003 p, manufactured by Imperial Chemical Industries, Inc. 1 polymerization degree 52) was dissolved at room temperature in a mixed solvent of 400 m/dimethyl sulfoxide (DMSO) and 200 m/benzene chloride (PhC/) at room temperature. .5N ・NaOH
Aqueous solution A solution A of a polysulfone polymer having a sodium ferulate terminal was obtained by preparing an aqueous solution.

一方、幹ポリマ−として下記の組成(重合度149)を
有する ランダム共重合体を公知のラジカル共重合法により合成
し、この50gをDMSO2001m/とPhC /I
Q(1m/の混合溶媒に溶解し溶液Bを得た。この溶液
を室温で前述の溶液Aにゆっくり加え、室温でIhr.
70℃で2hr反応させた後、濃硫酸0、5m/を加え
て反応を停止した。
On the other hand, a random copolymer having the following composition (degree of polymerization 149) as a backbone polymer was synthesized by a known radical copolymerization method, and 50 g of this was mixed with DMSO2001m/ and PhC/I
Solution B was obtained by dissolving Q (1 m/ml) in a mixed solvent. This solution was slowly added to the above solution A at room temperature, and the mixture was heated to Ihr.
After reacting at 70°C for 2 hours, 0.5 m/ml of concentrated sulfuric acid was added to stop the reaction.

反応混合物をメタノール/水−80/20(容積比)に
て再沈後、遠心分離にてメタノール/水−8 0/2 
0による洗浄をくり返し残存する未反応の親水性幹ポリ
マ−を完全に除去した。精製後のポリマー生成物を分析
したところ、下記の組成を育するグラフトポリマーであ
った。
The reaction mixture was reprecipitated in methanol/water - 80/20 (volume ratio), and then centrifuged to methanol/water - 80/2.
The remaining unreacted hydrophilic backbone polymer was completely removed by repeated washing with 0. Analysis of the purified polymer product revealed that it was a graft polymer with the following composition.

このグラフトポリマーをD M S Oに15重単形ポ
リマー濃度で溶解し、この溶液をガラス板上に400μ
mに流延後、90℃にてゆっくりとDMSOを蒸発させ
て非多孔質のフィルムを作製した。
This graft polymer was dissolved in DMSO at a concentration of 15-fold monomorphic polymer, and the solution was spread onto a glass plate in a 400μ
After casting, DMSO was slowly evaporated at 90° C. to produce a non-porous film.

ガラス板からフィルムをは(離後エタノール/水= 5
 0 / 5 0 (容積比)に2 4 hr浸漬して
DMS Oを完全に除去後、50℃にて24hr乾燥し
接触角を測定したところ57°という低い値を示しグラ
フトポリマーが親水性であることがわかった。
Remove the film from the glass plate (after removal ethanol/water = 5
After completely removing DMSO by immersing it in 0/50 (volume ratio) for 24 hours, it was dried at 50°C for 24 hours and the contact angle was measured, which showed a low value of 57°, indicating that the graft polymer is hydrophilic. I understand.

この親水性グラフトポリマーの15重量部をN−メチル
−2−ピロリドンを主とする混合溶媒85重量部に溶解
した後、ポリエステル不織布上に厚み150μmで流延
し、10℃の水中に浸漬して分離膜を得た。この分離膜
のO濾過吸着量mを測定したところ22μg/cm”で
あり、肉眼でもチトクロムCによる膜表面の染色は認め
られなかった。
After dissolving 15 parts by weight of this hydrophilic graft polymer in 85 parts by weight of a mixed solvent mainly containing N-methyl-2-pyrrolidone, it was cast onto a polyester nonwoven fabric to a thickness of 150 μm, and immersed in water at 10°C. A separation membrane was obtained. The O filtration adsorption amount m of this separation membrane was measured and found to be 22 μg/cm'', and no staining of the membrane surface by cytochrome C was observed with the naked eye.

またLAは101I13/1111・日・kg/cm’
、βは3%であり、高い透水速度と経時安定性を示した
Also, LA is 101I13/1111・day・kg/cm'
, β was 3%, indicating high water permeation rate and stability over time.

