JPS62168503A - Separation membrane - Google Patents

Separation membrane

Info

Publication number
JPS62168503A
JPS62168503A JP796186A JP796186A JPS62168503A JP S62168503 A JPS62168503 A JP S62168503A JP 796186 A JP796186 A JP 796186A JP 796186 A JP796186 A JP 796186A JP S62168503 A JPS62168503 A JP S62168503A
Authority
JP
Japan
Prior art keywords
polysulfone
polymer
tables
formulas
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP796186A
Other languages
Japanese (ja)
Other versions
JPH0582251B2 (en
Inventor
Makoto Tamada
玉田 真
Zenjiro Honda
善次郎 本田
Kiyoshi Iwai
清 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP796186A priority Critical patent/JPS62168503A/en
Publication of JPS62168503A publication Critical patent/JPS62168503A/en
Publication of JPH0582251B2 publication Critical patent/JPH0582251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers

Abstract

PURPOSE:To enhance the hydrophilic property and water transmitting speed of a polysulfone separation membrane excellent in heat resistance, chemical resistance and mechanical strength, by forming a membrane using a polymer obtained by the graft polymerization of polysulfone with a hydrophilic copolymer according to a wet membrane forming process. CONSTITUTION:The terminal of polysulfone is chemically bonded to a hydrophilic copolymer to prepare a graft polymer. In preparing the graft polymer, a method for reacting polysulfone having a reactive terminal functional group with the hydrophilic copolymer having a functional group capable of reacting said functional group in the side chain thereof or a method for reacting polysulfone having a terminal vinyl group and a vinyl monomer is used and the amount of the graft polymer is set at least to 20mol% or more. A separation membrane is prepared using this polymer according to a wet membrane forming process. The obtained membrane can be enhanced in its water transmitting speed while the heat resistance and mechanical strength of polysulfone are kept.

Description

【発明の詳細な説明】 (技術の背景) 本発明は親水性グラフトポリマーを含むポリサルホン系
樹脂から成る新規な分離膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Background) The present invention relates to a novel separation membrane made of a polysulfone resin containing a hydrophilic graft polymer.

膜分離技術は、その省エネルギー性、コンパクト性とい
った面で注目され、めざましく進展してきた。このよう
なシステムに用いられる選択透過性分離膜の膜素材とし
ては多種類のポリマーが研究開発され、セルロース系、
ポリアミド系、ポリアクリロニトリル系、ポリカーボネ
ート系、ポリフェニレンオキサイド系、ポリサルホン系
などのポリマーが使用されている。
Membrane separation technology has attracted attention for its energy saving and compactness, and has made remarkable progress. Many types of polymers have been researched and developed as membrane materials for permselective separation membranes used in such systems, including cellulose,
Polymers such as polyamide, polyacrylonitrile, polycarbonate, polyphenylene oxide, and polysulfone are used.

なかでも、ポリサルホン系をはじめ、ポリカーボ$−)
系、ポリフェニレンオキサイド系、含フッ素系などの疎
水性ポリマーは、元来エンジニャリングプラスチックと
して使用されているものであるが、耐熱性および機械的
性質がすぐれていることから分離膜の素材として本使用
されるようになってきている。
Among them, polysulfones and polycarbohydrates ($-)
Hydrophobic polymers such as polyphenylene oxide, polyphenylene oxide, and fluorine-containing polymers are originally used as engineering plastics, but because of their excellent heat resistance and mechanical properties, they have become the main material for separation membranes. It is starting to be used.

これらの膜素材の中で芳香族ポリサルホン系の膜は機械
的強度が大きく、耐熱性、耐薬品性が優れているものと
して注目されてきている。
Among these membrane materials, aromatic polysulfone membranes are attracting attention as they have high mechanical strength, excellent heat resistance, and chemical resistance.

(従来技術およびその欠点) しかしながら芳香族ポリサルホン系樹脂は親水性が低く
、水に濡れにくい素材であるために、これを素材とした
分離膜は親水性素材から成る分離膜に比べて著しく透水
速度が低く、濾過効率が悪い。
(Prior art and its disadvantages) However, aromatic polysulfone resin has low hydrophilicity and is a material that is difficult to wet with water, so separation membranes made of this resin have a significantly higher water permeation rate than separation membranes made of hydrophilic materials. is low, resulting in poor filtration efficiency.

そこでこれまで芳香族ポリサルホンの分離膜の透水性能
を向上させるべく種々の試みがなされて来た。
Therefore, various attempts have been made to improve the water permeability of aromatic polysulfone separation membranes.

たとえに特開昭58−104940では分子量10万以
上のポリビニルビ四リドンを含有するボリサルホン系分
離膜とその製造方法がある。しかしながら10万以上の
分子量を有する親水性ポリマーを製膜用溶液(ドープと
呼ぶ)に添加するこの方法においては、ドープのポリマ
ー密度を増大させることになシ、このようなドープから
製膜されたポリサルホン系分離膜紘添加された親水性高
分子が換金体中にそのまま残存しており、その後の使用
においても除去されないため著しく緻密な構造となりて
透水速度はかえって低下してしまう。
For example, JP-A-58-104940 discloses a polysulfone separation membrane containing polyvinylbitetraridone having a molecular weight of 100,000 or more and a method for producing the same. However, this method of adding a hydrophilic polymer with a molecular weight of 100,000 or more to a film-forming solution (called a dope) does not increase the polymer density of the dope. The hydrophilic polymer added to the polysulfone separation membrane remains in the exchange body and is not removed even during subsequent use, resulting in an extremely dense structure and a decrease in water permeation rate.

一方、オリゴマー程度の分子量を有するポリエチレング
リコールをポリサルホン溶液に添加してドープとして用
いる方法が特開昭54−26283に開示さiている。
On the other hand, JP-A-54-26283 discloses a method in which polyethylene glycol having a molecular weight comparable to that of an oligomer is added to a polysulfone solution and used as a dope.

