JPS61402A - Semipermeable membrane for separation - Google Patents

Semipermeable membrane for separation

Info

Publication number
JPS61402A
JPS61402A JP59121419A JP12141984A JPS61402A JP S61402 A JPS61402 A JP S61402A JP 59121419 A JP59121419 A JP 59121419A JP 12141984 A JP12141984 A JP 12141984A JP S61402 A JPS61402 A JP S61402A
Authority
JP
Japan
Prior art keywords
membrane
semipermeable membrane
separation
polymer
hydrophilic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59121419A
Other languages
Japanese (ja)
Other versions
JPH0376969B2 (en
Inventor
Makoto Tamada
玉田 真
Hitoshi Tsugaya
津ケ谷 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59121419A priority Critical patent/JPS61402A/en
Publication of JPS61402A publication Critical patent/JPS61402A/en
Publication of JPH0376969B2 publication Critical patent/JPH0376969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0231Dense layers being placed on the outer side of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a semipermeable membrane having good filtering efficiency and a high water permeation speed, in a semipermeable membrane for separation based on a hydrophobic high-molecular substance having an asymmetric structure consisting of a dense layer and a porous layer, by constituting only the dense layer of said semipermeable membrane from a mixture consisting of a hydrophobic high-molecular substance and a hydrophilic high-molecular substance. CONSTITUTION:As a hydrophobic polymer, an aromatic polysulfone represented by formulae I -III is used and, as a hydrophilic polymer, polyvinyl pyrrolidone is used and both of them are dissolved in a polar org. solvent to prepare a dope which is, in turn, cast onto a sheet like or tubular support while the coated support is subsequently immersed in a coagulant bath to prepare an asymmetric separation semipermeable membrane by sol-gel phase conversion. By this method, an asymmetric structure, such that the hydrophilic polymer is present in the dense layer side of the membrane but no hydrophilic polymer is present in the porous layer side of the membrane back surface, is obtained and the water permeability of the formed membrane is improved while the heat resistance and chemical resistance of the aromatic polysulfone are kept.

Description

【発明の詳細な説明】 (技術の背景) 本発明は新規な構造を有する非対称分離用半透膜に関す
るものである。近年、半透膜を用いた分離技術である逆
浸透法や限外濾過法は各種の分野において実用化されて
おり、その多様な用途に夫々適する素材から作られた半
透膜が上布されている。特に限外f過法に用いられる半
透膜の材料としてよく知られているものにポリアクリロ
ニトリル系、セルロース系、ポリスルボン系ナトカアル
DETAILED DESCRIPTION OF THE INVENTION (Technical Background) The present invention relates to a semipermeable membrane for asymmetric separation having a novel structure. In recent years, reverse osmosis and ultrafiltration methods, which are separation technologies using semipermeable membranes, have been put into practical use in various fields, and semipermeable membranes made from materials suitable for each of these various uses are applied. ing. In particular, polyacrylonitrile-based, cellulose-based, and polysulfone-based materials are well-known as materials for semipermeable membranes used in ultraf-filtration methods.

これらの膜素材の中で芳香族ポリスルホン系の膜は機械
的強度が大きく、耐熱性、耐薬品性が優れているものと
して注目されてきている。
Among these membrane materials, aromatic polysulfone-based membranes are attracting attention as they have high mechanical strength and excellent heat resistance and chemical resistance.

(従来技術およびその欠点) しかしながら芳香族ポリスルホン系樹哨は親水性が低く
、水に濡れにくい素材であるために、これを素材とした
分離用半透膜は親水性素材から成る分離用半透膜に比べ
て著しく透水速度が低く、f過動率が悪い。
(Prior art and its disadvantages) However, aromatic polysulfone-based arborescent material has low hydrophilicity and is a material that is difficult to wet with water. The water permeation rate is significantly lower than that of membranes, and the f-permeability rate is poor.

そこでこれまで芳香族ポリスルホンの分離膜の透水性能
を向上させるべく種々の試みがなされて来た。
Therefore, various attempts have been made to improve the water permeability of aromatic polysulfone separation membranes.