比較例1 グラフトポリマーの代わりに実施例1のグラフト反応に
用いたポリサルホン系ポリマー(V ict −rex
 5003p)を用いる以外は実施例1と同様の方法で
フィルムと分離膜を作製した。
Comparative Example 1 Polysulfone-based polymer (Vict-rex
A film and a separation membrane were produced in the same manner as in Example 1, except that 5003p) was used.

フィルムの接触角は76°であり著しく疎水性であった
。また分離膜もl11= 74μg/cI!1″という
高い吸着量を示し膜表面はチトクロムCによって赤く染
色されてしまった。一方L^は7.1m’/a+″・日
・kg/c+a”と低く、βも20%であり透水速度の
経時低下が著しかった。
The film had a contact angle of 76° and was extremely hydrophobic. Also, the separation membrane l11 = 74μg/cI! The adsorption amount was as high as 1'', and the membrane surface was stained red by cytochrome C. On the other hand, L^ was low at 7.1 m'/a+''・day・kg/c+a'', and β was also 20%, indicating a water permeation rate. The decrease over time was significant.

特許出願人  ダイセル化学工業株式会社代理人  弁
理士 越 場    隆 手続補正書(自発)
Patent applicant Daicel Chemical Industries, Ltd. agent Patent attorney Takashi Koshiba Procedural amendment (voluntary)

Claims (3)

【特許請求の範囲】[Claims] (1)全重合度が100より大きく、そのうち親水性成
分の重合度が全重合度の50%以上を占める親水性共重
合体を幹ポリマーとし、重合度30以上200以下のポ
リサルホン系ポリマーを枝ポリマーとするグラフトポリ
マーを含有する親水性ポリサルホン系樹脂の溶液より湿
式製膜されることを特徴とするポリサルホン系樹脂製分
離用膜。
(1) The main polymer is a hydrophilic copolymer with a total polymerization degree of more than 100, in which the polymerization degree of the hydrophilic component accounts for 50% or more of the total polymerization degree, and a polysulfone-based polymer with a polymerization degree of 30 to 200 is used as a branch polymer. A separation membrane made of a polysulfone resin, characterized in that it is wet-formed from a solution of a hydrophilic polysulfone resin containing a graft polymer as a polymer.
(2)親水性成分が下記の構造の1種又は2種以上を繰
り返し単位として有することを特徴とする特許請求の範
囲第1項記載のポリサルホン系樹脂製分離用膜。 ▲数式、化学式、表等があります▼ ここでR_1は水素又はメチル基である。 また、R_2は▲数式、化学式、表等があります▼、▲
数式、化学式、表等があります▼、▲数式、化学式、表
等があります▼、 ■OOM(Mは水素、又はカルボン酸イオンとイオン結
合するアルカリ金属又は塩基性物質である。)、 ■OOR_3(R_3は炭素原子1ないし20個を有す
る脂肪族炭化水素基である。)、 ■ONR_4R_5(R_4・R_5は各々水素又は炭
素原子1ないし20個を有する脂肪族炭 化水素基である。)、 ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼ (nは0(原子価結合)〜10の整数。 Mは水素、又はスルホン酸イオンとイオン結合するアル
カリ金属又は塩基性物質である。) ▲数式、化学式、表等があります▼ R_6、R_7及びR_8はそれぞれ炭素原子1ないし
20個を有する脂肪族炭化水素基であり、X^■はハロ
ゲンイオンである。 又は▲数式、化学式、表等があります▼ (R_9は炭素原子1ないし20個を有する脂肪族炭化
水素基、nは4〜6の整数、X^■はハロゲンイオンで
ある。) である。
(2) The polysulfone resin separation membrane according to claim 1, wherein the hydrophilic component has one or more of the following structures as repeating units. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Here, R_1 is hydrogen or a methyl group. Also, R_2 has ▲ mathematical formulas, chemical formulas, tables, etc. ▼, ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ■OOM (M is hydrogen or an alkali metal or basic substance that ionically bonds with a carboxylic acid ion.), ■OOR_3 ( R_3 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms.), ■ONR_4R_5 (R_4 and R_5 are each hydrogen or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.), ▲Formula , chemical formulas, tables, etc. ▼ or ▲ Numerical formulas, chemical formulas, tables, etc. (It is a substance.) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ R_6, R_7 and R_8 are aliphatic hydrocarbon groups each having 1 to 20 carbon atoms, and X^■ is a halogen ion. Or ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (R_9 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, n is an integer of 4 to 6, and X^■ is a halogen ion.)
(3)ポリサルホン系ポリマーが、以下の( I )〜(
III)のうち少なくとも1種類の繰り返し単位を有する
ことを特徴とする特許請求の範囲第1項記載のポリサル
ホン系樹脂製分離用膜。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III)
(3) The polysulfone polymer is one of the following (I) to (
The separation membrane made of polysulfone resin according to claim 1, characterized in that it has at least one type of repeating unit of III). ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (I) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (III)
JP61232904A 1986-09-30 1986-09-30 Separation membrane Expired - Fee Related JP2613764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232904A JP2613764B2 (en) 1986-09-30 1986-09-30 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232904A JP2613764B2 (en) 1986-09-30 1986-09-30 Separation membrane

Publications (2)

Publication Number Publication Date
JPS6388003A true JPS6388003A (en) 1988-04-19
JP2613764B2 JP2613764B2 (en) 1997-05-28

Family

ID=16946657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232904A Expired - Fee Related JP2613764B2 (en) 1986-09-30 1986-09-30 Separation membrane

Country Status (1)

Country Link
JP (1) JP2613764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2365022A1 (en) 2010-03-11 2011-09-14 Gambro Lundia AB Graft copolymers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582251A (en) * 1991-09-20 1993-04-02 Matsushita Electric Ind Co Ltd Induction heating cooker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582251A (en) * 1991-09-20 1993-04-02 Matsushita Electric Ind Co Ltd Induction heating cooker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2365022A1 (en) 2010-03-11 2011-09-14 Gambro Lundia AB Graft copolymers
WO2011110600A1 (en) 2010-03-11 2011-09-15 Gambro Lundia Ab Graft copolymers
US8748538B2 (en) 2010-03-11 2014-06-10 Gambro Lundia Ab Graft copolymers

Also Published As

Publication number Publication date
JP2613764B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US4207182A (en) Polymeric compositions for membranes
US4262041A (en) Process for preparing a composite amphoteric ion exchange membrane
US5401410A (en) Membrane and process for the production thereof
US4160791A (en) Polycarbonate membranes and production thereof
JPS62201603A (en) Hydrophilic polysulfone membrane
JPS6238205A (en) Semi-permeable membrane for separation
JPH024429A (en) Asymmetric hydrophilic membrane of macropore substance, method for its manufacture and method for improving retention ability of the membrane
JPH01215348A (en) Cation exchanger
JPH02160026A (en) Hydrophilic separation membrane
US5536408A (en) Hydrophilic, asymmetric, chemically-resistant polyaramide membrane
JPS62168503A (en) Separation membrane
KR102328470B1 (en) Copolymers and trimers based on chlorotrifluoroethylene and vinyl chloride and their uses
JPS6388003A (en) Separation membrane
EP3621997B1 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
JPH022862A (en) Modified separating membrane
JPH0751632B2 (en) Hydrophilized polyethylene sulfone membrane
JP3948993B2 (en) Polysulfone copolymer
US20050006302A1 (en) Process for the preparation of porous membrane
JPS63258930A (en) Aromatic polymer
JPS63258603A (en) Aromatic polymer membrane
US4614586A (en) Semipermeable polymeric film membrane
JPS62199621A (en) Aromatic polysulfone resin provided with hydrophilicity
JPS6329562B2 (en)
JPS6384603A (en) Permselective membrane
CA1313736C (en) Method of manufacturing a reverse osmosis membrane and the membrane so produced

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees