JPH0747654B2 - Multilayered ion exchange membrane - Google Patents

Multilayered ion exchange membrane

Info

Publication number
JPH0747654B2
JPH0747654B2 JP1085739A JP8573989A JPH0747654B2 JP H0747654 B2 JPH0747654 B2 JP H0747654B2 JP 1085739 A JP1085739 A JP 1085739A JP 8573989 A JP8573989 A JP 8573989A JP H0747654 B2 JPH0747654 B2 JP H0747654B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
membrane
ion
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1085739A
Other languages
Japanese (ja)
Other versions
JPH02265929A (en
Inventor
良雄 菅家
一郎 寺田
清成 實方
浩文 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1085739A priority Critical patent/JPH0747654B2/en
Publication of JPH02265929A publication Critical patent/JPH02265929A/en
Publication of JPH0747654B2 publication Critical patent/JPH0747654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、混合液体から特定成分を透過分離する複層化
されたイオン交換膜に関するものである。
TECHNICAL FIELD The present invention relates to a multilayered ion exchange membrane that permeates and separates a specific component from a mixed liquid.

更に詳しくは、海水濃縮等の電気透析や電池セパレータ
ー等に有用な超低抵抗の複層化されたイオン交換膜、あ
るいはメッキ廃液や金属精練工業をはじめとして、あら
ゆる産業で排出する酸を溶液からの酸回収や酸溶液に含
有する有価化合物を分離精製する際に有用な複層化され
たイオン交換膜に関するものである。
More specifically, ultra-low resistance multi-layered ion-exchange membranes useful for electrodialysis such as seawater concentration and battery separators, or acid discharged from all industries including plating waste liquid and metal refining industry. The present invention relates to a multi-layered ion exchange membrane that is useful when recovering an acid or separating and purifying a valuable compound contained in an acid solution.

〔従来の技術〕[Conventional technology]

イオン交換膜を用いて混合液体からある特定成分を透過
分離するシステムは既に幅広い分野で使用されている。
A system for permeating and separating a specific component from a mixed liquid using an ion exchange membrane has already been used in a wide field.

従来のイオン交換膜として、数多くの文献、特許が報告
されているが、最も実用的で有益なものとして、クロル
メチル化スチレン(またはビニルピリジン)−ジビニル
ベンゼン共重合体のアミン化(または4級ピリジュウム
化)陰イオン交換膜、あるいはスチレン−ジビニルベン
ゼン共重合体のスルホン化陽イオン交換膜がある。これ
らは、耐薬品性、耐熱性、イオン交換性に加え、架橋剤
であるジビニルベンゼンの含有量を変えることにより、
イオン交換特性や選択透過性を制御できることから、あ
らゆる用途に対し多様な品種を合成し発展してきた。
Many documents and patents have been reported as conventional ion exchange membranes, but the most practical and useful ones are the amination (or quaternary pyridium) of chloromethylated styrene (or vinylpyridine) -divinylbenzene copolymer. There is an anion exchange membrane or a sulfonated cation exchange membrane of a styrene-divinylbenzene copolymer. In addition to chemical resistance, heat resistance, and ion exchangeability, these change the content of divinylbenzene, which is a cross-linking agent,
Since it is possible to control the ion exchange characteristics and the selective permeability, various varieties have been synthesized and developed for all purposes.

しかしながら新しい用途を、例えばアルミ工業をはじめ
とするりん酸廃液からのりん酸回収、チタン工業をはじ
めとする硫酸廃液からの硫酸の回収、工業塩並の安価な
食塩を製造する海水濃縮、レドックスフロー電池やメタ
ノール電池用セパレータなど低抵抗で耐久性、耐熱性を
有するイオン交換膜の要求に対し、従来のスチレン−ジ
ビニルベンゼン系では対応できない欠点がある。即ち抵
抗が低く、透過性の高い膜を得るためには膜厚を薄くせ
しめる必要があるが、スチレン−ジビニルベンゼン系樹
脂は機械的強度、特に脆さがあるため厚さ100μm以下
のイオン交換膜が得られない。
However, new applications include, for example, phosphoric acid recovery from phosphoric acid waste liquids such as in the aluminum industry, recovery of sulfuric acid from sulfuric acid waste liquids such as in the titanium industry, seawater concentration for producing inexpensive salt comparable to industrial salt, and redox flow. The conventional styrene-divinylbenzene system has a drawback that it cannot meet the demand for an ion exchange membrane having low resistance, durability and heat resistance such as a separator for batteries and methanol batteries. That is, it is necessary to reduce the film thickness in order to obtain a film having low resistance and high permeability. However, since styrene-divinylbenzene resin has mechanical strength, particularly brittleness, it is an ion exchange film with a thickness of 100 μm or less. Can't get

更に、スチレン−ジビニルベンゼン系膜は機械的性質に
加え、加工性が悪く、逆浸透、限外濾過、精密濾過、ガ
ス分離等の他の分離システムで使用されているホローフ
ァイバー型の膜が得られない欠点がある。
Furthermore, styrene-divinylbenzene-based membranes have poor mechanical properties in addition to mechanical properties, and hollow fiber-type membranes used in other separation systems such as reverse osmosis, ultrafiltration, microfiltration and gas separation can be obtained. There are drawbacks that cannot be avoided.