たとえば特開昭58−104940では分子量10万以
上のポリビニルピロリドンを含有するポリスルポン系分
離膜とその製造方法がある。しかじな(がら10万以上
の分子量を有する親水性ポリマーを製嘆用溶液(ドープ
と呼ぶ)に添加するこの方?iにおいては、ドープのポ
リマー密度を増大させることになり、このようなドープ
から製膜されたポリスルホン系分離膜は添加された親水
性高分子が膜全体中にそのまま残存しており、その後の
使用においても除去されないため著しくち密な構造とな
って透水速度はかえって低下してしまう。
For example, JP-A-58-104940 discloses a polysulfone separation membrane containing polyvinylpyrrolidone with a molecular weight of 100,000 or more and a method for producing the same. However, in this method, a hydrophilic polymer having a molecular weight of 100,000 or more is added to a molten solution (called a dope), which increases the polymer density of the dope. The hydrophilic polymer added to the polysulfone separation membrane remains intact throughout the membrane, and is not removed even during subsequent use, resulting in an extremely dense structure and a decrease in water permeation rate. .

一方、オリゴマー程度の分子量を有するポリエチレング
リコールをポリスルホン溶液に添加してドープとして用
いる方法が特開昭54−26283に開示されている。
On the other hand, JP-A-54-26283 discloses a method in which polyethylene glycol having a molecular weight comparable to that of an oligomer is added to a polysulfone solution and used as a dope.

しかしながらこの方法では製膜の凝固浴として水を用い
ており、オリゴマー程度のポリエチレングリフールでは
膜中に残存スることなくすべて水中に溶出してしまい、
実質的にポリスルホン膜の親水性は高められず、著しい
透水速度の向」二は望めない。
However, this method uses water as a coagulation bath for film formation, and oligomer-level polyethylene glyfur is completely eluted into the water without remaining in the film.
The hydrophilicity of the polysulfone membrane is not substantially increased, and no significant improvement in water permeation rate can be expected.

またジャーナル−オブーアフ゛ライド・ポリマーサイエ
ンス20巻(1976)2377〜2394には分子量
1万〜4万のポリビニルピロリドンな親水性高分子とし
て製膜用ドープ中に多量に含有させて中空繊維膜の可紡
性の改良を企図した報告がなされているが、この場合は
膜表面には緻密層ができず、本発明のような非対称構造
にはならない。
Also, in the Journal of Polymer Science Vol. 20 (1976) 2377-2394, polyvinylpyrrolidone, a hydrophilic polymer with a molecular weight of 10,000 to 40,000, is incorporated in a large amount into a membrane-forming dope to form hollow fiber membranes. Although there have been reports aimed at improving spinnability, in this case no dense layer is formed on the membrane surface, and the asymmetric structure as in the present invention is not achieved.

(本発明の構成) 本発明者らは上記のような問題を解消してf′過効率が
よく、しかも透水速度の大きい疎水性高分子物質を主体
とする非対称構造を有する分離相半膜について鋭意検討
した結果、分離用半透膜の膜厚方向において、R密層側
の膜表面から5μm以内に親水性高分子が存在し、かつ
5μmから裏面まではこれが存在しないような新規な構
造を有する非対称分A佳膜を発明した。
(Structure of the present invention) The present inventors have solved the above-mentioned problems and have developed a separated phase semi-membrane having an asymmetric structure mainly composed of a hydrophobic polymer substance with high f′ permeability and high water permeation rate. As a result of intensive studies, we have developed a new structure in which hydrophilic polymers exist within 5 μm from the membrane surface on the R-dense layer side in the membrane thickness direction of the semipermeable membrane for separation, and do not exist from 5 μm to the back surface. We have invented an asymmetric membrane with an asymmetrical content.

すなわち本発明は「表面が緻密層、裏面が多孔層である
非対称構造を有する疎水性高分子物質を主体とする分離
用半透膜であって、緻密層側だけが該疎水性高分子物質
と親水性高分子物質との混合物からなることを特徴とす
る分離用半透膜。」である。
In other words, the present invention is a semipermeable separation membrane mainly composed of a hydrophobic polymer substance having an asymmetric structure with a dense layer on the surface and a porous layer on the back side, in which only the dense layer side is composed of the hydrophobic polymer substance. A semipermeable membrane for separation characterized by being made of a mixture with a hydrophilic polymeric substance.

