JPS6397666A - Low-temperature soluble type stock solution and production thereof - Google Patents

Low-temperature soluble type stock solution and production thereof

Info

Publication number
JPS6397666A
JPS6397666A JP61243173A JP24317386A JPS6397666A JP S6397666 A JPS6397666 A JP S6397666A JP 61243173 A JP61243173 A JP 61243173A JP 24317386 A JP24317386 A JP 24317386A JP S6397666 A JPS6397666 A JP S6397666A
Authority
JP
Japan
Prior art keywords
low
temperature
soln
stock solution
molecular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61243173A
Other languages
Japanese (ja)
Other versions
JP2505428B2 (en
Inventor
Masaaki Shimagaki
昌明 島垣
Kazusane Tanaka
和実 田中
Seiji Shimamura
島村 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61243173A priority Critical patent/JP2505428B2/en
Publication of JPS6397666A publication Critical patent/JPS6397666A/en
Application granted granted Critical
Publication of JP2505428B2 publication Critical patent/JP2505428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To produce a stock soln. which is of a low-temperature soluble type which causes phase separation on a high-temperature side, allows a temp. effect during solidification to be easily utilized and can be stably stored at low temp., by adding a specified additive to a soln. obtd. by mixing a hydrophobic high-molecular material with a hydrophilic high-molecular material. CONSTITUTION:An additive (A) which is a non-solvent for the component B and a wetting agent (e.g., water, 1,4-butanediol, etc.) is added to a soln. obtd. by mixing a hydrophobic high-molecular material (B) (e.g., polysulfone) as a principal ingredient with a hydrophilic high-molecular material (C) (e.g., polyvinylpyrrolidone) and mixing them (e.g., a dimethylacetamide soln.) to produce a low-temperature soluble type stock soln. which causes phase separation on a high-temperature side. The stock soln. can be easily stored at low temp. and advantageously used in the production of semipermeable membranes having large pores in particular. Further, the stock soln. contains the hydrophilic high-molecular material so that dry membranes can be easily prepd. If the hydrophilic high-molecular material is crosslinkable, it can be used in the fields of articles requiring resistance to water and dissolution, even when the crosslinkable material is water-soluble.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低温溶解型原液およびモの製造法に関する。[Detailed description of the invention] (Industrial application field) TECHNICAL FIELD The present invention relates to a method for producing a low-temperature solution and a stock solution.

〔従来の技術〕[Conventional technology]

従来、膜および、コーティング剤として、セルロースア
セテート・ポリアクリロニトリル・ポリメタクリル酸メ
チル・ポリアミド・ポリオレフィン・ポリイミド・ポリ
カーボネート・ボリアリレート・ポリスルホン・ポリエ
ステル等多くの高分子化合物が用いられてぎた。特に、
ポリアクリロニトリル・ポリメタクリル酸メチル・ポリ
オレフィン・ポリイミド・ポリ力・−ボネート・ボリア
リレー1〜・ポリスルホン・ポリエステル等疎水性高分
子を主たる高分子素材とした膜が数多く提供されている
。特にポリスルホン系樹脂のように分子間凝集力が強い
素材に対して、多孔膜化するでだてとして、次のような
手段が提案されている。
Conventionally, many polymeric compounds such as cellulose acetate, polyacrylonitrile, polymethyl methacrylate, polyamide, polyolefin, polyimide, polycarbonate, polyarylate, polysulfone, and polyester have been used as membranes and coating agents. especially,
A large number of membranes are available that are made mainly of hydrophobic polymers such as polyacrylonitrile, polymethyl methacrylate, polyolefin, polyimide, polycarbonate, polyarylene, polysulfone, and polyester. In particular, the following methods have been proposed for forming porous membranes for materials with strong intermolecular cohesion, such as polysulfone resins.

■ 異種ポリマ間のミクロ相分離を利用する方法。■ A method that utilizes microphase separation between different types of polymers.

(特公昭48−176号公報、特開昭54−14445
6号公報、同57−50506号公報、同57−505
07号公報、同57−50501公報) ■ 製膜後、抽出・溶出操作を有する方法。(特開昭5
4−26283号公報、同57−35906号公報、同
58−91822号公報)■ 製膜原液の準安定液体分
散状態で製膜する方法。(特開昭56−154051号
公報、同59−58041号公報、同59−18376
1号公報、同59−189903号公報) ■ 紡糸時に工夫をこらす方法(特開昭59−2280
16号公報) しかし、■の方法ではポリマー間の凝固速度の違いを利
用しているのみで、分画分子量10万以上の大きな孔を
得るに至っていない。その上、大量にブレンドするため
、ポリスルホン系樹脂の本来の良好な性能が失われやす
い。
(Japanese Patent Publication No. 48-176, Japanese Unexamined Patent Publication No. 14445/1972)
Publication No. 6, Publication No. 57-50506, Publication No. 57-505
(No. 07, No. 57-50501) (2) A method that includes extraction and elution operations after film formation. (Unexamined Japanese Patent Publication No. 5
(No. 4-26283, No. 57-35906, No. 58-91822) (2) A method of forming a film in a metastable liquid dispersion state of a film forming stock solution. (JP-A-56-154051, JP-A No. 59-58041, JP-A No. 59-18376)
(Japanese Patent Application Laid-Open No. 59-2280)
(No. 16 Publication) However, method (2) only utilizes the difference in coagulation rate between polymers, and has not yet achieved large pores with a molecular weight cut-off of 100,000 or more. Moreover, since a large amount is blended, the original good performance of the polysulfone resin is likely to be lost.

また、■の方法は、ブレンドポリマーの抽出と無la顆
粒を溶出する大きく2つの方法に分類される。前者にお
いては、ポリエチレングリコール、ポリビニルピロリド
ンが主たるポリマーであるが、十分な孔径を得ることや
抽出操作が困nであった。
In addition, the method (2) is broadly classified into two methods: extraction of the blend polymer and elution of the la-free granules. In the former, polyethylene glycol and polyvinylpyrrolidone are the main polymers, but it is difficult to obtain a sufficient pore size and to perform extraction operations.

後者の例では、前記特開昭58−91822@公報で、
シリカパウダーを混入して製膜後、アルカリを用いて溶
出させ、0.05μm以上の大きな孔をあけるのに成功
しているが、水濡れ性に欠点があると記されている。
In the latter example, in the above-mentioned Japanese Patent Application Laid-Open No. 58-91822,
After mixing silica powder and forming a film, it was eluted using an alkali and was successful in creating large pores of 0.05 μm or more, but it is noted that it has a drawback in water wettability.

■の方法は製膜原液にポリスルホン系樹脂の非溶媒もし
くは膨潤剤を大量に混合し、該製膜原液が相分離する直
前のところで製膜するものである。
Method (2) involves mixing a large amount of a polysulfone resin non-solvent or swelling agent with a film-forming stock solution, and forming a film just before the film-forming stock solution undergoes phase separation.

かかる方法では、膜の水濡れ性に欠陥がある膜しか得る
ことはできない。
With such a method, only a film having defects in water wettability can be obtained.

■の方法は、製膜時に高湿度の風を吹きつけることで、
該表面での孔径拡大を実現しているが、該方法では片面
にしかその効果はなく、特に中空糸膜では分画分子口は
小さい範囲のものしか得られない。
Method ① involves blowing high-humidity air during film formation.
Although the pore size expansion on the surface is achieved, this method is effective only on one side, and in particular, in the case of hollow fiber membranes, only a small range of fractionated molecules can be obtained.

これら従来の製rIjA原液はいずれも低温で相分離す
ることを特徴とするものである。このため製膜時に凝固
浴中の非溶媒等と膜中の良溶媒との交換速度を上げよう
として凝固浴温度を上げても、製膜原液が均−系の方へ
平衡移動するため、表面に緻密層をつくるという特性や
低温保存の困難さを有している。また疎水性のため、一
度乾燥させると特別の処理をすることなしには、水濡れ
性能を回復させることができにくいものしか製造できな
いという欠点を有しており、これら2つを同時に満足さ
せるものは存在しなかった。
All of these conventional rIjA stock solutions are characterized by phase separation at low temperatures. For this reason, even if the temperature of the coagulation bath is increased in an attempt to increase the exchange rate between the non-solvent, etc. in the coagulation bath and the good solvent in the membrane during membrane formation, the membrane-forming stock solution will move toward a homogeneous system, resulting in It has the property of forming a dense layer and is difficult to store at low temperatures. Additionally, due to its hydrophobic nature, it has the disadvantage that once it has been dried, it is difficult to recover its wettability without special treatment. did not exist.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、上記欠点を解析し、鋭意検討した結果本
発明に到達した。特に、高温側で相分離する低温溶解型
で凝固時の温度効果を利用し易く、低温での原液の保存
も安定な原液を提供することを目的とする。
The present inventors analyzed the above-mentioned drawbacks, and as a result of intensive study, they arrived at the present invention. In particular, the purpose is to provide a stock solution that is a low-temperature melting type that undergoes phase separation on the high-temperature side, is easy to utilize the temperature effect during solidification, and is stable even when stored at low temperatures.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の構成を有する。すなわち、(1)  高温
側で相分離することを特徴とする低温溶解型原液。
The present invention has the following configuration. That is, (1) a low-temperature dissolving stock solution characterized by phase separation on the high-temperature side;