一方、限外濾過膜や逆浸透膜、ガス分離膜等の分離膜に
おいて、機械的強度、加工性の優れたエンジニアリング
プラスチックが使用されている。特に耐薬品性が優れた
ポリスルホン膜は、膜内はイオン交換基を導入し、限外
濾過や逆浸透での透過性の改良や、イオン選択透過性を
付与し、イオン交換膜への適応が検討されている。
On the other hand, engineering plastics having excellent mechanical strength and processability are used in separation membranes such as ultrafiltration membranes, reverse osmosis membranes, and gas separation membranes. In particular, the polysulfone membrane, which has excellent chemical resistance, has ion exchange groups introduced into the membrane to improve permeability in ultrafiltration and reverse osmosis, and to impart ion selective permeability, making it suitable for ion exchange membranes. Is being considered.

例えば、繰り返し単位が からなるポリスルホンのクロルメチル化/4級アミノ化反
応により合成された陰イオン交換樹脂、及びポリスルホ
ンのスルホン化反応により合成された陽イオン交換樹脂
がPolymeric Amines and Ammonium Salts,Pergamon,New
York,1980,p.37、Polmer Preprints,Am.Chem.Soc.,Di
v.Polym.Chem.,20(1),835(1979).及びUSP3,709,8
41に記載され、これらポリマーの薄膜を得るためにポリ
マーを溶媒に溶解し、キャスト製膜後水中で凝集させる
ことにより非対称構造のイオン交換膜が得られることが
USP3,709,841、USP3,855,122、Desalination,46,327(1
983)、J.Membrane Sci.,22,1(1985).、J.Membrane
Sci.,22,325(1985).、Desalination,70,191(198
8).等に記載されている。しかしながら、これら非対
称構造のポリスルホン系イオン交換膜は、凝集の際に寸
法変化が大きく欠陥ができやすいこと、イオン交換容量
が高くなると水に対する親和性が増大するため凝集しに
くくなり十分な機械的強度を持った膜が得られない等の
欠点がある。
For example, if the repeating unit is Anion exchange resin synthesized by chlormethylation / quaternary amination reaction of polysulfone and cation exchange resin synthesized by sulfonation reaction of polysulfone are Polymeric Amines and Ammonium Salts, Pergamon, New
York, 1980, p.37, Polmer Preprints, Am.Chem.Soc., Di
v. Polym. Chem., 20 (1), 835 (1979). And USP 3,709,8
41, the polymer is dissolved in a solvent to obtain a thin film of these polymers, it is possible to obtain an asymmetric structure ion exchange membrane by aggregating in water after cast membrane formation
USP3,709,841, USP3,855,122, Desalination, 46,327 (1
983), J. Membrane Sci., 22, 1 (1985). , J. Membrane
Sci., 22,325 (1985). , Desalination, 70,191 (198
8). Etc. However, polysulfone ion exchange membranes with these asymmetric structures have a large dimensional change during aggregation and are prone to defects, and when the ion exchange capacity increases, the affinity for water increases, making aggregation difficult and sufficient mechanical strength. There is a defect that a film having a stickiness cannot be obtained.

また、非対称構造のポリスルホン多孔膜上にポリスルホ
ン系イオン交換樹脂をコーティングしたイオン交換薄膜
が報告されているが(特開昭61−4505号、同61−4506、
同61−146303、同62−79811、繊維と工業,44,1,P−11
(1988).)、支持膜であるポリスルホン多孔膜は表面
多孔度が10〜30%と低いため抵抗が高くなり、表面多孔
度を高くしようとすると十分な機械的強度が得られない
という欠点がある。
In addition, an ion exchange thin film in which a polysulfone type ion exchange resin is coated on a polysulfone porous membrane having an asymmetric structure has been reported (Japanese Patent Laid-Open Nos. 61-4505 and 61-4506,
61-146303, 62-79811, Textile and Industry, 44,1, P-11
(1988). ), The polysulfone porous membrane as a supporting membrane has a low surface porosity of 10 to 30%, and therefore has a high resistance, and there is a drawback that sufficient mechanical strength cannot be obtained if the surface porosity is increased.

多孔度の高いポリテトラフルオロエチレン(PTFE)多孔
膜にポリスルホン系イオン交換樹脂を埋め込んだ例も報
告されているが(AICHE Symposium Series248,82,70(1
986).)、PTFE多孔膜の表面自由エネルギーが低いた
め溶液コーティングや浸漬によって欠陥のない膜を得る
ことが難しく、膜厚が厚くなり、抵抗の低い膜が得られ
ない欠点がある。更には、イオン交換樹脂が多孔体膜の
入り組んだ孔の中に埋め込まれるため、抵抗は更に高く
なる欠点がある。
An example in which a polysulfone ion exchange resin is embedded in a highly porous polytetrafluoroethylene (PTFE) membrane has also been reported (AICHE Symposium Series 248,82,70 (1
986). ), Since the surface free energy of the PTFE porous film is low, it is difficult to obtain a defect-free film by solution coating or dipping, and the film thickness becomes large, so that a film with low resistance cannot be obtained. Furthermore, since the ion exchange resin is embedded in the intricate pores of the porous membrane, the resistance is further increased.

〔発明の解決しようとする問題点〕[Problems to be Solved by the Invention]

本発明の目的は、上記した従来の技術の欠点を解消しよ
うとするものであり、超低抵抗の新規な複層化されたイ
オン交換膜を提供することを目的とする。
An object of the present invention is to solve the above-mentioned drawbacks of the conventional techniques, and an object thereof is to provide a novel multilayer ion exchange membrane having an ultralow resistance.

〔問題を解決するための手段〕[Means for solving problems]

本発明の上記目的は孔径が0.01〜5μm、多孔度30〜90
%、厚み10〜200μmの孔内壁が親水性を有する多孔膜
と、その上に下記する一般式(1)を有する芳香族ポリ
スルホン系ブロックコポリマーのスルホン化物あるいは
4級アンモニウム塩基導入物からなるイオン交換性ポリ
マーの薄膜を複層化することにより達成せしめられる。
The above object of the present invention is to have a pore size of 0.01 to 5 μm and a porosity of 30 to 90.
%, 10 to 200 μm in thickness of the inner wall of the porous membrane having hydrophilicity, and an ion exchange comprising a sulfonated product of an aromatic polysulfone block copolymer having the following general formula (1) or a quaternary ammonium salt group introduced product This can be achieved by forming a thin film of a functional polymer into a multilayer.

本発明で使用される多孔膜としては、ポリエチレン、ポ
リプロピレン、ポリ−4−メチルペンテン−1等のポリ
炭化水素オレフィン、ポリフッ化ビニリデン、ポリテト
ロフルオロエチレン、ヘキサフルオロプロピレン/テト
ラフルオロエチレン共重合体、フルオロオレフィン系モ
ノマー/オレフィン系モノマー共重合体等のボリフルオ
ロオレフィンを挙げることができる。
Examples of the porous film used in the present invention include polyethylene, polypropylene, polyhydrocarbon olefins such as poly-4-methylpentene-1, polyvinylidene fluoride, polytetrofluoroethylene, hexafluoropropylene / tetrafluoroethylene copolymer, Examples thereof include polyfluoroolefins such as fluoroolefin-based monomers / olefin-based monomer copolymers.

多孔膜の製法としては種々の方法があるが、延伸開孔法
が好ましい方法として用いられる。延伸開孔法は、結晶
性高分子を中空糸またはフィルム状に成型した後、延伸
により結晶ラメラ間を開裂させ、されに熱処理を行って
多孔質構造とする方法であり、物理的手段によって多孔
質膜が得られ、残留溶媒等の問題がなく、多孔度が高く
かつ機械的強度の大きな膜が得られるので本発明で使用
されるのに好ましい。一方、湿式相転換法は得られる孔
構造が非対称構造となり、表面の多孔度が小さくなるた
め、イオン交換膜を複層化した場合抵抗が高くなり好ま
しくない。
Although there are various methods for producing the porous membrane, the stretching and opening method is used as a preferable method. Stretching and opening method is a method in which a crystalline polymer is molded into a hollow fiber or a film, and then the crystalline lamellae are cleaved by stretching, and then a heat treatment is performed to form a porous structure. It is preferable to be used in the present invention because a quality film can be obtained, there is no problem of residual solvent, etc., and a film having high porosity and high mechanical strength is obtained. On the other hand, in the wet phase inversion method, the obtained pore structure is an asymmetric structure, and the porosity of the surface is small, so that the resistance becomes high when the ion exchange membrane is made into a multilayer, which is not preferable.

本発明では孔径0.01〜5μm、好ましくは0.02〜2μ
m、多孔度30〜90%、特には40〜70%、厚み10〜200μ
m、特には25〜150μmの多孔膜が使用される。孔径が
5μmより大きいと、イオン交換膜を複層化する際にイ
オン交換樹脂が多孔体膜の入り組んだ孔の内部にまで侵
入し、抵抗が高くなるので好ましくない。多孔度が30%
よりも低いと抵抗が高くなり、90%よりも高いと機械的
強度が低下するので好ましくない。厚みが200μm以上
であると多孔体内で濃度分極が起こり透過性が低くなっ
て好ましくない。
In the present invention, the pore size is 0.01 to 5 μm, preferably 0.02 to 2 μm.
m, porosity 30-90%, especially 40-70%, thickness 10-200μ
m, in particular 25-150 μm porous membranes are used. If the pore diameter is larger than 5 μm, the ion-exchange resin penetrates into the inside of the complicated pores of the porous membrane when the ion-exchange membrane is made into a multi-layer structure, resulting in high resistance, which is not preferable. 30% porosity
If it is lower than 90%, the resistance becomes high, and if it is higher than 90%, the mechanical strength decreases, which is not preferable. When the thickness is 200 μm or more, concentration polarization occurs in the porous body and the permeability is lowered, which is not preferable.

このような多孔膜上にイオン交換樹脂を複層化する方法
としてはポリマーを溶融積層する方法やポリマー溶液コ
ーティング法、モノマーを塗布後重合またはグラフトさ
せる方法等の方法が考えられるが、ポリマー溶液コーィ
ング法は緻密な薄膜を容易に得ることができるので本発
明に使用するのに好ましい方法である。しかしながら、
本発明で使用する多孔体膜は表面自由エネルギーが低く
孔径も小さいため、溶媒蒸発過程で溶液がはじかれ、均
質な薄膜が得られにくいので、親水化を行うことが好ま
しい。
As a method for forming a multi-layered ion-exchange resin on such a porous membrane, a method of melt-laminating a polymer, a polymer solution coating method, a method of applying a monomer and then polymerizing or grafting it, and the like can be considered. The method is a preferable method for use in the present invention because a dense thin film can be easily obtained. However,
Since the porous membrane used in the present invention has a low surface free energy and a small pore size, the solution is repelled during the solvent evaporation process, and it is difficult to obtain a homogeneous thin film.

多孔膜の孔内壁、即ち多孔膜の有する多数の細孔の内面
壁の親水化方法として、多孔膜に親水性を有する低分子
物質又は高分子物質を吸着させる方法や、低分子物質を
含浸後電子線や紫外線等で反応させる方法、発煙硫酸、
クロルスルホン酸等により多孔膜表面をスルホン化する
方法、クロム酸で酸化処理する方法、プラズマガス、オ
ゾンガス等の励起ガス又は活性ガスを用いて表面処理す
る方法、更にイオン性界面活性剤を含浸した後逆の電荷
を主鎖に有するポリマーで処理する方法等が挙げられる
が、特にイオン性界面活性剤を含浸した後、逆の電荷を
主鎖に有するポリマーで処理する方法は、多孔膜基材に
損傷を与えずに5μm以下の小さな孔径の多孔膜の孔内
壁でも永続的な親水性が得られるので好ましい。
As a method for hydrophilizing the inner wall of the pores of the porous membrane, that is, the inner wall of the large number of pores of the porous membrane, a method of adsorbing a low molecular weight substance or a high molecular weight substance having hydrophilicity to the porous membrane or after impregnating the low molecular weight substance Method of reacting with electron beam or ultraviolet ray, fuming sulfuric acid,
Method of sulfonation of porous membrane surface with chlorosulfonic acid, method of oxidization with chromic acid, method of surface treatment with exciting gas or active gas such as plasma gas and ozone gas, further impregnated with ionic surfactant Examples of the method include a method of treating with a polymer having a reverse charge in the main chain, and a method of treating with a polymer having a reverse charge in the main chain after impregnation with an ionic surfactant is a porous membrane substrate. It is preferable because permanent hydrophilicity can be obtained even on the inner wall of the pores of the porous membrane having a small pore diameter of 5 μm or less without damaging the surface.

親水化された多孔膜上に複層化するイオン交換性ポリマ
ーの薄膜としては、下記する一般式(1)を有する芳香
族ポリスルホン系ブロックコポリマーのスルホン化物、
あるいは、4級アンモニウム塩基の導入物が挙げられ
る。
Examples of the thin film of the ion-exchangeable polymer that forms a multi-layer on the hydrophilized porous film include a sulfonated product of an aromatic polysulfone block copolymer having the following general formula (1):
Alternatively, an introduced product of a quaternary ammonium base can be used.

(但し、式中Arは、 又は R1〜R9は、互いに同一または異なる炭素数1〜8の炭化
水素基。a〜dは、0〜4、eは0〜3、f+gは0〜
7、h+iは0〜5、R10〜R11は水素、炭素数1〜6の
炭化水素基。Xは−O−、又は−S−であり、m/n=100
/1〜1/10、Z=1〜100を示す。) 上記芳香族ポリスルホン系ブロック共重合体は、スルホ
ン化またはハロメチル化/4級アミノ化によりイオン交換
基を導入する際、イオン交換基容量の制御が容易で、得
られた膜はイオン選択透過性が優れ、機械的強度、形成
加工性に優れているため好ましい。かかる共重合体につ
いては本出願人による特開昭61−168629号に記載されて
いる。
(However, Ar in the formula is Or R 1 to R 9 are the same or different hydrocarbon groups having 1 to 8 carbon atoms. a to d are 0 to 4, e is 0 to 3, and f + g is 0.
7, h + i is 0 to 5, R 10 to R 11 are hydrogen, and a hydrocarbon group having 1 to 6 carbon atoms. X is -O- or -S-, m / n = 100
/ 1 to 1/10 and Z = 1 to 100 are shown. ) In the above aromatic polysulfone block copolymer, when the ion exchange group is introduced by sulfonation or halomethylation / quaternary amination, it is easy to control the ion exchange group capacity, and the obtained membrane has ion selective permeability. Is preferable, and the mechanical strength and the forming processability are excellent, which is preferable. Such a copolymer is described in JP-A-61-168629 by the applicant of the present invention.

このような芳香族ポリスルホン系ブロックコポリマーか
らなるイオン交換樹脂を溶解する溶媒としては、N,N,−
ジメチルホルムアミド、N,N−ジメチルアセトアミド、
ジメチルスルホキシド、N−メチルピロリドン、1,1,2
−トリクロロエタン、1,1,2,2−テトラクロロエタン、
トリエチルホスフェートの単独溶媒の他、水/アセトン
混合液、メタノール/テトラヒドロフラン混合液などの
混合溶媒が使用される。ポリマー溶液濃度としては1〜
20重量%、特には5〜15%が好ましい。濃度が20重量%
を越えると薄膜が得られにくい。
As a solvent for dissolving the ion exchange resin composed of such an aromatic polysulfone block copolymer, N, N,-
Dimethylformamide, N, N-dimethylacetamide,
Dimethyl sulfoxide, N-methylpyrrolidone, 1,1,2
-Trichloroethane, 1,1,2,2-tetrachloroethane,
In addition to a single solvent of triethyl phosphate, a mixed solvent such as a water / acetone mixed solution or a methanol / tetrahydrofuran mixed solution is used. The polymer solution concentration is 1 to
20% by weight, especially 5 to 15% is preferred. 20% by weight
If it exceeds, it is difficult to obtain a thin film.

ポリマー溶液コーティング後、複層膜は多孔膜素材の結
晶融解温度以下の温度で熱風にて乾燥され、かくして低
抵抗の複層化されたイオン交換膜が得られる。親水化さ
れた多孔膜上に複層化されたイオン交換膜の厚みは0.1
〜50μm、特には1〜30μmが好ましい。厚みが50μm
以上であると抵抗が高くなり、また0.1μm以下である
と欠陥ができやすいので好ましくない。
After coating with the polymer solution, the multi-layer membrane is dried with hot air at a temperature not higher than the crystal melting temperature of the porous membrane material, thus obtaining a low-resistance multi-layered ion exchange membrane. The thickness of the multilayered ion-exchange membrane on the hydrophilized porous membrane is 0.1.
.About.50 .mu.m, particularly preferably 1 to 30 .mu.m. 50 μm thickness
If it is more than the above value, resistance becomes high, and if it is 0.1 μm or less, defects are likely to occur, which is not preferable.

また、多孔膜の孔内壁が親水化されていない場合には、
この段階にて親水化せしめる。
Also, when the inner wall of the pores of the porous membrane is not hydrophilized,
It is made hydrophilic at this stage.

次に本発明を実施例により説明するが、本発明は、かか
る実施例により限定されるものではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited to the examples.

〔実施例〕〔Example〕

実施例1 特開昭61−168629に記載された合成法と同様にして、4,
4′−ジフェノールとジハロジフェニルスルホンとを反
応せしめ、芳香族ポリスルホンのユニットからなるm=
10のプリカーサーを合成し、ついで該プリカーサーとジ
ハロジフェニルスルホン、硫化ナトリウムとを反応し、
次式で示される芳香族ポリスルホン/ポリチオエーテル
スルホン共重合体Aを得た。
Example 1 In the same manner as in the synthesis method described in JP-A-61-168629, 4,
4'-diphenol and dihalodiphenyl sulfone are reacted to form an aromatic polysulfone unit m =
10 precursors were synthesized, and then the precursor was reacted with dihalodiphenyl sulfone and sodium sulfide,
An aromatic polysulfone / polythioether sulfone copolymer A represented by the following formula was obtained.

次に、該共重合体Aを、1,1,2,2,−テトラクロロエタン
に溶解した後、クロロメチルメチルエーテル、無水塩化
スズを添加し、101℃で4時間反応せしめた後、メチル
アルコールで沈殿、洗浄し、クロロメチル化共重合体B
を得た。
Next, the copolymer A was dissolved in 1,1,2,2, -tetrachloroethane, chloromethyl methyl ether and anhydrous tin chloride were added, and the mixture was reacted at 101 ° C. for 4 hours, then methyl alcohol was added. And washed with chloromethylated copolymer B
Got

かくして得られた共重合体BをN,N−ジメチルホルムア
ミドに溶解し、10重量%の溶液を得た。ついで該溶液に
1.2NトリメチルアミンのN,N−ジメチルホルムアミド液
を所定量加え、イオン交換容量が2.0meq/gなる4級アミ
ノ化ポリマーCの溶液を調製した。
The copolymer B thus obtained was dissolved in N, N-dimethylformamide to obtain a 10% by weight solution. Then in the solution
A predetermined amount of N, N-dimethylformamide solution of 1.2N trimethylamine was added to prepare a solution of quaternary aminated polymer C having an ion exchange capacity of 2.0 meq / g.

一方、孔径0.04μm、多孔度45%、膜厚25μmのポリプ
ロピレン製多孔膜にエチルアルコールを含浸後、水に浸
漬し、更にイソプロピルナフタレンスルホン酸ナトリウ
ムの1重量%水溶液に室温で3分間浸漬、60℃で10分間
乾燥してアニオン界面活性剤含浸多孔膜を調製した。こ
の膜を0.5重量%のポリ(2−ヒドロキシ−3−ジメチ
ルアミノプロピルクロライド)水溶液に室温で1分間浸
漬し、60℃で10分間乾燥して親水化ポリプロピレン多孔
膜を得た。
On the other hand, a polypropylene porous film having a pore size of 0.04 μm, a porosity of 45% and a film thickness of 25 μm was impregnated with ethyl alcohol, then immersed in water, and further immersed in a 1% by weight aqueous solution of sodium isopropylnaphthalenesulfonate at room temperature for 3 minutes, 60 Anion surfactant-impregnated porous membrane was prepared by drying at 0 ° C for 10 minutes. This membrane was immersed in a 0.5 wt% aqueous solution of poly (2-hydroxy-3-dimethylaminopropyl chloride) for 1 minute at room temperature and dried at 60 ° C for 10 minutes to obtain a hydrophilic polypropylene porous membrane.

上記した4級アミノ化ポリマーCのN,N,−ジメチルホル
ムアミド溶液を親水化ポリプロピレン多孔膜上にコーテ
ィングし、50℃で2時間乾燥を行って、イオン交換膜層
の厚みが10μmの複層化されたイオン交換膜を得た。得
られたイオン交換膜の0.5N−NaCl水溶液、及び0.5M−H2
SO4水溶液中の実効抵抗の測定結果を表1に示す。実効
抵抗の値は従来のスチレン−ジビニルベンゼン系アニオ
ン交換膜に比較して十分に低い値であった。
The N, N, -dimethylformamide solution of the quaternary aminated polymer C described above was coated on a hydrophilic polypropylene porous membrane and dried at 50 ° C for 2 hours to form an ion exchange membrane layer having a thickness of 10 µm. The obtained ion exchange membrane was obtained. 0.5 N-NaCl aqueous solution of the resulting ion exchange membrane, and 0.5M-H 2
Table 1 shows the measurement results of the effective resistance in the SO 4 aqueous solution. The value of the effective resistance was sufficiently lower than that of the conventional styrene-divinylbenzene-based anion exchange membrane.