本発明でいう疎水性高分子としては下記式(I)〜@)
の構造を有する芳香族ボリア、ルホン系高分子が代表的
なものである H3 本発明に用いられる水溶性高分子としてはポリビニルピ
ロリドンが代表的なものであり、ビニルピロリドンを重
合して得られる水溶性高分子で、平均分子量が7万以下
、1万以上のものが最適である。平均分子量が7万を越
えると、前述したごとく膜のポリマー密度が大きくなり
すぎて透水速度はかえって低下してしまう。また7万以
下の平均分子量でもオリゴマー程度の、すなわち数千の
オーダーの分子量では水溶性が高すぎて、製膜過程にお
ける水中への浸漬でほとんど完全に抽出されてしまい、
膜の親水化および透水性能は改善され香族−ポリスルホ
ンであり、親水性高分子がポリビニルピロリドンである
事例について詳細に説明する。
The hydrophobic polymer referred to in the present invention has the following formula (I) ~ @)
Typical examples are aromatic boria and sulfone polymers having the structure H3. Polyvinylpyrrolidone is a typical example of the water-soluble polymer used in the present invention. Optimal is a polymer with an average molecular weight of 70,000 or less and 10,000 or more. If the average molecular weight exceeds 70,000, the polymer density of the membrane becomes too large, as described above, and the water permeation rate actually decreases. Furthermore, even with an average molecular weight of 70,000 or less, molecular weights on the order of oligomers, that is, molecular weights on the order of several thousand, are too water-soluble and are almost completely extracted when immersed in water during the film forming process.
A case in which the hydrophilicity and water permeability of the membrane is improved by aromatic polysulfone and the hydrophilic polymer is polyvinylpyrrolidone will be described in detail.

分離用半透膜を製造するためのドープ組成としては、ド
ープの総重量に対し上記のポリビニルピロリドンが3重
量%以下含有されていることが望ましい。3重量%を越
えると走査型電子顕微鏡による膜断面の写真である第1
図に示すごとく、膜構造の破壊が認められるようになり
不都合である。
The dope composition for producing a semipermeable membrane for separation preferably contains 3% by weight or less of the above-mentioned polyvinylpyrrolidone based on the total weight of the dope. If the concentration exceeds 3% by weight, the first
As shown in the figure, destruction of the membrane structure is observed, which is inconvenient.

また本発明に用いるドープ中の親水性ポリマーと疎水性
ポリマーをあわせた総ポリマー重量なドープの総重量に
対して10〜30重量%になるように極性有機溶剤に溶
解させることが望ましい。
Further, it is desirable to dissolve the hydrophilic polymer and the hydrophobic polymer in the polar organic solvent in an amount of 10 to 30% by weight based on the total weight of the dope, which is the total weight of the hydrophilic polymer and hydrophobic polymer in the dope used in the present invention.

極性有機溶剤としては、例えばN、N−ジメチルアセト
アミド、N、N−ジメチルホルムアミド、N−メチル−
2−ピロリドン、ジメチルスルホキシド、スルホラン、
2−ピロリドン、ヘキサメチルホスホルアSF′等を例
示することができるが、4     特にこれらに限定
されるものではない。またこのような極性有機溶剤に、
疎水性ポリマーあるいは親水性ポリマーのどちらか一方
の非溶剤を添加したり、あるいは電解質などを添加した
りすることもできる。
Examples of the polar organic solvent include N,N-dimethylacetamide, N,N-dimethylformamide, and N-methyl-
2-pyrrolidone, dimethyl sulfoxide, sulfolane,
Examples include 2-pyrrolidone, hexamethylphosphor SF', etc., but the present invention is not limited thereto. Also, for such polar organic solvents,
It is also possible to add a non-solvent of either a hydrophobic polymer or a hydrophilic polymer, or to add an electrolyte.

以を説明してきたドープから本発明の非対称分離用半透
膜を製膜するにあたっては、従来−n= 6用いられて
いる非対称分離用半透膜の製造方法を採用することがで
きる。
In forming the semipermeable membrane for asymmetric separation of the present invention from the dope described below, it is possible to employ a method for producing a semipermeable membrane for asymmetric separation, which is conventionally used for −n=6.

シート状あるいは管状に分離膜を形成させるには、シー
ト状あるいは管状の適当な支持体(たとえばガラス板あ
るいは管、不織布、布など)上にドープを厚さ数十ミク
ロン−数百ミクロンの範囲で適当な方法により流延し、
しかる後に凝固剤浴Ki潰してゾル−ゲル相変換による
非対称分離用半透膜を製造する。また公知方法でドープ
な中空糸状成形ノズルを経て紡糸することにより、非対
称の中空系状分器用字透膜の製造が可能である。
To form a separation membrane in the form of a sheet or tube, a dope is applied to a thickness of several tens of microns to several hundred microns on a suitable support (for example, a glass plate or tube, nonwoven fabric, cloth, etc.) in the form of a sheet or tube. Casting by an appropriate method,
Thereafter, the coagulant bath Ki is crushed to produce a semipermeable membrane for asymmetric separation by sol-gel phase conversion. Furthermore, by spinning the fibers through a doped hollow fiber forming nozzle using a known method, it is possible to produce an asymmetrical hollow system membrane for division.

製膜に用いられる凝固剤としては芳香族ポリスルホンの
非溶剤であり、極性有機、溶剤と混ざりやすい、例えば
水、食塩や界面活性剤などの電解質の水溶液、極性有機
溶剤の希薄水溶液あるいは芳香族ポリスルホンの非溶剤
又はその水溶藩などが例示されるが、特に一般的には水
が用いられる。
The coagulant used in film formation is a non-solvent for aromatic polysulfone, which is easily miscible with polar organic solvents, such as water, aqueous solutions of electrolytes such as salt and surfactants, dilute aqueous solutions of polar organic solvents, or aromatic polysulfone. Examples include non-solvents and water-soluble versions thereof, but water is particularly commonly used.

本発明の非対称分離用半透膜の特徴は、以上述べて来た
ような製膜1去によって発現する。すなわちその特徴は
、膜表面にはフーリエ変換赤外吸収A、TRスペクトル
分析による親水性高分子の存在が認められるが、膜裏面
にはその存在が認められないという非対称構造である。
The characteristics of the semipermeable membrane for asymmetric separation of the present invention are manifested by the membrane formation process 1 described above. That is, its characteristic feature is an asymmetric structure in which the presence of a hydrophilic polymer is observed on the membrane surface by Fourier transform infrared absorption A and TR spectrum analysis, but its presence is not observed on the back surface of the membrane.

第2図は本発明の非対称分り膜の膜表面のフーリエ変換
赤外吸収ATRスペクトル(以下FT−IRATRスペ
クトルト称スる)でたて軸は透過率(%)、横軸は波数
(crn−’)である。この図では親水性ポリマーポリ
ビニルピロリドンのアミドのカルボニル基の吸収を示す
アミドI吸収帯1660crn−’ (第2図中矢印)
が明確に認められる。−力筒3図は同じ膜の裏面のスペ
クトルであるが、同様の吸収は全く認められなかった。
Figure 2 shows the Fourier transform infrared absorption ATR spectrum (hereinafter referred to as FT-IRATR spectrum) of the membrane surface of the asymmetric membrane of the present invention. The vertical axis is the transmittance (%), and the horizontal axis is the wave number (crn- '). In this figure, the amide I absorption band 1660 crn-' (arrow in Figure 2) shows the absorption of the carbonyl group of the amide of the hydrophilic polymer polyvinylpyrrolidone.
is clearly recognized. - Figure 3 shows the spectrum of the back side of the same film, but similar absorption was not observed at all.

(本発明による効果) このように膜表面側が極度に親水化されていることによ
り元来疎水性である芳香族ポリスルホン系分離用半透膜
が著しく親水化されていることが明らかであり、透水性
能が改善される。しかも芳香族ポリスルホンの特徴であ
る優れた耐熱性、耐薬品性は維持されているので、従来
の親水性高分子ベースの分離用半透膜、例えばセルロー
スアセテートからなる分離用半透膜が耐えられなかった
ような過酷な条件下の膜分離操作に有効に使用すること
ができる。
(Effects of the present invention) It is clear that by making the membrane surface side extremely hydrophilic, the aromatic polysulfone-based semipermeable membrane for separation, which is originally hydrophobic, has become extremely hydrophilic. Performance is improved. Moreover, the excellent heat resistance and chemical resistance that are characteristic of aromatic polysulfone are maintained, so that conventional semipermeable membranes for separation based on hydrophilic polymers, such as semipermeable membranes for separation made of cellulose acetate, can withstand them. It can be effectively used for membrane separation operations under harsh conditions.

次に実施例により本発明を具体的に説明するが、純水透
水係数(Lp’) 、 Lpの経時低下率(β)、およ
び卵白アルブミンの排除率(Ro )はそれぞれ(但し
濾過10分後のLp値を聾、7時間後のLp値を特徴と
する特許で定義されたものである。
Next, the present invention will be specifically explained with reference to Examples. It is defined in a patent characterized by the Lp value after 7 hours of hearing loss.

実施例1 (1)式の芳香族ポリスルホン(商品名Victrcx
30・0pICE社鯛)18重量部と平均分子量4万の
ポリビニルピロリドン(以下PVPと略すAlclvi
c、lt 社製)2重用部を2−ピロリドンを主とする
混合溶剤80重量部に溶解した。このドープの粘度は2
5℃で14000センチボイズであった。、これをポリ
エステル不織布」二に厚み150μmで流延し、室温雰
囲気中で20秒間放置後、10℃の水中に浸清して非対
称分離用半透膜を得、賢。得られた不織布で補強された
非対称分並用半透膜をさらに90℃熱水に15分間浸漬
゛−7完全に脱溶剤した。この膜のLpは4.5 nl
 / m” ・日−Kg/crux (25℃)、その
低下率βは42%であった。またROは100%であっ
た。また元素分析から求めた膜のPVP含有率は45%
であった。
Example 1 Aromatic polysulfone of formula (1) (trade name Victrcx
30.0pICE Co., Ltd. sea bream) 18 parts by weight and polyvinylpyrrolidone (hereinafter abbreviated as PVP) with an average molecular weight of 40,000.
C, manufactured by lt Co., Ltd.) was dissolved in 80 parts by weight of a mixed solvent mainly containing 2-pyrrolidone. The viscosity of this dope is 2
It was 14,000 centivoids at 5°C. This was cast onto a polyester non-woven fabric to a thickness of 150 μm, left in a room temperature atmosphere for 20 seconds, and then immersed in water at 10°C to obtain a semipermeable membrane for asymmetric separation. The obtained nonwoven fabric-reinforced asymmetric semipermeable membrane was further immersed in hot water at 90° C. for 15 minutes to completely remove the solvent. The Lp of this film is 4.5 nl
/ m”・day-Kg/crux (25°C), the reduction rate β was 42%. Also, RO was 100%. Also, the PVP content of the film determined from elemental analysis was 45%.
Met.

(”施4′ 実施例1の非対称分離膜を90℃の熱水に50時間浸漬
したところ、Lzは4.F3Bdl??I′−日・Kg
/cmでβは37%ROは100%であり、膜性能の劣
化は認めら1tなかった。またpvr’含有率も48%
で、実質的にPVPの溶出は認められなかった。
("Example 4') When the asymmetric separation membrane of Example 1 was immersed in hot water at 90°C for 50 hours, Lz was 4.F3Bdl??I'-day・Kg
/cm, β was 37%, RO was 100%, and no deterioration of membrane performance was observed. The pvr' content is also 48%.
Substantially no elution of PVP was observed.

比較例1 平均分子量70万のpvp (和光純薬製)を用いる以
外は実施例1と同様の方法で製膜した。得られた膜のR
Oは100%であったが、L、は101靜/??72・
日・K7/cmに低下した。
Comparative Example 1 A film was formed in the same manner as in Example 1 except that PVP (manufactured by Wako Pure Chemical Industries, Ltd.) having an average molecular weight of 700,000 was used. R of the obtained film
O was 100%, but L was 101 quiet/? ? 72・
It decreased to 7 days/cm.

比較例2 平均分子量4万のPVP (Aldrich社製)を4
2重量部、混合溶剤を778重量部用いる以外は実施例
1と同様の方法で製膜した。得られた膜のROは96%
に低下し、Lpも2.72 nl /+r? ・日・K
910dに低下した。
Comparative Example 2 PVP (manufactured by Aldrich) with an average molecular weight of 40,000 was
A film was formed in the same manner as in Example 1 except that 2 parts by weight and 778 parts by weight of the mixed solvent were used. The RO of the obtained membrane was 96%
The Lp also decreased to 2.72 nl/+r?・Japanese・K
It decreased to 910d.

比較例3 PVPを添加せず混合溶剤を82重量部にする以外は実
施例1と同様の方法で製膜した。得られた膜の弓は4.
77 nl /n? ・日・Ky/cr1.Roの阻止
率100%であったが、低下率βは266%であり、透
水速度の経時低下が著しい。
Comparative Example 3 A film was formed in the same manner as in Example 1, except that PVP was not added and the mixed solvent was 82 parts by weight. The resulting membrane arch is 4.
77 nl/n?・Japanese/Ky/cr1. Although the Ro rejection rate was 100%, the decrease rate β was 266%, and the water permeation rate decreased significantly over time.

実施例3 支持体に表面が平滑なガラス板を用いる以外は実施例1
と同様の方法で製膜した。この補強利のない非対称分離
膜を充分乾燥し膜表面のATR−IRスペクトルを測定
してみたところ第2図が得られた。PVPの吸収帯が明
確である。ところが同じ膜の裏面のA、TR−IRスペ
クトルを測定してみると第3図に示すようにPVPの吸
収帯が見られなかった。
Example 3 Example 1 except that a glass plate with a smooth surface is used as the support.
The film was formed in the same manner as above. When this unreinforced asymmetric separation membrane was thoroughly dried and the ATR-IR spectrum of the membrane surface was measured, the result shown in Figure 2 was obtained. The absorption band of PVP is clear. However, when the A, TR-IR spectrum of the back surface of the same film was measured, no PVP absorption band was observed as shown in FIG.

また第4図はここで得られた半透膜の断面の構造を示す
電子顕微鏡写真であり、第1図に示すような膜構造の破
壊は認められない。
Furthermore, FIG. 4 is an electron micrograph showing the cross-sectional structure of the semipermeable membrane obtained here, and no destruction of the membrane structure as shown in FIG. 1 is observed.

実施例4 親水性高分子としてポリ(2−ビニルピリジン)(Al
dric++社製)を用いる以外は実施例1と同様の方
法で製膜した。得られた膜の弓は7.56 m’/n?
・日・K4/crlという大きな値を示し、かつROは
100%であった。元素分析から求めた膜のポリビニル
ピリジン含有率は29%であった。
Example 4 Poly(2-vinylpyridine) (Al
A film was formed in the same manner as in Example 1, except that the film was manufactured by Dric++ Co., Ltd.). The resulting membrane arch is 7.56 m'/n?
・It showed a large value of K4/crl, and the RO was 100%. The polyvinylpyridine content of the film determined from elemental analysis was 29%.

実施例5 支持体として表面が平滑なガラス板を用いて実施例4の
膜を作製した。充分水洗して乾燥した後膜表面のATR
−IRスペクトルを測定したところ第5図に示すように
1440cm−’ (第5図中矢印)にピリジン環の吸
収帯が認められた。ところが同じ膜の裏面のATR−I
Rスペクトルを測定したところ第6図に示すように14
40α−1のところにピリジン環の吸収帯が見られなか
った。
Example 5 The membrane of Example 4 was produced using a glass plate with a smooth surface as a support. ATR on the membrane surface after thorough water washing and drying
- When the IR spectrum was measured, an absorption band of the pyridine ring was observed at 1440 cm-' (arrow in FIG. 5) as shown in FIG. However, ATR-I on the back side of the same membrane
When the R spectrum was measured, as shown in Figure 6, 14
No absorption band of pyridine ring was observed at 40α-1.