しかしながら、この方法では製膜の凝固浴として水を用
いてお夛、オリゴマー程度のポリエチレングリコールで
は膜中に残存することなくすべて水中に溶出してしまい
、実質的にポリサルホン膜の親水性は高められず、著し
い透水速度の向上は望めない。
However, in this method, water is used as a coagulation bath for film formation, and oligomer-level polyethylene glycol does not remain in the film but is completely eluted into the water, and the hydrophilicity of the polysulfone film is not substantially increased. Therefore, no significant improvement in water permeation rate can be expected.

また、特開昭57−174104ではポリサルホン系ポ
リマーのベンゼン環に反応性の官能基を導6一 入し、このポリマー溶液から湿式製膜後、前記の官能基
と反応しうる親水性物質の溶液で処理して架橋変性する
方法が開示されている。しかしながら、この方法では得
られる分離膜かはとんど逆浸透膜に限られてしまい、広
範囲の種類の分離膜を製造することは極めて困難である
In addition, in JP-A-57-174104, a reactive functional group is introduced into the benzene ring of a polysulfone polymer, and after wet film formation from this polymer solution, a solution of a hydrophilic substance that can react with the functional group is added. A method for crosslinking modification by treatment with is disclosed. However, the separation membranes obtained by this method are limited to reverse osmosis membranes, and it is extremely difficult to manufacture a wide variety of separation membranes.

また、ポリサルホン系ポリマーのベンゼン環は概して反
応性が低く、導入しうる官能基の種類も限られ、また導
入率の制御も極めて困難で、場合によっては過度に親水
化されて機械的強度や耐熱性が著しく低下することがあ
る。
In addition, the benzene rings of polysulfone polymers generally have low reactivity, which limits the types of functional groups that can be introduced, and it is extremely difficult to control the introduction rate. There may be a marked decrease in sexual performance.

(本発明の構成) 本発明者らは、上記のような問題を解消して高い透水速
度を有し、かつポリサルホン系ポリマー特有の耐熱性、
耐薬品性および高い機械的強度を有するポリサルホン系
樹脂製分離膜について鋭意検討した結果、親水性共重合
体を幹ポリマーとし、ポリサルホン系ポリマーを枝ポリ
マーとするグラフトポリマーを含有する親水性ポリサル
ホン系樹脂製分離膜を発明□した。
(Structure of the present invention) The present inventors have solved the above-mentioned problems, have a high water permeation rate, and have heat resistance peculiar to polysulfone polymers.
As a result of intensive studies on polysulfone-based resin separation membranes that have chemical resistance and high mechanical strength, we have developed a hydrophilic polysulfone-based resin containing a graft polymer in which a hydrophilic copolymer is used as a backbone polymer and a polysulfone-based polymer is used as a branch polymer. Invented a manufactured separation membrane.

すなわち本発明は、[全重合度が4以上100・以下で
、そのうち親水性成分の重合度が全重合度の50)以上
を占める親水性共重合体を幹ポリマーとし、重合度30
以上100以下のポリサルホン系ポリマーを枝ポリマー
とするグラフトポリマーを含有する親水性ポリサルホン
系樹脂の溶液より湿式製膜されることを特徴とするポリ
サルホン系樹脂製分離膜。」である。
That is, the present invention uses a hydrophilic copolymer having a total polymerization degree of 4 or more and 100 or less, of which the polymerization degree of the hydrophilic component accounts for 50 or more of the total polymerization degree, as a backbone polymer, and a polymerization degree of 30.
A separation membrane made of a polysulfone resin, characterized in that it is wet-formed from a solution of a hydrophilic polysulfone resin containing a graft polymer having polysulfone polymers having a molecular weight of 100 or less as branch polymers. ”.

本発明でいうポリサルホン系ポリマーとしては下記式(
I)〜(m)の構造を有する芳香族ポリサルホン系ポリ
マーが代表的なものである。
The polysulfone polymer referred to in the present invention has the following formula (
Aromatic polysulfone polymers having structures I) to (m) are representative.

本発明では上記のようなポリサルホン系ポリマーの末端
を親水性共重合体に化学結合させたグラフトポリマーを
含むポリサルホン系樹脂を膜素材として用いる。グラフ
トポリマーを含有するポリサルホン系樹脂を製造する為
には、反応性の官能基を側鎖に有する共重合体と、前記
官能基と反応しうる官能基を末端に有するポリサルホン
系ポリマーとを反応させるか、又はビニル基を末端に有
するポリサルホン系ポリマーをビニル糸上ツマ−又はオ
リゴマーと共重合させる。具体的な反応性の官能基と、
これと反応しうる末端基の組み合せは公知の有機化学反
応から以下のような例が挙げられる。
In the present invention, a polysulfone resin containing a graft polymer in which the terminal end of a polysulfone polymer as described above is chemically bonded to a hydrophilic copolymer is used as a membrane material. In order to produce a polysulfone resin containing a graft polymer, a copolymer having a reactive functional group in its side chain is reacted with a polysulfone polymer having a functional group at its end that can react with the functional group. Alternatively, a polysulfone-based polymer having a vinyl group at the end is copolymerized with a vinyl yarn yarn or oligomer. A specific reactive functional group,
Examples of combinations of end groups that can react with this are listed below from known organic chemical reactions.

(1)末端基が水酸基又はアルカリアルコラード基の場
合: 酸ハシイド基、酸無水物基、グリシジル基、ハロメチル
基、スルホニルハライド基などの官能基。
(1) When the terminal group is a hydroxyl group or an alkali alcoholade group: A functional group such as an acid hashide group, an acid anhydride group, a glycidyl group, a halomethyl group, or a sulfonyl halide group.

(2)末端基がハロゲン化アルキル基又はハロゲン化ア
リール基の場合: +C鳥±i0M基(Mはアルカリ金属、nはO(原子価
結合)又は正の整数)、アミノ基(これは第1.第2も
しくは第3級であってよい)などの官能基。
(2) When the terminal group is a halogenated alkyl group or a halogenated aryl group: +C ± i0M group (M is an alkali metal, n is O (valent bond) or a positive integer), an amino group (this is the first . may be secondary or tertiary).

(3)末端基がアミノ基の場合: ハロゲン化アルキル基、酸ハライド基などの官能基。(3) When the terminal group is an amino group: Functional groups such as halogenated alkyl groups and acid halide groups.

(4)末端基がエポキシ基の場合: アミン基、アルコラード基などの官能基。(4) When the terminal group is an epoxy group: Functional groups such as amine groups and alcoholade groups.

(5)末端基がカルボニル基ノ場合ニ ーNHNH,基、水酸基などの官能基。(5) When the terminal group is a carbonyl group, -Functional groups such as NHNH, groups, and hydroxyl groups.

(6)末端基がカルボキシル基の場合:水酸基などの官
能基。
(6) When the terminal group is a carboxyl group: a functional group such as a hydroxyl group.

また、ポリサルホン系ポリマーへの末端基、共重合体へ
の官能基の導入方法も公知の有機化学反応を用いて行な
えばよく、特に限定しないが、前者の場合ポリサルホン
系ポリマーの重合度をできるだけ低下させないような条
件で反応を行なう必要がある。また後者の場合、共重合
前に行なうが、共重合後に行なうかは後述する親水性成
分の樵類によって適宜選択する必要があシ、また共重合
後に行なう場合には親水性成分の官能基を好ましくない
方向に変化させたシ、あるいは重合度を低下させたシす
ることのないように適当な反応条件を設定する必要があ
る。
In addition, the method for introducing terminal groups into polysulfone-based polymers and functional groups into copolymers may be carried out using known organic chemical reactions, and is not particularly limited. It is necessary to conduct the reaction under conditions that do not cause In the latter case, it is carried out before the copolymerization, but whether to carry out the process after the copolymerization must be selected depending on the hydrophilic component, which will be described later. Appropriate reaction conditions must be set to avoid undesirable changes or decreases in the degree of polymerization.

もちろん、反応性の官能基あるいは末端基を既に有して
いる市販のモノマー、オリゴマーあるいはポリサルホン
系ポリマーをそのまま用いてもよい。
Of course, commercially available monomers, oligomers, or polysulfone polymers that already have reactive functional groups or terminal groups may be used as they are.

以上述べてきたようなモノマーあるいは共重合体と末端
反応性のポリサルホン系ポリマーとを反応させて本発明
の分離膜の素材となるグラフトポリマー又はこれを含ん
だポリサルホン系樹脂を製造する。
The monomer or copolymer described above is reacted with a terminally reactive polysulfone polymer to produce a graft polymer or a polysulfone resin containing the graft polymer, which is a material for the separation membrane of the present invention.

この場合、注意しなければならないのはポリサルホン系
ポリマーの末端基の片側のみが反応しうるような反応条
件を設定するということである。
In this case, care must be taken to set reaction conditions such that only one side of the terminal group of the polysulfone polymer can react.

もし両末端基が反応にあずかることになると架橋反応が
起こシ、溶媒に不溶性のゲル状物となって本発明の分離
膜を製造する為の湿式製膜法に用いることたできなくな
ってしまう。従って予め反応性の末端基をポリサルホン
系ポリマーの片側のみに導入しておくか、又は両末端基
のうち一方の末端基のみを活性化させるか、どちらかの
方法を適用する。
If both end groups participate in the reaction, a crosslinking reaction will occur, resulting in a gel-like substance insoluble in a solvent, which cannot be used in the wet membrane forming method for producing the separation membrane of the present invention. Therefore, either a method is applied in which a reactive end group is introduced in advance on only one side of the polysulfone polymer, or only one of both end groups is activated.

また、公知のグラフト反応がそうであるように、上記の
方法で製造されたポリマー生成物も常に100−グラフ
トポリマーであるとは限らない。
Also, as with known grafting reactions, the polymer products produced by the above method are not always 100-grafted polymers.

すなわち残存モノマー又は残存共重合体を再沈法等で除
去した後のポリマー生成物中には未反応のポリサルホン
系ポリマーとグラフトポリマーの両方が混在しうる。本
発明ではこのポリマー生成物すなわち親水性ポリサルホ
ン系樹脂中のグラフトポリマーの割合が少なくとも20
モルチ以上、好ましくは40モルチ以上になるようにグ
ラフト反応の条件を調整する必要がある。もし20モル
チ未滴しかグラフトポリマーが含まれていないとポリサ
ルホン系樹脂の親水性をあまシ向上させることはできず
、従ってこのような樹脂から製造された分lII膜は透
水速度が低い場合が多い。
In other words, both the unreacted polysulfone polymer and the graft polymer may coexist in the polymer product after the remaining monomer or remaining copolymer is removed by a reprecipitation method or the like. In the present invention, the proportion of the graft polymer in the polymer product, i.e., the hydrophilic polysulfone resin, is at least 20%.
It is necessary to adjust the grafting reaction conditions so that the molarity is at least 40 molti, preferably 40 molti or more. If less than a 20 mol droplet of the graft polymer is contained, the hydrophilicity of the polysulfone resin cannot be improved to any significant degree, and therefore, the water permeation rate of the II membranes manufactured from such resins is often low. .

またグラフトポリマーの構造9組成も樹脂の親水性即ち
分離膜の透水性能に影響を与える。本発明では全重合度
が4以上100以下で、そのうち親水性成分の重合度が
全重合度の50−以上を占める親水性共重合体を幹ポリ
マーとし、重合度30以上100以下のポリサルホン系
ポリマーを枝ポリマーとするグラフトポリマーである必
要がある。
The structure 9 composition of the graft polymer also affects the hydrophilicity of the resin, that is, the water permeability of the separation membrane. In the present invention, the base polymer is a hydrophilic copolymer with a total polymerization degree of 4 or more and 100 or less, in which the polymerization degree of the hydrophilic component accounts for 50 or more of the total polymerization degree, and a polysulfone-based polymer with a polymerization degree of 30 or more and 100 or less. It must be a graft polymer with a branched polymer.

従って幹ポリマーの全重合度が4のときは親水性成分の
重合度は2〜3であり、他の共重合成分にポリサルホン
系ポリマーが末端基で結合することになる。また幹ポリ
マーの全重合度が100を越えることは過度の親水化、
即ち分離膜の水による着しい膨潤をもたらすことになシ
、好ましくない。一方、ポリサルホン系ポリマーの重合
度が30未満である場合は、ポリサルホン系ポリマーの
耐熱性や機械的強度を充分に発揮させることが出来ない
Therefore, when the total degree of polymerization of the backbone polymer is 4, the degree of polymerization of the hydrophilic component is 2 to 3, and the polysulfone polymer is bonded to other copolymer components through terminal groups. In addition, if the total polymerization degree of the backbone polymer exceeds 100, it is due to excessive hydrophilicity.
That is, it is undesirable because it causes severe swelling of the separation membrane due to water. On the other hand, if the degree of polymerization of the polysulfone-based polymer is less than 30, the heat resistance and mechanical strength of the polysulfone-based polymer cannot be fully exhibited.

また、該ポリマーの重合度を100より大きくすること
は現在の重合技術では極めて困難であムこれに対して3
0以上100以下に重合度を制御することは技術的にも
経揖的にも容易であり、工業的な利点が大きい。
Furthermore, it is extremely difficult to increase the degree of polymerization of the polymer to greater than 100 using current polymerization technology;
Controlling the degree of polymerization to 0 or more and 100 or less is technically and economically easy, and has great industrial advantages.

また前記の幹ポリマー中の親水性成分としては下記の構
造の1種又は2種以上を繰り返し単位として有している
ことが好ましい。
Further, it is preferable that the hydrophilic component in the above-mentioned backbone polymer has one or more of the following structures as a repeating unit.

−CRt −CH!− 書 & ここでR1は水素又はメチル基である。-CRt -CH! − book & Here, R1 is hydrogen or a methyl group.

烏は炭素原チェないし720個を有 である。The crow has 720 carbon atoms. It is.

本発明では以上説明してきたようなグラフトポリマーを
含有するポリサルホン系樹脂の溶液を用いて湿式製膜法
により本発明の分離膜を製造する。
In the present invention, the separation membrane of the present invention is manufactured by a wet membrane forming method using a solution of a polysulfone resin containing a graft polymer as described above.

ポリサルホン系樹脂溶液(以後ドープと称す)中の樹脂
濃度は、製造しようとする分離膜が高分画性の限外済過
膜ないしは精密濾過膜の場合には5重量−以上30重量
−未満であることが好ましい。低分画性の限外濾過膜や
逆浸透膜を製造する場合には10重量−以上40重量%
未満であることが好ましい。
The resin concentration in the polysulfone resin solution (hereinafter referred to as dope) should be 5 weight or more and less than 30 weight if the separation membrane to be manufactured is a highly fractionated ultrafiltration membrane or a precision filtration membrane. It is preferable that there be. When manufacturing low fractionation ultrafiltration membranes and reverse osmosis membranes, 10% to 40% by weight
It is preferable that it is less than

また用いる溶媒は親水性ポリサルホン系樹脂を溶解する
有機溶剤であれば特に限定しないが、例えばN、N−ジ
メチルアセトアミド、N、N−ジメチルホルムアミド、
N−メチル−2−ピロリドン、ジメチルスルホキシド、
2−ピロリドン等を例示することができる。また、この
ような極性有機溶剤に非溶剤や電解質などを添加したシ
することもできる。
The solvent used is not particularly limited as long as it is an organic solvent that dissolves the hydrophilic polysulfone resin, but examples include N,N-dimethylacetamide, N,N-dimethylformamide,
N-methyl-2-pyrrolidone, dimethyl sulfoxide,
Examples include 2-pyrrolidone. It is also possible to add a non-solvent, an electrolyte, etc. to such a polar organic solvent.

以上説明して米たドープから本発明の分離膜をj!1!
膜するにあたっては従来から用いられている湿式製膜法
を採用することができる。
As explained above, the separation membrane of the present invention can be prepared from rice dope! 1!
For forming a film, a conventionally used wet film forming method can be employed.

シート状あるいは管状に分離膜を形成させるには、シー
ト状あるいは管状の適当な支持体(たとえばガラス板あ
るいは管、不織布、布など)上にドープを厚さ数十ミク
ロン−数百ミクロンの範囲で適当な方法により流延し、
しかる後に凝固剤浴に浸漬してゾル−ゲル相変換による
分離膜を製造する。また公知方法でドープを中空糸状成
形ノズルを経て紡糸することにより、中空糸状分離膜の
製造が可能である。
To form a separation membrane in the form of a sheet or tube, a dope is applied to a thickness of several tens of microns to several hundred microns on a suitable support (for example, a glass plate or tube, nonwoven fabric, cloth, etc.) in the form of a sheet or tube. Casting by an appropriate method,
Thereafter, it is immersed in a coagulant bath to produce a separation membrane by sol-gel phase conversion. Furthermore, a hollow fiber separation membrane can be manufactured by spinning the dope through a hollow fiber forming nozzle using a known method.

製膜に用いられる凝固剤としてはポリサルホン系樹脂の
非溶剤であ少、極性有機溶剤と混ざシやすい、例えば水
、食塩や界面活性剤などの電解質の水溶液、極性有機溶
剤の水溶液あるいは親水性ポリサルホン系樹脂の非溶剤
又はその水溶液などが例示されるが、特に一般的には水
が用いられる。
Coagulants used in film formation are polysulfone resin non-solvents that are easily mixed with polar organic solvents, such as water, aqueous solutions of electrolytes such as salt and surfactants, aqueous solutions of polar organic solvents, or hydrophilic solvents. Examples include non-solvents of polysulfone resins or aqueous solutions thereof, but water is particularly commonly used.

(本発明による効果) 本発明の分離膜の特徴は以上述べて来たような親水性ポ
リサルホン系梢脂溶液を湿式製膜することKよつて発現
する。すなわち親水性グラフトポリマーの存在により、
湿式製膜時に親水性幹ポリマーに富む成分とポリサルホ
ン系ポリマーに富む成分とにミクロ相分離し、しかもポ
リサルホン系ポリマーの水中での凝集スピードが著しく
速い為、親水性幹ポリマーがポリサルホン系ポリマーマ
トリックス表面に押し出されることになる。この結果、
得られた分離膜の微孔表面は親水性幹ポリマー成分に富
み、親水性が著しく向上し、分離膜の透水速度も極めて
高いものとなる。しかも分離膜の構造を実質的に決定し
ているポリマーマトリックスがポリサルホン系ポリマー
から形成されている為、分離膜の機械的強度のみならず
、耐熱性や耐薬品性もポリサルホン系ポリマーのそれに
匹敵するレベルに達することになる。従って、従来の親
水性ポリマーペースの分離膜、例えばセルロースアセテ
ートからなる分離膜が耐えられなかったような過酷な条
件下の膜分離操作に有効に使用することが出来る。
(Effects of the Present Invention) The characteristics of the separation membrane of the present invention are manifested by wet film forming of the hydrophilic polysulfone resin solution as described above. In other words, due to the presence of the hydrophilic graft polymer,
During wet film formation, microphase separation occurs into a component rich in hydrophilic backbone polymers and a component rich in polysulfone polymers, and since the aggregation speed of polysulfone polymers in water is extremely fast, the hydrophilic backbone polymers form on the surface of the polysulfone polymer matrix. will be pushed out. As a result,
The microporous surface of the resulting separation membrane is rich in hydrophilic backbone polymer components, resulting in significantly improved hydrophilicity and extremely high water permeation rate of the separation membrane. Moreover, since the polymer matrix that essentially determines the structure of the separation membrane is made of polysulfone polymer, not only the mechanical strength of the separation membrane but also the heat resistance and chemical resistance are comparable to that of polysulfone polymer. level will be reached. Therefore, it can be effectively used in membrane separation operations under harsh conditions that conventional hydrophilic polymer-based separation membranes, such as separation membranes made of cellulose acetate, cannot withstand.

次に実施例により本発明を具体的に説明するが、純水透
水係数(Lp)、Lpの経時低下率(β)、および卵白
アルブミンの排除率(RO)はそれぞれ(但し濾過10
分後のLp値をLp、3時間後のLp値をLpとする。
Next, the present invention will be specifically explained with reference to Examples.
Let the Lp value after minutes be Lp, and the Lp value after 3 hours be Lp.

) で定義されたものである。) It is defined in .

また、フィルムの接触角はエルマのゴニオメータ一式接
触角測定器G−I型によ、925℃における水との接触
角を測定した。
Further, the contact angle of the film was determined by measuring the contact angle with water at 925° C. using an Elma goniometer complete contact angle measuring device Model G-I.

ポリマーの重合度はKNAUER社製の蒸気浸透圧計に
より測定し、幹ポリマーとグラフトポリマーの構造及び
組成は元素分析及びNMR(9QME(z又は270 
MHz )により決定した。
The degree of polymerization of the polymer was measured using a steam osmometer manufactured by KNAUER, and the structure and composition of the backbone polymer and graft polymer were determined by elemental analysis and NMR (9QME (z or 270
MHz).

また分離′膜の濾過吸着量の測定は150ppmのチト
クロムCリン酸バッファー溶液(25℃)を用いて行な
った。
The amount of filtration and adsorption of the separation membrane was measured using a 150 ppm cytochrome C phosphate buffer solution (25°C).

すなわち濾過前のチトクロムC溶液の濃度を01ppm
 +容量を■、−(約50−)とし、これを有効膜面積
5d(15,2d)の分離膜にて加圧3階−で容量V、
IRt(約10−)まで濾過、濃縮したとき、濃縮液の
濃度C1ppm 、透過液の容量V、11t、@度C5
ppmを用いて、分離膜表面への吸着量m(μt/cd
)を次式により算出することが出来る。ただし、この場
合吸着が有効膜面積で生じていると仮定している。
In other words, the concentration of the cytochrome C solution before filtration is 0.1 ppm.
Let the +capacity be ■, - (approximately 50-), and pressurize it with a separation membrane with an effective membrane area of 5d (15,2d) on the 3rd floor- to make the capacity V,
When filtered and concentrated to IRt (approximately 10-), the concentration of the concentrated liquid is C1ppm, the volume of the permeated liquid is V, 11t, @ degree C5
The adsorption amount m (μt/cd) on the separation membrane surface is calculated using ppm.
) can be calculated using the following formula. However, in this case it is assumed that adsorption occurs over the effective membrane area.