比較例1 クロルメチルスチレン−ジビニルベンゼン及びスチレン
モノマーの組成を変えた3種類のモノマー混合液に、5
重量%のニトリルゴムを溶解せしめ、更に重合開始剤と
して過酸化ベンゾイルを溶解せしめ、モノマーシロップ
液を調合した。該モノマーシロップ液をポリ塩化ビニル
製クロスに塗布せしめた後、マイラーフィルム間にはさ
み重合せしめた。かくて得た重合膜をトリメチルアミン
溶液中でアミノ化せしめ、膜厚120μmの陰イオン交換
膜を得た。実施例1と同様に、該イオン交換膜の0.5N−
NaCl水溶液中及び0.5M−H2SO4水溶液中の実効抵抗を測
定し、その結果を表−1にまとめた。
COMPARATIVE EXAMPLE 1 Three kinds of monomer mixed liquids having different compositions of chloromethylstyrene-divinylbenzene and styrene monomer were used.
A monomer syrup solution was prepared by dissolving nitrile rubber in a weight percentage and further dissolving benzoyl peroxide as a polymerization initiator. The monomer syrup solution was applied to a polyvinyl chloride cloth, and then sandwiched between Mylar films for polymerization. The polymerized membrane thus obtained was aminated in a trimethylamine solution to obtain an anion exchange membrane having a thickness of 120 μm. As in Example 1, 0.5 N- of the ion exchange membrane was used.
The effective resistances in the NaCl aqueous solution and the 0.5M-H 2 SO 4 aqueous solution were measured, and the results are summarized in Table-1.

実施例2 実施例1と同様にして得られた複層膜を小型バッチ式酸
拡散透析用セルにはさみ、片側に所 定濃度の硫酸及びZnSO4水溶液を、もう一方にイオン交
換水を入れて2時間後のイオン交換水側の硫酸濃度、及
びZnイオンの濃度から硫酸の静的透過速度及び選択性を
評価した。その結果を表−2に示す。透過速度Uの値は
硫酸濃縮度の上昇とともに減少するが、従来のスチレン
−ジビニルベンゼン系イオン交換膜と比較してその減少
率が小さく、特に高濃度で従来にない高い透過速度が得
られた。また、選択性RS(U Zn/U H2SO4)の値において
も十分に低い値で、高い選択透過性能を有することが判
明した。
Example 2 The multilayer membrane obtained in the same manner as in Example 1 was sandwiched between small batch type acid diffusion dialysis cells and placed on one side. The static permeation rate and selectivity of sulfuric acid were evaluated from the sulfuric acid concentration on the ion-exchanged water side and the concentration of Zn ions after 2 hours from the addition of constant-concentration sulfuric acid and ZnSO 4 aqueous solution to the other. The results are shown in Table-2. The value of the permeation rate U decreases with an increase in the concentration of sulfuric acid, but the rate of decrease is small as compared with the conventional styrene-divinylbenzene ion exchange membrane, and a high permeation rate, which was unprecedented, was obtained especially at a high concentration. . In addition, it was found that the selectivity R S (U Zn / UH 2 SO 4 ) was also sufficiently low and had high selective permeation performance.

比較例2 比較例1−3で得られたクロルメチルスチレン−ジビニ
ルベンゼン系陰イオン交換膜を使用し、実施例2と同様
にして、硫酸−硫酸亜鉛溶液の拡散透析性能を求めた。
表−2に示す。
Comparative Example 2 Using the chloromethylstyrene-divinylbenzene anion exchange membrane obtained in Comparative Example 1-3, the diffusion dialysis performance of a sulfuric acid-zinc sulfate solution was obtained in the same manner as in Example 2.
It shows in Table-2.

実施例3 実施例1と同様にして得られた複層膜を小型バッチ式酸
拡散透析用セルにはさみ、片側に0.84Nのりん酸及び0.0
75NのAlPO4水溶液を、もう一方にイオン交換水を入れ2
時間後のイオン交換水側のりん酸濃度、及びAlイオンの
濃度からりん酸の静的透過速度及び選択性を評価した。
その結果、透過速度Uの値は4.2mol/m2・h・Δc、選
択性RS(U Al/U H3PO4)の値は0.02で、高い透析性能を
有することが判明した。
Example 3 A multilayer membrane obtained in the same manner as in Example 1 was sandwiched between small batch type acid diffusion dialysis cells, and 0.84 N phosphoric acid and 0.0
Put 75N AlPO 4 aqueous solution and ion-exchanged water into the other 2
The static permeation rate and selectivity of phosphoric acid were evaluated from the concentration of phosphoric acid on the ion-exchanged water side and the concentration of Al ions after a lapse of time.
As a result, it was found that the permeation rate U was 4.2 mol / m 2 · h · Δc and the selectivity R S (U Al / UH 3 PO 4 ) was 0.02, indicating high dialysis performance.

比較例3 比較例1−3で得られたクロルメチルスチレン−ジビル
ベンゼン系陰イオン交換膜を使用し、実施例3と同様に
して、りん酸−りん酸アルミニウム溶液の拡散透析性能
を求めた。その結果、透過速度Uの値は0.8mol/m2・h
・Δc、選択性RS(U Al/U H3PO4)の値は0.02であっ
た。
Comparative Example 3 The diffusion dialysis performance of a phosphoric acid-aluminum phosphate solution was determined in the same manner as in Example 3 using the chloromethylstyrene-divirbenzene-based anion exchange membrane obtained in Comparative Example 1-3. . As a result, the value of permeation rate U is 0.8 mol / m 2 · h
The values of Δc and selectivity R S (U Al / UH 3 PO 4 ) were 0.02.