以上that's all

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較例2において支持体として表面が平滑なガ
ラス板を用いて作製された膜の断面の走査型電子顕微鏡
写真である。 第2図は実施例3で作製した膜の表面のIi’T−IR
ATRスペクトルである。 第3図は同じ膜の裏面のFT−■RATRスペクトルで
ある。 第4図は実施例3において得られた膜の断面の走査型電
子顕微鏡写真である。 第5図は実施例5において得られた膜の表面の、第6図
は同腹の裏面のFT−IRATRスペクトルである。 特許出願人   ダイセル化学工業味式会社第1図 第4図 手続補正書(自発)
FIG. 1 is a scanning electron micrograph of a cross section of a membrane prepared in Comparative Example 2 using a glass plate with a smooth surface as a support. Figure 2 shows Ii'T-IR of the surface of the film prepared in Example 3.
This is an ATR spectrum. FIG. 3 is an FT-RATR spectrum of the back side of the same film. FIG. 4 is a scanning electron micrograph of a cross section of the membrane obtained in Example 3. FIG. 5 is an FT-IRATR spectrum of the front surface of the membrane obtained in Example 5, and FIG. 6 is an FT-IRATR spectrum of the back surface of the membrane obtained in Example 5. Patent Applicant: Daicel Chemical Industry Co., Ltd. Figure 1 Figure 4 Procedural Amendment (Voluntary)

Claims (5)

【特許請求の範囲】[Claims] (1)表面が緻密層、裏面が多孔層である非対称構造を
有する疎水性高分子物質を主体とする分離用半透膜であ
って、緻密層側だけが該疎水性高分子物質と親水性高分
子物質との混合物からなることを特徴とする分離用半透
膜。
(1) A separation semipermeable membrane mainly composed of a hydrophobic polymer substance with an asymmetric structure in which the surface is a dense layer and the back side is a porous layer, and only the dense layer side is hydrophilic with the hydrophobic polymer substance. A semipermeable membrane for separation characterized by being made of a mixture with a polymeric substance.
(2)疎水性高分子が構造式( I )、(II)又は(II
I)のいずれか1つのくり返し単位を有する芳香族ポリ
スルホンであることを特徴とする特許請求の範囲第1項
記載の分離用半透膜▲数式、化学式、表等があります▼
・・・( I ) ▲数式、化学式、表等があります▼・・・(II) ▲数式、化学式、表等があります▼・・・(III)
(2) The hydrophobic polymer has the structural formula (I), (II) or (II)
A semipermeable membrane for separation according to claim 1, characterized in that it is an aromatic polysulfone having any one repeating unit of I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼
...(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(III)
(3)親水性高分子が平均分子量7万以下のポリビニル
ピロリドンであることを特徴とする特許請求の範囲第1
項記載の分離用半透膜。
(3) Claim 1, characterized in that the hydrophilic polymer is polyvinylpyrrolidone with an average molecular weight of 70,000 or less.
Semipermeable membrane for separation as described in section.
(4)親水性高分子がポリビニルピリジン又はビニルピ
リジン共重合体であることを特徴とする特許請求の範囲
第1項記載の分離用半透膜。
(4) The semipermeable membrane for separation according to claim 1, wherein the hydrophilic polymer is polyvinylpyridine or a vinylpyridine copolymer.
(5)製膜用溶液として、溶液の総重量に対し0.5重
量%以上3重量%以下の親水性高分子を含有する高分子
溶液を用いる特許請求の範囲第1項記載の分離用半透膜
(5) The separating half according to claim 1, in which a polymer solution containing a hydrophilic polymer of 0.5% by weight or more and 3% by weight or less based on the total weight of the solution is used as the membrane forming solution. Permeable membrane.
JP59121419A 1984-06-13 1984-06-13 Semipermeable membrane for separation Granted JPS61402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121419A JPS61402A (en) 1984-06-13 1984-06-13 Semipermeable membrane for separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121419A JPS61402A (en) 1984-06-13 1984-06-13 Semipermeable membrane for separation