(2)  主となる疎水性高分子と親水性高分子を混和
溶解した溶液に該主となる疎水性高分子に対して非溶剤
もしくは膨潤剤なる添加剤を加えることを特徴とする低
温溶解型原液の製造法である。
(2) A low-temperature dissolution type characterized by adding an additive such as a non-solvent or a swelling agent for the main hydrophobic polymer to a solution in which the main hydrophobic polymer and the hydrophilic polymer are mixed and dissolved. This is a method for producing a stock solution.

本発明の低温溶解型原液を調製する方法を以下具体的に
説明する。
The method for preparing the low-temperature solution stock solution of the present invention will be specifically explained below.

本発明において、主となる疎水性高分子(I>とは、ポ
リアクリロニトリル・ポリメタクリル酸メチル・ポリオ
レフィン・ポリイミド・ポリカーボネート・ボリアリレ
ート・ポリスルホン・ポリエステル等の高分子である。
In the present invention, the main hydrophobic polymer (I>) is a polymer such as polyacrylonitrile, polymethyl methacrylate, polyolefin, polyimide, polycarbonate, polyarylate, polysulfone, or polyester.

これらの中で、ポリスルホン系樹脂を例にとって説明す
るが、該樹脂に限定されるものではない。
Among these, polysulfone resin will be explained as an example, but it is not limited to this resin.

本発明の低温溶解型原液は、基本的にはポリスルホン系
樹脂(■)、親水性高分子(■)、溶媒(I[I)およ
び添加剤(IV)からなる4成分系で構成される。ここ
で言うポリスルホン系樹脂(I>とは、通常式(1)、
または式(2) H3 の繰り返し単位からなるものであるが、官能基を含んで
いたり、アルキル系のものであってもJ:り、特に限定
するものではない。
The low-temperature solution stock solution of the present invention is basically composed of a four-component system consisting of a polysulfone resin (■), a hydrophilic polymer (■), a solvent (I [I)], and an additive (IV). The polysulfone resin (I> mentioned here is usually represented by the formula (1),
Alternatively, it is composed of a repeating unit of formula (2) H3, but is not particularly limited, even if it contains a functional group or is an alkyl type unit.

親水性高分子(n)とは、ポリスルホン系樹脂(I>と
相溶性がおり、かつ親水性を持つ高分子である。ポリビ
ニルピロリドンが最も望ましいが、他に変性ポリビニル
ピロリドン、共重合ポリビニルピロリドン、ポリエチレ
ングリコール、ポリ酢酸ビニル等が挙げられるが、これ
らに限定されるものではない。主となる疎水性高分子と
の相溶性によって適宜判断する必要がある。
The hydrophilic polymer (n) is a polymer that is compatible with polysulfone resin (I>) and has hydrophilic properties. Polyvinylpyrrolidone is the most desirable, but other examples include modified polyvinylpyrrolidone, copolymerized polyvinylpyrrolidone, Examples include, but are not limited to, polyethylene glycol, polyvinyl acetate, etc. It is necessary to make an appropriate judgment depending on the compatibility with the main hydrophobic polymer.

溶W (nl)は、ポリスルホン系樹脂(I>及び親水
性高分子(II)を共に溶解する溶媒である。
The solution W (nl) is a solvent that dissolves both the polysulfone resin (I) and the hydrophilic polymer (II).

ジメチルスルホキシド、ジメチルアセトアミド、ジメチ
ルホルムアミド、N−メチル−2−ピロリドン、ジオキ
サン等、多種の溶媒が用いられるが、特にジメチルアセ
トアミド、ジメチルスルホキシド、ジメチルホルムアミ
ド、N−メチル−2−ピロリドンが望ましい。
Various solvents can be used, such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone, and dioxane, but dimethylacetamide, dimethylsulfoxide, dimethylformamide, and N-methyl-2-pyrrolidone are particularly preferred.

添加剤(IV)は、溶媒(III)と相溶性を持ち、親
水性高分子(II>の良溶媒となり、かつ、ポリスルホ
ン系樹脂(1)の非溶媒又は膨潤剤となるものであれば
何でも良く、例えば、水、メタノール、エタノール、イ
ソプロパツール、ベキ1ノ′ノール、1.4−ブタンジ
オール等がある。生産コストを考えると水が最も望まし
い。添加剤(IV)は、ポリスルホン系樹脂(I>に対
する凝固性を考え合わせた上で選択すれば良い。
The additive (IV) can be anything as long as it is compatible with the solvent (III), serves as a good solvent for the hydrophilic polymer (II>), and serves as a non-solvent or swelling agent for the polysulfone resin (1). For example, water, methanol, ethanol, isopropanol, beki-1-non'ol, 1,4-butanediol, etc.Water is most preferable in terms of production cost.Additive (IV) is polysulfone resin. (It may be selected after considering the coagulability against I>.

これらのおのおのの組合せJよ任意であり、上記の性質
をもつ組合せを考えるのは、同業者にとつて容易なこと
である。また、溶媒(I[[)・添加剤(IV)は、2
種類以−りの化合物の混合系でも良い。
Each of these combinations J is arbitrary, and it is easy for those skilled in the art to think of combinations having the above properties. In addition, the solvent (I[[) and additive (IV) are 2
A mixed system of different types of compounds may also be used.

かかる製膜原液は、通常の相分離挙動である低温側で相
分離するのと逆で、驚くべきことに高温側で相分離がお
こる。この原理を以下説明する。
Surprisingly, this membrane-forming stock solution undergoes phase separation on the high temperature side, contrary to the normal phase separation behavior in which phase separation occurs on the low temperature side. This principle will be explained below.

◇、この製膜原液がある温度Tで均−系であるとする。◇, it is assumed that this film-forming stock solution is homogeneous at a certain temperature T.

この場合、添加剤(IV)は親水性高分子(If)によ
ってポリスルホン系樹脂(I>に対して遮蔽される形と
なり、直接ポリスルホン系樹脂(1)と相互作用するこ
となく、それゆえ、ポリスルホン系樹脂(I>は、親水
性高分子(II)が混合されていない系においては当然
凝固し、相分離しているような濃度まで添加剤(IV)
を加えてもなお相分離することなく均−系を保っている
訳である。ここで、温度を上げると、分子の運動性が上
がることにより、特に親水性高分子(II>と添加剤(
IV)との結合が弱くなり、水素結合が切れ、親水性高
分子(n)と結合していない添加剤(IV)の見かけ上
の濃度が、温度Tのときより上昇し、ポリスルホン系樹
脂(I>と添加剤(IV)とが相互作用することにより
、ひいては、ポリスルホン系樹脂(I)の凝固・相分離
が引きおこされることになる。即ち、該製膜原液は、高
温側で相分離をおこすことになる。ざらに、この系の添
加剤(IV)の足を増加させると、前記温度Tでもこの
原液系においては、もはや親水性高分子(II)の温度
Tにおける添加剤(1v)のかかえ込み最以上の添加剤
(IV)が加えられたことで、製膜原液は相分離する。
In this case, the additive (IV) is shielded from the polysulfone resin (I>) by the hydrophilic polymer (If), and does not directly interact with the polysulfone resin (1). In systems where the hydrophilic polymer (II) is not mixed, the system resin (I> will naturally coagulate and the additive (IV) will be added to a concentration such that phase separation occurs.
This means that even after adding , the system remains homogeneous without phase separation. Here, when the temperature is raised, the mobility of molecules increases, especially for hydrophilic polymers (II>) and additives (
The bond with the polysulfone resin (IV) becomes weaker, the hydrogen bond is broken, and the apparent concentration of the additive (IV) that is not bonded to the hydrophilic polymer (n) increases from that at temperature T. The interaction between I> and the additive (IV) ultimately causes coagulation and phase separation of the polysulfone resin (I).In other words, the membrane forming stock solution undergoes phase separation on the high temperature side. Roughly speaking, if the amount of additive (IV) in this system is increased, even at the temperature T, in this stock solution system, the additive (1v) at the temperature T of the hydrophilic polymer (II) is no longer ), the membrane forming stock solution undergoes phase separation due to the addition of the additive (IV) at the highest concentration.

しかし、ざらに温度を下げると親水性高分子(n)の分
子運動性が下がり、添加剤(IV)との結合口が増大し
、見かけの添加剤(IV)濃度が下がることで、結果的
に系は再び均−系となる。再び温度を上げると、系は不
均一になるが、こんどは親水性高分子(n)を添加する
と、親水性高分子(n)と添加剤(IV)が結合する最
が増え、再び系は均一になる。
However, if the temperature is lowered too much, the molecular mobility of the hydrophilic polymer (n) decreases, the number of bonding ports with the additive (IV) increases, and the apparent concentration of the additive (IV) decreases. The system becomes a homogeneous system again. When the temperature is raised again, the system becomes non-uniform, but when the hydrophilic polymer (n) is added this time, the number of bonds between the hydrophilic polymer (n) and the additive (IV) increases, and the system becomes heterogeneous again. It becomes uniform.

以上のように、この製膜原液の相分離挙動は通常の逆で
あり、また相転移に可逆性を有する。
As described above, the phase separation behavior of this membrane-forming stock solution is the opposite of normal, and the phase transition is reversible.

該製膜原液の組成として、主たる繭水性高分子(I>は
、製膜可能でかつ膜としての特性を有する潤度範囲でお
れば良く、5〜50重量%である。
As for the composition of the film-forming stock solution, the main cocoon-water polymer (I>) may be in a moisture content range of 5 to 50% by weight, as long as it can be formed into a film and has properties as a film.

高い透水性、大ぎな分両分子最を得るためにはポリマー
濃度は下げるべきで、この場合望ましくは5〜20重量
%である。5重口%未満では、製膜原液の十分な粘度を
得ることができず、膜を形成できなくなる。また、50
重■%を越えると貫通孔を形成しにくくなる。親水性高
分子(n)は、特にポリビニルピロリドンの場合、分子
化36万、16万、4万、1万のものが市販されており
、これを使うのが便利であるが、もちろんそれ以外の分
子Oのものを使用してもかまわない。ただし、親水性高
分子(II>の添加の理由の1つとして増粘効果もめる
ため、添加口は高分子層のものを用いるほど受口で良く
、かつまた相分離現象の温1女依存性の逆転も顕著にな
るため透水性の高い膜を得るためには右利である。ポリ
ビニルピロリドンの添力旧益は、1〜20重量%、特に
3〜10mG%が望ましいが、用いるポリビニルピロリ
ドンの分子量に左右される。一般に添加量が少なすぎる
場合、分子量が低すぎる場合は相分離の逆転現象は17
難く、ポリマー濃度が高く、ポリマー分子量が大きすぎ
ると、製膜後の洗浄が困難となる。それ故、分子量の異
なるものを混合して役割分担し用いるのも一つの方法と
なる。
In order to obtain high water permeability and a large molecular weight, the polymer concentration should be low, preferably from 5 to 20% by weight. If the amount is less than 5% by weight, sufficient viscosity of the film-forming stock solution cannot be obtained and a film cannot be formed. Also, 50
If the amount exceeds %, it becomes difficult to form through holes. Hydrophilic polymers (n), especially in the case of polyvinylpyrrolidone, are commercially available with molecular weights of 360,000, 160,000, 40,000, and 10,000, and it is convenient to use these, but of course there are other Those with molecule O may be used. However, one of the reasons for adding the hydrophilic polymer (II>) is to consider the thickening effect, so the more the polymer layer is used, the better the addition port is, and the temperature dependence of the phase separation phenomenon. The reversal of polyvinylpyrrolidone is also significant, so it is important to obtain a membrane with high water permeability.The added weight of polyvinylpyrrolidone is preferably 1 to 20% by weight, especially 3 to 10mG%, but depending on the amount of polyvinylpyrrolidone used, It depends on the molecular weight.In general, if the amount added is too small or the molecular weight is too low, the phase separation reversal phenomenon will occur.
If the polymer concentration is high and the polymer molecular weight is too large, cleaning after film formation becomes difficult. Therefore, one method is to mix substances with different molecular weights and use them in different roles.

以上(1)、(II)の高分子を溶媒(III)に混合
溶解する。ここへ、添加剤(IV)を添加するが、特に
水の場合、前記式(1)のポリスルホン樹脂にとって凝
固性が高いため、7重ω%以下、特に1〜5重間%が望
ましい。前記式(2)同樹脂の場合は、15重量%以下
、特に3〜13@量%添加する必要がある。また、ポリ
アクリロニトリルの場合も同5〜20重最%添加する必
要がある。
The polymers (1) and (II) above are mixed and dissolved in the solvent (III). Additive (IV) is added here, and especially in the case of water, since the polysulfone resin of formula (1) has high coagulability, it is preferably 7 wt % or less, particularly 1 to 5 wt %. In the case of the resin of formula (2), it is necessary to add 15% by weight or less, particularly 3 to 13% by weight. Also, in the case of polyacrylonitrile, it is necessary to add 5 to 20% by weight.

凝固性が小さな添加剤を用いるときは添加mが多くなる
ことは容易に推測される。これらの凝固性添加剤の添加
料の調整は、疎水性高分子の平衡水分率とも関連がある
。添加剤(IV)の濃度が高くなるにつれ、製膜原液の
相分離温度は低下してくる。相分離湿度の設定は、求め
る膜の開孔半径などを考慮して設定する必要がある。
It is easily assumed that when an additive with low coagulability is used, the amount of m to be added increases. Adjustment of these coagulant additives is also related to the equilibrium moisture content of the hydrophobic polymer. As the concentration of additive (IV) increases, the phase separation temperature of the membrane forming stock solution decreases. The phase separation humidity needs to be set in consideration of the desired opening radius of the membrane, etc.

〔実施例〕〔Example〕

以下の実施例によって本発明をさらに詳細に説明する。 The invention will be explained in further detail by the following examples.

尚、ここでいう相分離温度は、一定温度に保った原液を
肉眼でみて、均一な状態から白濁してくるその温度を指
す。
Note that the phase separation temperature here refers to the temperature at which a stock solution maintained at a constant temperature becomes cloudy from a homogeneous state when viewed with the naked eye.

実施例1 ポリスルホン(ニーデルP−3500)15部、ポリビ
ニルピロリドン(K2O)8部、1,4−ブタンジオー
ル7部をジメチルアセトアミド70部に加え、80℃で
加熱溶解した。この4成分原液は、低温溶解型であり、
かつ65°Cで相分離がおこった。
Example 1 15 parts of polysulfone (Needel P-3500), 8 parts of polyvinylpyrrolidone (K2O), and 7 parts of 1,4-butanediol were added to 70 parts of dimethylacetamide and dissolved by heating at 80°C. This four-component stock solution is a low-temperature solution,
And phase separation occurred at 65°C.

実施例2 ポリスルホン15部、ポリビニルピロリドン(K2O)
8部、水2.4部をジメチルアセトアミド75部に85
°Cで加熱溶解した。この4成分原液は、低温溶解型で
あり、かつ65°Cで相分離がおこった。
Example 2 15 parts of polysulfone, polyvinylpyrrolidone (K2O)
8 parts and 2.4 parts of water to 75 parts of dimethylacetamide.
The mixture was heated and dissolved at °C. This four-component stock solution was a low-temperature solution, and phase separation occurred at 65°C.

比較例1 ポリスルホン12部、ポリビニルピロリドン6部をN−
メチルピロリドン82部に加え、ao’cで加熱溶解し
た。この3成分系の原液は、高温にするほど均一になる
高温溶解型原液であった。
Comparative Example 1 12 parts of polysulfone and 6 parts of polyvinylpyrrolidone were mixed with N-
It was added to 82 parts of methylpyrrolidone and dissolved by heating with ao'c. This three-component stock solution was a high-temperature solution that became more uniform as the temperature increased.

実施例3 ポリエーテルスルボン(ピクトレックス300p)15
部、ポリビニルピロリドン(K−90>8部、水8部を
ジメチルアセトアミド75部に加え、100℃で加熱溶
解した。この4成分原液は、低温溶解型であり、かつ9
0°Cで相分離がおこった。
Example 3 Polyether sulfone (Pictrex 300p) 15
parts, polyvinylpyrrolidone (K-90>8 parts, and 8 parts of water) were added to 75 parts of dimethylacetamide and dissolved by heating at 100°C.
Phase separation occurred at 0°C.

実施例4 ポリアクリロニトリル(分子量約 万)13゜5部、ポ
リビニルピロリドン(K−90>7部、水5部をジメチ
ルスルホキシド75部に加え、110’Cで加熱溶解し
た。この4成分原液は、低温溶解型であり、かつ100
℃で相分離がおこった。
Example 4 13.5 parts of polyacrylonitrile (molecular weight approximately 10,000), polyvinylpyrrolidone (K-90>7 parts), and 5 parts of water were added to 75 parts of dimethyl sulfoxide and dissolved by heating at 110'C.This four-component stock solution was Low temperature melting type and 100%
Phase separation occurred at °C.

実施例5 ポリスルホン(ニーデルP−3500)15部、ポリビ
ニルピロリドン(K2O)8部、水3部をN−メチル−
2ピロリドン74部に加え、85℃で加熱溶解した。こ
の4成分原液は、低温溶解型であり、かつ25℃で相分
離がおこった。
Example 5 15 parts of polysulfone (Needel P-3500), 8 parts of polyvinylpyrrolidone (K2O), and 3 parts of water were mixed with N-methyl-
The mixture was added to 74 parts of 2-pyrrolidone and dissolved by heating at 85°C. This four-component stock solution was a low-temperature dissolution type, and phase separation occurred at 25°C.

〔発明の効果〕〔Effect of the invention〕

本発明の低温溶解型原液は、低温保存が楽で、半透膜と
しては特に、大きな孔径を有するものの製造には非常に
有利に用いることができる。なおかつ、親水性高分子を
○有するため、乾燥膜も容易に製造できる。また親水性
高分子が架橋可能なものであれば水溶性のものでも耐水
性・耐溶出性の要求される用途にも使用できる。
The low-temperature solution stock solution of the present invention can be easily stored at low temperatures and can be very advantageously used for producing semipermeable membranes, especially those having large pores. Furthermore, since it contains a hydrophilic polymer, a dry film can be easily produced. Furthermore, as long as the hydrophilic polymer is crosslinkable, even water-soluble polymers can be used in applications requiring water resistance and elution resistance.

さらにコーティング剤として用いることで形成された被
膜の多孔性および親水性から、効率良く水分を然散ざV
ることが可能な被膜を形成し1qるし、またその際の気
化熱を利用し、効率の良い放熱機を製造することにも利
用できる。
Furthermore, due to the porosity and hydrophilicity of the film formed when used as a coating agent, moisture can be efficiently dispersed.
It can be used to form a film that can be used to remove heat, and the heat of vaporization at that time can also be used to manufacture highly efficient heat sinks.

Claims (2)

【特許請求の範囲】[Claims] (1)高温側で相分離することを特徴とする低温溶解型
原液。
(1) A low-temperature solution stock solution characterized by phase separation on the high-temperature side.
(2)主となる疎水性高分子と親水性高分子を混和溶解
した溶液に、該主となる疎水性高分子に対して非溶剤も
しくは膨潤剤なる添加剤を加えることを特徴とする低温
溶解型原液の製造法。
(2) Low-temperature dissolution characterized by adding an additive such as a non-solvent or a swelling agent for the main hydrophobic polymer to a solution in which the main hydrophobic polymer and the hydrophilic polymer are mixed and dissolved. Manufacturing method of mold stock solution.
JP61243173A 1986-10-15 1986-10-15 Low-temperature dissolving stock solution and method for producing the same Expired - Lifetime JP2505428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243173A JP2505428B2 (en) 1986-10-15 1986-10-15 Low-temperature dissolving stock solution and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243173A JP2505428B2 (en) 1986-10-15 1986-10-15 Low-temperature dissolving stock solution and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6397666A true JPS6397666A (en) 1988-04-28
JP2505428B2 JP2505428B2 (en) 1996-06-12

Family

ID=17099901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243173A Expired - Lifetime JP2505428B2 (en) 1986-10-15 1986-10-15 Low-temperature dissolving stock solution and method for producing the same

Country Status (1)

Country Link
JP (1) JP2505428B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578210A2 (en) * 1992-07-07 1994-01-12 Millipore Corporation Porous polymeric structures and a method of making such structures by means of heat-induced phase separation
US6432309B1 (en) 1997-05-19 2002-08-13 Asahi Medical Co, Ltd Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
JP2008215488A (en) * 2007-03-05 2008-09-18 Furukawa Electric Co Ltd:The Band clamp
US9617421B2 (en) 2011-02-04 2017-04-11 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106243A (en) * 1979-02-07 1980-08-14 Nitto Electric Ind Co Ltd Preparation of microporous polymer membrane
JPS5735906A (en) * 1980-08-12 1982-02-26 Kuraray Co Ltd Production of polysulfone-based membrane having selective permeability
JPS57147488A (en) * 1981-03-04 1982-09-11 Kuraray Co Ltd Preparation of purified water
JPS588516A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Preparation of polysulfone separation membrane
JPS5824305A (en) * 1981-07-31 1983-02-14 Daicel Chem Ind Ltd Production of semipermeable membrane of polysulfone resin
JPS58104940A (en) * 1981-12-17 1983-06-22 ヘキスト・アクチエンゲゼルシヤフト Asymmetric macroporous film based on synthetic polymer and manufacture
JPS58205503A (en) * 1982-05-22 1983-11-30 Kanebo Ltd Oil-water separating film and its production
JPS5958039A (en) * 1982-09-29 1984-04-03 Teijin Ltd Porous supproting membrane and composite membrane using the same
JPS59139902A (en) * 1983-07-30 1984-08-11 Nitto Electric Ind Co Ltd Preparation of permselective membrane
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation
JPS60246812A (en) * 1984-05-18 1985-12-06 Daicel Chem Ind Ltd Hollow polysulfone based resin fiber
JPS61402A (en) * 1984-06-13 1986-01-06 Daicel Chem Ind Ltd Semipermeable membrane for separation
JPS6193801A (en) * 1984-07-17 1986-05-12 フレゼニウス アクチエンゲゼルシヤフト Asymmetric microporous hollow fiber and its production
JPS61200806A (en) * 1985-03-01 1986-09-05 Teijin Ltd Polyether sulfone porous hollow yarn membrane and its production

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106243A (en) * 1979-02-07 1980-08-14 Nitto Electric Ind Co Ltd Preparation of microporous polymer membrane
JPS5735906A (en) * 1980-08-12 1982-02-26 Kuraray Co Ltd Production of polysulfone-based membrane having selective permeability
JPS57147488A (en) * 1981-03-04 1982-09-11 Kuraray Co Ltd Preparation of purified water
JPS588516A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Preparation of polysulfone separation membrane
JPS5824305A (en) * 1981-07-31 1983-02-14 Daicel Chem Ind Ltd Production of semipermeable membrane of polysulfone resin
JPS58104940A (en) * 1981-12-17 1983-06-22 ヘキスト・アクチエンゲゼルシヤフト Asymmetric macroporous film based on synthetic polymer and manufacture
JPS58205503A (en) * 1982-05-22 1983-11-30 Kanebo Ltd Oil-water separating film and its production
JPS5958039A (en) * 1982-09-29 1984-04-03 Teijin Ltd Porous supproting membrane and composite membrane using the same
JPS59139902A (en) * 1983-07-30 1984-08-11 Nitto Electric Ind Co Ltd Preparation of permselective membrane
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation
JPS60246812A (en) * 1984-05-18 1985-12-06 Daicel Chem Ind Ltd Hollow polysulfone based resin fiber
JPS61402A (en) * 1984-06-13 1986-01-06 Daicel Chem Ind Ltd Semipermeable membrane for separation
JPS6193801A (en) * 1984-07-17 1986-05-12 フレゼニウス アクチエンゲゼルシヤフト Asymmetric microporous hollow fiber and its production
JPS61200806A (en) * 1985-03-01 1986-09-05 Teijin Ltd Polyether sulfone porous hollow yarn membrane and its production

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578210A2 (en) * 1992-07-07 1994-01-12 Millipore Corporation Porous polymeric structures and a method of making such structures by means of heat-induced phase separation
EP0578210A3 (en) * 1992-07-07 1994-02-23 Millipore Corp
US5444097A (en) * 1992-07-07 1995-08-22 Millipore Corporation Porous polymeric structures and a method of making such structures by means of heat-induced phase separation
EP0578210B1 (en) * 1992-07-07 1998-12-30 Millipore Corporation Porous polymeric structures and a method of making such structures by means of heat-induced phase separation
US6432309B1 (en) 1997-05-19 2002-08-13 Asahi Medical Co, Ltd Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
EP2255866A1 (en) 1997-05-19 2010-12-01 Asahi Kasei Kuraray Medical Co., Ltd. Polysulfone type hollow fiber membrane for purifying blood and process for producing the same
JP2008215488A (en) * 2007-03-05 2008-09-18 Furukawa Electric Co Ltd:The Band clamp
US9617421B2 (en) 2011-02-04 2017-04-11 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers
USRE48703E1 (en) 2011-02-04 2021-08-24 Fresenius Medical Care Holdings, Inc. Performance enhancing additives for fiber formation and polysulfone fibers

Also Published As

Publication number Publication date
JP2505428B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US4220543A (en) Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same
JPS63116723A (en) Method of forming hollow fiber irregular gas separating film
EP1080777A1 (en) Ultrafiltration membrane and method for producing the same, dope composition used for the same
JPS61238834A (en) Porous polysulfone resin membrane
JPH0675667B2 (en) Method for producing semi-permeable membrane of polysulfone resin
JPS6238205A (en) Semi-permeable membrane for separation
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JPS6397205A (en) Treatment of polysulfone resin semipermeable membrane
JPS6397666A (en) Low-temperature soluble type stock solution and production thereof
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JPH0347127B2 (en)
JPS60246812A (en) Hollow polysulfone based resin fiber
JP2899347B2 (en) Porous hollow fiber membrane
JP2899352B2 (en) Porous hollow fiber membrane
JP2516007B2 (en) Method for manufacturing separation membrane
JPS6399325A (en) Hollow yarn membrane of polysulfone resin and production thereof
EP3500357B1 (en) Method for the production of positively charged membranes
JP2022515734A (en) Porous membrane for high pressure filtration
JPH06339620A (en) Method for treating polysulfone resin semipermeable membrane
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
JPH0364176B2 (en)
JPS6329562B2 (en)
JPH0368433A (en) Production of polysulfone hollow fiber membrane for production clean water
JPH0379668A (en) Solution for preparing film
JPH03196823A (en) Production of hollow fiber membrane of polysulfone having high strength and high flux