実施例4 外径250μm、内径200μm、孔径0.02μm、多孔度45
%、厚み25μmのポリプロピレン製中空糸多孔膜を実施
例1と同様にして親水化処理した。得られた親水化中空
糸多孔膜上に実施例1と同様の方法で得た4級アミノ化
ポリマー溶液を塗布、乾燥し、コーティング層の厚みが
10μmの複層中空糸膜を得た。この中空糸を長さ60cm、
1000本束ね、耐熱塩化ビニル製の分離器に両端エポキシ
樹脂で固定し、第1図のような酸回収装置を作成した。
Example 4 Outer diameter 250 μm, inner diameter 200 μm, pore diameter 0.02 μm, porosity 45
%, And a 25 μm-thick polypropylene hollow fiber porous membrane was hydrophilized in the same manner as in Example 1. On the obtained hydrophilized hollow fiber porous membrane, the quaternary aminated polymer solution obtained by the same method as in Example 1 was applied and dried.
A 10 μm multi-layer hollow fiber membrane was obtained. This hollow fiber is 60 cm long,
A bundle of 1000 pieces was fixed to a separator made of heat-resistant vinyl chloride with epoxy resin at both ends, and an acid recovery device as shown in Fig. 1 was created.

かくて得た酸回収装置の中空糸の内側に10モル/lの硫酸
と0.1モル/lの硫酸亜鉛を含む酸溶液を下部から0.5l/mi
n.の速度で供給した。一方純水を中空糸の外側に0.5l/m
in.の速度で上部から供給したところ、7.5モル/lの硫
酸、0.001モル/lの硫酸亜鉛溶液が得られた。硫酸の回
収率は80%であった。
The acid solution containing 10 mol / l sulfuric acid and 0.1 mol / l zinc sulfate was added to the inside of the hollow fiber of the acid recovery device thus obtained from the bottom at 0.5 l / mi.
Feed at a rate of n. On the other hand, add 0.5 l / m of pure water outside the hollow fiber.
When supplied at a rate of in. from above, a 7.5 mol / l sulfuric acid, 0.001 mol / l zinc sulfate solution was obtained. The recovery rate of sulfuric acid was 80%.

実施例5 実施例1と同様な方法を用いて芳香族ポリスルホン/ポ
リチオエーテルスルホン共重合体Aを得た。
Example 5 An aromatic polysulfone / polythioether sulfone copolymer A was obtained in the same manner as in Example 1.

次に、トリエチルホスフェート56gを1,1,2−トリクロロ
エタン400mlに混合し、更に0℃で発煙硫酸82gを静かに
滴下してスルホン化液を調製した。該スルホン化液と共
重合体Aの9wt%1,2,2−トリクロロエタン溶液1060gと
を1,1,2−トリクロロエタン700ml中に激しく撹拌しなが
ら滴下した。滴下後室温で97時間撹拌し、濾過、洗浄を
行って共重合体Aのスルホン化物Dを得た。
Next, 56 g of triethyl phosphate was mixed with 400 ml of 1,1,2-trichloroethane, and 82 g of fuming sulfuric acid was gently added dropwise at 0 ° C. to prepare a sulfonation solution. The sulfonation solution and 1060 g of a 9 wt% 1,2,2-trichloroethane solution of copolymer A were added dropwise to 700 ml of 1,1,2-trichloroethane with vigorous stirring. After dropping, the mixture was stirred at room temperature for 97 hours, filtered and washed to obtain a sulfonated product D of copolymer A.

かくして得られたスルホン化ポリマーDをN−メチルピ
ロリドンに溶解し、10重量%の溶液を得た。
The sulfonated polymer D thus obtained was dissolved in N-methylpyrrolidone to obtain a 10% by weight solution.

一方、実施例1と同様な方法で親水化ポリプロピレン多
孔膜を得た。
On the other hand, a hydrophilic polypropylene porous membrane was obtained in the same manner as in Example 1.