実施例1 末端が水酸基である(I)式のポリサルホン系ポリマー
 (Victrex5003 P 、 ICI社製9重
合度52)30t’tジメチルスルホキシド(以下DM
SO)200ゴと塩化ベンゼン(以下PhC1) 10
0−の混合溶媒に室温で溶解し、これに0.5NのNa
OH水溶液6.5−を加えて室温で2hr反応させ、末
端がナトリウムフェルレート戯のポリサルホン系ポリマ
ーの溶液Aを得た。
Example 1 Polysulfone polymer of formula (I) having a hydroxyl group at the terminal (Victrex 5003 P, manufactured by ICI, 9 polymerization degree 52) 30t't dimethyl sulfoxide (hereinafter referred to as DM)
SO) 200 and benzene chloride (hereinafter referred to as PhC1) 10
0- in a mixed solvent at room temperature, and add 0.5N Na to this.
6.5 mL of an OH aqueous solution was added and the reaction was carried out at room temperature for 2 hours to obtain solution A of a polysulfone polymer having sodium ferulate terminals.

一方、幹ポリマーとして下記の組成を有するfcH−C
Hm寸1(H−CH*1− ■ ランダム共重合体を公知のラジカル共重合法により合成
し、この14.5tをDMSOloo−とPhC150
−の混合溶媒に溶解し溶液Bt−得た。この溶液に室温
で前述の溶液At−ゆっくシ加え、室温で17hr、7
0℃で2 hr反応させた後、濃硫酸0.2−を加えて
反応を停止した。
On the other hand, fcH-C having the following composition as the backbone polymer
Hm size 1 (H-CH*1- ■ A random copolymer was synthesized by a known radical copolymerization method, and this 14.5t was combined with DMSOloo- and PhC150
A solution Bt- was obtained by dissolving it in a mixed solvent of -. Add the above solution At-Yukushi to this solution at room temperature, and add it for 17 hours at room temperature.
After reacting at 0°C for 2 hr, 0.2-ml of concentrated sulfuric acid was added to stop the reaction.

反応混合物をメタノール/水=so/20(容積比)に
て再沈後、エタノールで7 hrソックスレー抽出して
残存する親水性幹ポリマーを完全に除去した。精製後の
ポリマー生成物を分析したところ、下記の組成を有する
グラフトポリマーであることがわかった。
The reaction mixture was reprecipitated with methanol/water = so/20 (volume ratio), and then subjected to Soxhlet extraction with ethanol for 7 hours to completely remove the remaining hydrophilic backbone polymer. Analysis of the purified polymer product revealed that it was a graft polymer having the following composition.

このゲラストポリマーをジメチルホルムアミド(DMF
)に15重量%ポリマー濃度で溶解し、この溶液をガラ
ス板上に400μmに流延後、90℃にてゆっくりとD
MFを蒸発させて非多孔質のフィルムを作製した。ガラ
ス板からフィルムをはく離後エタノール/水=5015
0(容積比)に24hr浸漬してDMFを完全に除去後
、50℃にて24hr乾燥し接触角を測定したところ6
6°であった。同様の方法で前述のグラフト反応に用い
たポリサルホン系ポリマーのフィルムを作製し、その接
触含金測定したところ73°であ夛、前記のグラフトポ
リマーは親水性が著しく改良されていることがわかっ九
This gelasto polymer was mixed with dimethylformamide (DMF).
) at a polymer concentration of 15% by weight, this solution was cast onto a glass plate to a thickness of 400 μm, and then slowly D.
The MF was evaporated to produce a non-porous film. After peeling off the film from the glass plate, ethanol/water = 5015
0 (volume ratio) for 24 hours to completely remove DMF, dried at 50°C for 24 hours, and measured the contact angle.6
It was 6°. A film of the polysulfone polymer used in the above-mentioned graft reaction was prepared in a similar manner, and the contact metal content was measured at 73°, indicating that the above-mentioned graft polymer had significantly improved hydrophilicity. .

この親水性グラフトポリマーの15重量部をN−メチル
−2−ピロリドンの85i量部に溶解した後、ガラス板
上に厚み250μmにて流延し、30秒後に10℃の水
中に浸漬して分離膜を得た。この分離膜の沖過吸着量を
測定したところ19μη−であり、肉眼でもチトクロム
Cによる染色は認められなかった。また流延時にポリエ
ステル不織布をガラス板の代わシに用いて湿式製膜して
得られたポリエステル不織布補強膜のLpを測定したと
ころ、15rrl/lr?、日、 Kf/−であシ、ま
た低下率βは25チであった。一方卵白アルブミンの排
除率R。
After dissolving 15 parts by weight of this hydrophilic graft polymer in 85 parts by weight of N-methyl-2-pyrrolidone, it was cast onto a glass plate to a thickness of 250 μm, and after 30 seconds, it was immersed in water at 10°C to separate it. A membrane was obtained. When the amount of adsorption on the surface of this separation membrane was measured, it was 19 .mu..eta.-, and no staining by cytochrome C was observed with the naked eye. In addition, when the Lp of the polyester nonwoven fabric reinforced film obtained by wet film formation using the polyester nonwoven fabric as a substitute for a glass plate during casting was measured, it was found to be 15rrl/lr? , day, Kf/-day, and the decrease rate β was 25 days. On the other hand, the elimination rate R of ovalbumin.

は100チであった。was 100 chi.

比較例1 グラフトポリマー0代わ夛に実施例1のグラフト反応に
用いたポリサルホン系ポリマーt−用いる以外は実施例
1と同様の方法で製膜した。得られた膜の吸着量は74
μ9/−と高く、膜表面はチトクロムCによって赤く染
色されてしまった。一方、ポリエステル不織布補強膜の
Lpは9袷賃6日。
Comparative Example 1 A film was formed in the same manner as in Example 1, except that the polysulfone polymer t used in the graft reaction of Example 1 was used instead of graft polymer 0. The adsorption amount of the obtained membrane was 74
It was as high as μ9/−, and the membrane surface was stained red by cytochrome C. On the other hand, the Lp of the polyester nonwoven reinforced membrane is 9 days and 6 days.

V−と低く、βも35)であった。It was low at V-, and β was also 35).

また卵白アルブミンの排除率Roは87チとかう低い値
であらた。
In addition, the elimination rate Ro of ovalbumin was as low as 87 chi.

実施例2 幹ポリマーとして下記の組成を有する ランダム共重合体を公知のラジカル共重合法により合成
し、この3.3tをDMSO60ff17!とPhC1
40−の混合溶媒に溶かしたものを溶液Bとして用いる
以外は実施例1と同様の方法でグラフト反応およびN製
を行なった。得られたグラフトポリマーは次のような組
成を有していることがわかった。
Example 2 A random copolymer having the following composition as a backbone polymer was synthesized by a known radical copolymerization method, and 3.3t was mixed with DMSO60ff17! and PhC1
The grafting reaction and N production were carried out in the same manner as in Example 1, except that solution B was prepared by dissolving 40-40% in a mixed solvent. It was found that the obtained graft polymer had the following composition.

このグラフトポリマーを実施例1と同様の方法でフィル
ムに成形し、接触角を測定したところ54°という低い
値を示し、高度に親水化されていることがわかった。
When this graft polymer was formed into a film in the same manner as in Example 1 and the contact angle was measured, it showed a low value of 54°, indicating that it was highly hydrophilic.

この親水性グラフトポリマーを実施例1と同様の方法で
分離膜に成形し膜性能を評価したところm = 26 
pf/cd 、 Lp = 33η−1日、V−1β;
17%、Ro=91%という極めて優れた性能を有して
いることが判明した。
This hydrophilic graft polymer was molded into a separation membrane in the same manner as in Example 1, and the membrane performance was evaluated; m = 26
pf/cd, Lp = 33η-1 day, V-1β;
It was found that it had extremely excellent performance of 17% and Ro=91%.

実施例3 幹ポリマーとして下記の組成を有する ランダム共重合体を公知のラジカル共重合法により合成
し、この2.9tをDMSO60−とPhC140−の
混合溶媒に溶かしたものを溶液Bとして用いる以外は実
施例1と同様の方法でグラフト反応を行なった。反応混
合物をアセトン/水=80/20(容積比)にて2回再
沈後、得られたグラフトポリマーを分析したところ以下
の組成を有していることがわかった。
Example 3 A random copolymer having the following composition as the backbone polymer was synthesized by a known radical copolymerization method, and 2.9t of this was dissolved in a mixed solvent of DMSO60- and PhC140-, except that it was used as solution B. The graft reaction was carried out in the same manner as in Example 1. After the reaction mixture was reprecipitated twice in acetone/water = 80/20 (volume ratio), the resulting graft polymer was analyzed and found to have the following composition.

26一 このグラフトポリマーを実施例1と同様の方法でフィル
ムに成形し、接触角を測定したところ6fという低い値
を示し、親水化されていることがわかった。
26 - This graft polymer was formed into a film in the same manner as in Example 1, and the contact angle was measured, showing a low value of 6f, indicating that it was made hydrophilic.

この親水性グラフトポリマーを実施例1と同機の方法で
分離膜に成形し膜性能を評価したところm =60 t
tf/ad + Lp=12 rr/フィー′1日、隔
−9β=11%、 Ro = 98 %という極めて優
れた性能を有していることがわかった。
This hydrophilic graft polymer was formed into a separation membrane using the same method as in Example 1, and the membrane performance was evaluated. m = 60 t
It was found to have extremely excellent performance: tf/ad + Lp = 12 rr/fee'1 day, interval -9β = 11%, and Ro = 98%.

Claims (3)

【特許請求の範囲】[Claims] (1)全重合度が4以上100以下で、そのうち親水性
成分の重合度が全重合度の50%以上を占める親水性共
重合体を幹ポリマーとし、重合度30以上100以下の
ポリサルホン系ポリマーを枝ポリマーとするグラフトポ
リマーを含有する親水性ポリサルホン系樹脂の溶液より
湿式製膜されることを特徴とするポリサルホン系樹脂製
分離膜。
(1) The base polymer is a hydrophilic copolymer with a total polymerization degree of 4 or more and 100 or less, in which the polymerization degree of the hydrophilic component accounts for 50% or more of the total polymerization degree, and a polysulfone-based polymer with a polymerization degree of 30 or more and 100 or less. 1. A separation membrane made of a polysulfone resin, characterized in that it is wet-formed from a solution of a hydrophilic polysulfone resin containing a graft polymer having as a branch polymer.
(2)親水性成分が下記の構造の1種又は2種以上を繰
り返し単位として有することを特徴とする特許請求の範
囲第1項記載のポリサルホン系樹脂製分離膜。 ▲数式、化学式、表等があります▼ ここでR_1は水素又はメチル基である。 また、R_2は▲数式、化学式、表等があります▼、▲
数式、化学式、表等があります▼、▲数式、化学式、表
等があります▼、 ▲数式、化学式、表等があります▼(Mは水素又はカル
ボアニオンとイ オン結合するアルカリ金属又は塩 基性物質である。) ▲数式、化学式、表等があります▼(R_3は炭素原子
1無いし20個を有する脂肪族炭化水素基である。) ▲数式、化学式、表等があります▼(R_4、R_5は
各々水素又は炭素原子1ないし20個を有する脂肪族炭
化 水素基である。) ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼ (nは0(原子結合)〜10の整 数。Mは水素又はスルホン酸とイ オン結合するアルカリ金属又は塩 基性物質である。) ▲数式、化学式、表等があります▼ (R_6、R_7、及びR_8はそれぞれ炭素原子1な
いし20個を有する脂肪族炭化水素基であり、X^■は
ハロゲンイオンである。) 又は▲数式、化学式、表等があります▼ (R_9は炭素原子1ないし20個を有する脂肪族炭化
水素基、nは4〜6の整数、X^■はハロゲンイオンで
ある。)
(2) The polysulfone resin separation membrane according to claim 1, wherein the hydrophilic component has one or more of the following structures as repeating units. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Here, R_1 is hydrogen or a methyl group. Also, R_2 has ▲ mathematical formulas, chemical formulas, tables, etc. ▼, ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (M is an alkali metal or basic substance that ionically bonds with hydrogen or carbanion ) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R_3 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms.) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R_4 and R_5 are each hydrogen or an aliphatic hydrocarbon group having 1 to 20 carbon atoms.) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (n is 0 (atomic bond) to 10 Integer. M is an alkali metal or basic substance that ionically bonds with hydrogen or sulfonic acid.) ▲Mathematical formulas, chemical formulas, tables, etc. are available▼ (R_6, R_7, and R_8 are fats each having 1 to 20 carbon atoms. (R_9 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and n is 4 to 6. The integer X^■ is a halogen ion.)
(3)ポリサルホン系ポリマーが、以下の( I )〜(
III)のうち少なくとも1種類の繰り返し単位を有する
ことを特徴とする特許請求の範囲第1項記載のポリサル
ホン系樹脂製分離膜。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III)
(3) The polysulfone polymer is one of the following (I) to (
The polysulfone resin separation membrane according to claim 1, characterized in that it has at least one type of repeating unit of III). ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (I) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (III)
JP796186A 1986-01-20 1986-01-20 Separation membrane Granted JPS62168503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP796186A JPS62168503A (en) 1986-01-20 1986-01-20 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP796186A JPS62168503A (en) 1986-01-20 1986-01-20 Separation membrane

Publications (2)

Publication Number Publication Date
JPS62168503A true JPS62168503A (en) 1987-07-24
JPH0582251B2 JPH0582251B2 (en) 1993-11-18

Family

ID=11680076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP796186A Granted JPS62168503A (en) 1986-01-20 1986-01-20 Separation membrane

Country Status (1)

Country Link
JP (1) JPS62168503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440524A (en) * 1987-08-06 1989-02-10 Daicel Chem Modified aromatic polymer and production thereof
JP2002030125A (en) * 2000-04-17 2002-01-31 Asahi Medical Co Ltd New hydrophilized aromatic polymer
WO2002022712A2 (en) * 2000-09-11 2002-03-21 Massachusetts Institute Of Technology Graft copolymers, methods for grafting hydrophilic chains onto hydrophobic polymers, and articles thereof
EP2365022A1 (en) 2010-03-11 2011-09-14 Gambro Lundia AB Graft copolymers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110108478A1 (en) * 2008-04-11 2011-05-12 Kawasaki Jukogyo Kabushiki Kaisha Hydrophilic Polyethersulfone Filtration Membrane, Process for Producing the Same, and Dope Solution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440524A (en) * 1987-08-06 1989-02-10 Daicel Chem Modified aromatic polymer and production thereof
JP2002030125A (en) * 2000-04-17 2002-01-31 Asahi Medical Co Ltd New hydrophilized aromatic polymer
WO2002022712A2 (en) * 2000-09-11 2002-03-21 Massachusetts Institute Of Technology Graft copolymers, methods for grafting hydrophilic chains onto hydrophobic polymers, and articles thereof
WO2002022712A3 (en) * 2000-09-11 2002-08-15 Massachusetts Inst Technology Graft copolymers, methods for grafting hydrophilic chains onto hydrophobic polymers, and articles thereof
EP2365022A1 (en) 2010-03-11 2011-09-14 Gambro Lundia AB Graft copolymers
WO2011110600A1 (en) 2010-03-11 2011-09-15 Gambro Lundia Ab Graft copolymers
US8748538B2 (en) 2010-03-11 2014-06-10 Gambro Lundia Ab Graft copolymers

Also Published As

Publication number Publication date
JPH0582251B2 (en) 1993-11-18

Similar Documents

Publication Publication Date Title
US4207182A (en) Polymeric compositions for membranes
US5505851A (en) Semipermeable membranes of homogeneously miscible polymer alloys
EP0426118A2 (en) Sulfonated hexafluoro bis-A polysulfone membranes and process for fluid separations
JPH03196822A (en) Semipermeable membrane made from homogeneously mixable polymer mixture
KR20200034760A (en) Sulfonated polyaryl ether sulfones and membranes thereof
US5082565A (en) Semipermeable membrane made from polyether ketones
JPS62201603A (en) Hydrophilic polysulfone membrane
JPH024429A (en) Asymmetric hydrophilic membrane of macropore substance, method for its manufacture and method for improving retention ability of the membrane
JPS6238205A (en) Semi-permeable membrane for separation
JPH01215348A (en) Cation exchanger
JPS62168503A (en) Separation membrane
JPH02160026A (en) Hydrophilic separation membrane
JP2613764B2 (en) Separation membrane
JPH0751632B2 (en) Hydrophilized polyethylene sulfone membrane
JPH022862A (en) Modified separating membrane
US10752716B2 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
JP3948993B2 (en) Polysulfone copolymer
JPS63258603A (en) Aromatic polymer membrane
WO2004064986A1 (en) An improved process for the preparation of porous membrane
JPS63258930A (en) Aromatic polymer
EP3621997A1 (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and uses thereof
JPS62199621A (en) Aromatic polysulfone resin provided with hydrophilicity
JPS6329562B2 (en)
CA1313736C (en) Method of manufacturing a reverse osmosis membrane and the membrane so produced
JPS6384603A (en) Permselective membrane