Publications (2)

Publication Number Publication Date
JPS61402A true JPS61402A (en) 1986-01-06
JPH0376969B2 JPH0376969B2 (en) 1991-12-09

Family

ID=14810683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121419A Granted JPS61402A (en) 1984-06-13 1984-06-13 Semipermeable membrane for separation

Country Status (1)

Country Link
JP (1) JPS61402A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397666A (en) * 1986-10-15 1988-04-28 Toray Ind Inc Low-temperature soluble type stock solution and production thereof
US5009688A (en) * 1988-09-28 1991-04-23 Asahi Glass Company, Ltd. Process for producing porous glass
WO2003092873A1 (en) * 2002-05-03 2003-11-13 Pall Corporation Blended polymer membrane media for treating aqueous fluids
JP2008178217A (en) * 2007-01-18 2008-07-31 Fuji Electric Systems Co Ltd Control method of inverter for electric vehicle
JP2012011350A (en) * 2010-07-02 2012-01-19 Daicen Membrane Systems Ltd Hollow fiber type nf membrane
CN108722207A (en) * 2018-05-30 2018-11-02 哈尔滨工业大学(威海) A kind of preparation method of Janus composite membranes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397666A (en) * 1986-10-15 1988-04-28 Toray Ind Inc Low-temperature soluble type stock solution and production thereof
US5009688A (en) * 1988-09-28 1991-04-23 Asahi Glass Company, Ltd. Process for producing porous glass
WO2003092873A1 (en) * 2002-05-03 2003-11-13 Pall Corporation Blended polymer membrane media for treating aqueous fluids
JP2008178217A (en) * 2007-01-18 2008-07-31 Fuji Electric Systems Co Ltd Control method of inverter for electric vehicle
JP2012011350A (en) * 2010-07-02 2012-01-19 Daicen Membrane Systems Ltd Hollow fiber type nf membrane
CN108722207A (en) * 2018-05-30 2018-11-02 哈尔滨工业大学(威海) A kind of preparation method of Janus composite membranes

Also Published As

Publication number Publication date
JPH0376969B2 (en) 1991-12-09

Similar Documents

Publication Publication Date Title
US6986844B2 (en) Solvent-resistant microporous polybenzimidazole membranes and modules
US6165363A (en) Hollow fiber type filtration membrane
JPH09136985A (en) Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof
EP1669128A1 (en) The preparation method of exo-pressure type poly(vinylidene fluoride) hollow fiber membrane spinned utilizing a immersion-coagulation method and the product thereof
JP3248632B2 (en) Asymmetric semipermeable membranes of aromatic polycondensates, methods for their preparation and their use
US5112487A (en) Porous membrane and production process thereof
JPH08150327A (en) Preparation of film from blend of polyether imide polymer and polyimide polymer
JPS6356802B2 (en)
US5082565A (en) Semipermeable membrane made from polyether ketones
AU758874B2 (en) Solvent resistant microporous polybenzimidazole membranes
JPH0554372B2 (en)
JPS61402A (en) Semipermeable membrane for separation
JPH02160026A (en) Hydrophilic separation membrane
Cabasso Practical aspects in the development of a polymer matrix for ultrafiltration
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
KR100426183B1 (en) A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same
KR100406362B1 (en) A method for producing asymmetric supporting membranes for composite membranes and asymmetric supporting membranes having improved permeation and mechanical strength produced therefrom
JPS6399325A (en) Hollow yarn membrane of polysulfone resin and production thereof
JPS6329562B2 (en)
JPH01184001A (en) Porous membrane of polysulfone
JP3524637B2 (en) Method for producing polymer porous membrane
JPH03254826A (en) Preparation of polysulfone semipermeable membrane
JPH0226529B2 (en)
KR950004919B1 (en) Manufacturing method for polysulfone membrane
JPS59139902A (en) Preparation of permselective membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term