上記したスルホン化ポリマーDのN−メチルピロリドン
溶液を親水化ポリプロピレン多孔膜上にコーティング
し、50℃で2時間乾燥を行って、イオン交換膜層の厚み
が10μmの複層化されたイオン交換膜を得た。得られた
イオン交換膜の0.5N−NaCl水溶液中の実効抵抗は0.4Ω
・m2を示し、従来のスチレン−ジビニルベンゼン系カチ
オン交換膜に比較して十分に低い値であった。
The N-methylpyrrolidone solution of the sulfonated polymer D was coated on a hydrophilic polypropylene porous membrane and dried at 50 ° C. for 2 hours to form a multilayer ion exchange membrane having an ion exchange membrane layer thickness of 10 μm. Got The effective resistance of the obtained ion-exchange membrane in 0.5N-NaCl aqueous solution is 0.4Ω.
· M 2 illustrates a conventional styrene - was sufficiently low in comparison with divinylbenzene based cation exchange membrane.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】孔径が0.01〜5μm、多孔度30〜90%、厚
み10〜200μmの孔内壁が親水性を有するポリ炭化水素
オレフィンまたはポリフルオロオレフィン多孔膜と、下
記の一般式(1)を有する芳香族ポリスルホン系ブロッ
クコポリマーのスルホン化物あるいは4級アンモニウム
塩基の導入物からなるイオン交換性ポリマーの薄膜とが
複層化されていることを特徴とする複層化されたイオン
交換膜。 (但し、式中Arは、 又は R1〜R9は、互いに同一または異なる炭素数1〜8の炭化
水素基。a〜dは、0〜4、eは0〜3、f+gは0〜
7、h+iは0〜5、R10〜R11は水素、炭素数1〜6の
炭化水素基。Xは−O−又は−S−であり、m/n=100/1
〜1/10、Z=100を示す。)
1. A polyhydrocarbon olefin or polyfluoroolefin porous membrane having a pore diameter of 0.01 to 5 μm, a porosity of 30 to 90% and a thickness of 10 to 200 μm having hydrophilic inner walls, and the following general formula (1): A multi-layered ion-exchange membrane, characterized in that the sulfonated aromatic polysulfone-based block copolymer or a thin film of an ion-exchangeable polymer formed by introducing a quaternary ammonium salt group is multi-layered. (However, Ar in the formula is Or R 1 to R 9 are the same or different hydrocarbon groups having 1 to 8 carbon atoms. a to d are 0 to 4, e is 0 to 3, and f + g is 0.
7, h + i is 0 to 5, R 10 to R 11 are hydrogen, and a hydrocarbon group having 1 to 6 carbon atoms. X is -O- or -S-, m / n = 100/1
.About.1 / 10 and Z = 100 are shown. )
【請求項2】イオン交換性ポリマーの薄膜の厚みが0.1
〜50μmであることを特徴とする請求項(1)の複層化
されたイオン交換膜。
2. The thin film of the ion-exchange polymer has a thickness of 0.1.
The multi-layered ion exchange membrane according to claim 1, wherein the ion exchange membrane has a thickness of ˜50 μm.
【請求項3】多孔膜が内径0.1〜1mmの中空糸からなり、
イオン交換膜全体が中空糸状であることを特徴とする請
求項(1)又は(2)の複層化されたイオン交換膜。
3. A porous membrane comprising hollow fibers having an inner diameter of 0.1 to 1 mm,
The multilayer ion exchange membrane according to claim (1) or (2), wherein the entire ion exchange membrane has a hollow fiber shape.
JP1085739A 1989-04-06 1989-04-06 Multilayered ion exchange membrane Expired - Fee Related JPH0747654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1085739A JPH0747654B2 (en) 1989-04-06 1989-04-06 Multilayered ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1085739A JPH0747654B2 (en) 1989-04-06 1989-04-06 Multilayered ion exchange membrane

Publications (2)

Publication Number Publication Date
JPH02265929A JPH02265929A (en) 1990-10-30
JPH0747654B2 true JPH0747654B2 (en) 1995-05-24

Family

ID=13867212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1085739A Expired - Fee Related JPH0747654B2 (en) 1989-04-06 1989-04-06 Multilayered ion exchange membrane

Country Status (1)

Country Link
JP (1) JPH0747654B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058874B2 (en) 2010-08-19 2017-01-11 株式会社アストム Ion exchange membrane and method for producing the same
KR102280150B1 (en) * 2019-08-16 2021-07-21 도레이첨단소재 주식회사 Monovalent anion selective ion exchange membrane
EP4108329A4 (en) * 2020-02-18 2023-11-29 Kabushiki Kaisha F.C.C. Ion exchange equipment
CN113231111A (en) * 2021-05-18 2021-08-10 河南师范大学 Side chain sulfonated polybenzimidazole composite cation exchange membrane and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314684A (en) * 1976-07-27 1978-02-09 Kanegafuchi Chem Ind Co Ltd Production of crosslinked ion exchanger
JPS59166541A (en) * 1983-03-10 1984-09-19 Japan Goatetsukusu Kk Production of porous membrane of chemical resistance

Also Published As

Publication number Publication date
JPH02265929A (en) 1990-10-30

Similar Documents

Publication Publication Date Title
EP0352798B1 (en) Anion exchanger
Cui et al. Recent progress in fluoropolymers for membranes
US8455557B2 (en) Membranes, coatings and films and methods for their preparation
US8710109B2 (en) Chemically resistant membranes, coatings and films and methods for their preparation
US4262041A (en) Process for preparing a composite amphoteric ion exchange membrane
KR100999048B1 (en) Method for preparing anion-exchange composite membrane containing styrene-based and vinylbenzene-based copolymer
JP2005539117A (en) Process for making graft copolymers useful in membranes
JP2003096219A (en) Anion exchange membrane
JP4724971B2 (en) Anion exchange membrane, method for producing the same, and solution processing apparatus
JP5120543B2 (en) Cation exchange membrane and method for producing the same
EP0330187B1 (en) Cation exchanger
JPH0747654B2 (en) Multilayered ion exchange membrane
JPH0680799A (en) Corrosion-resistant anion exchange film
WO2019198093A1 (en) Acid and oxidative resistant homogenous cation exchange membrane and its method of preparation thereof
CN1039738A (en) Anionite
JPH0747655B2 (en) Reinforced ion exchange membrane
KR101799996B1 (en) Styrene-based and tert-butylstyrene-based cation exchange composite membrane having polyvinylidene fluoride and method of preparing thereof
JPH0271829A (en) Novel method for recovering acid
JPS637575B2 (en)
JPH02294338A (en) Novel multi-layered ion exchange membrane
KR100447949B1 (en) Preparation of PVC/Polystyren base cation-exchange membrane
JP2828690B2 (en) Multi-layer anion exchange membrane
JP2828691B2 (en) Multi-layer anion exchange membrane
JP3165740B2 (en) Separation membrane and method for producing the same
JPH07258436A (en) Double layer ion exchange resin membrane and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees