JPS58205503A - Oil-water separating film and its production - Google Patents

Oil-water separating film and its production

Info

Publication number
JPS58205503A
JPS58205503A JP8716782A JP8716782A JPS58205503A JP S58205503 A JPS58205503 A JP S58205503A JP 8716782 A JP8716782 A JP 8716782A JP 8716782 A JP8716782 A JP 8716782A JP S58205503 A JPS58205503 A JP S58205503A
Authority
JP
Japan
Prior art keywords
polymer
oil
water
film
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8716782A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kondo
義和 近藤
Toshihiro Yamamoto
俊博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP8716782A priority Critical patent/JPS58205503A/en
Publication of JPS58205503A publication Critical patent/JPS58205503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To form a porous film suited for separating oil and water selectively from a liquid mixture of oil and water by filming a hydrophobic polymer and a hydrophilic polymer so as to have the specific phase sepn. structure. CONSTITUTION:A hydrophobic polymer A such as fluorinated vinyl polymer, polyolefins, synthetic rubber or the like and a hydrophilic polymer B such as celluloses, PVA deriv., PVC deriv. or the like are mixed at a specific ratio and a film wherein one of the polymers is dispersed in a granular state is formed. The film is stretched at least uniaxially to form holes between the separated two phases of the polymer A and the polymer B. The film wherein the polymer B is dispersed in a granular state in the polymer A is used to separate water selectively from a mixture of oil and water and the film wherein the polymer A is dispersed in the polymer B is used to separate oils selectively. The film has the surface less vulnerable to contamination by oil and water and has a small decrease in the rate of treatment.

Description

【発明の詳細な説明】 本発明は油水分離膜及びその製造方法に関する。[Detailed description of the invention] The present invention relates to an oil-water separation membrane and a method for manufacturing the same.

油水混合物からの水と油の分離方法としては従来より比
重の差を利用した比重法−自然重力以上の重力をかける
遠心分離法、加圧浮上法、吸着分離法、静電気的方法、
磁性的性質を利用する方法や化学的な凝集剤を使用する
方法及び多孔性膜や選択的分離膜による膜分離等がある
Conventional methods for separating water and oil from oil-water mixtures include specific gravity methods that utilize the difference in specific gravity - centrifugal separation methods that apply gravity greater than natural gravity, pressure flotation methods, adsorption separation methods, electrostatic methods,
There are methods that utilize magnetic properties, methods that use chemical flocculants, and membrane separation using porous membranes and selective separation membranes.

しかし比重法、遠心分離法、加圧浮上法ではめる程度懸
濁位子の大きさが大政く、かつ比重差の大きい油水混合
物しか良好には分離されず分離効果を上げる為には大き
な装置や長い処理時間あるいは大きな重力発生装置が必
要となる〇え、吸着分、エアはa!L、j、おす、、。
However, in the specific gravity method, centrifugation method, and pressure flotation method, the size of the suspended particles is important, and only oil-water mixtures with a large difference in specific gravity can be separated well. Processing time or a large gravity generator is required〇E, adsorption amount and air are a! L, j, male...

ゎ外も吸着され分離効果は悪く、吸着剤も再使用が困難
であるとか吸着剤の処理法等の問題がある。
The separation effect is poor because other substances are also adsorbed, and there are problems such as the difficulty of reusing the adsorbent and the treatment method of the adsorbent.

化学的な薬剤を使う方法では二次的な物質の発生、分離
液への不縄物の浸入等の問題がある。
Methods that use chemical agents have problems such as the generation of secondary substances and the infiltration of foreign substances into the separated liquid.

多孔性膜や選択的透過性を利用した膜分離の方法は、例
えば特開昭55−1291.14号公報、特開昭56−
51206号公報、特開昭57−48305号公報等に
示されている逆浸透換を使う方法があるがこれは水のみ
の透過性を有するもので、油中水型のものは分離不可能
であり又、水中油型の油水混合物の処理速度も非常に小
さく又、処理圧力が非常だ高いという欠点を有する。又
、特公昭55−45242号公報、特開昭55’−15
4610号公報は、油水混合物を不織tiを通じること
により、油の粒子を巨大化させるいわゆるエマルジョン
ブレー刀−の効果を有するもので、その処理後更に、重
力法、比重法等の油水分離操作を行なう必要があり又、
完全な油水分離は出来にくいo′51.#開昭54−9
4167号公報、特開昭54−95072号公報、#開
昭54−164061号公報、特開昭55−79011
号公報にはある臨界表面張力をもった重合体を素材とし
た微多孔性膜による油水分離方法が提案されているが、
処理速度が小さく又、油水の組成が、ある一定以上にな
ると分離困難になるなど油水分離の程度に限界がある。
Membrane separation methods using porous membranes and selective permeability are described, for example, in JP-A-55-1291.14 and JP-A-56-1999.
There is a method using reverse osmosis as shown in Japanese Patent Application Laid-open No. 51206 and Japanese Patent Application Laid-Open No. 57-48305, but this method is permeable only to water, and water-in-oil type cannot be separated. In addition, the processing speed for oil-in-water type oil-water mixtures is very low, and the processing pressure is very high. Also, Japanese Patent Publication No. 55-45242, Japanese Unexamined Patent Publication No. 55'-15
Publication No. 4610 has the effect of so-called emulsion braking, which enlarges oil particles by passing an oil-water mixture through a non-woven Ti.After the treatment, an oil-water separation operation such as a gravity method or a specific gravity method is performed. It is necessary to carry out
Complete oil/water separation is difficult o'51. #Kaisho 54-9
No. 4167, JP 54-95072, JP 54-164061, JP 55-79011
The publication proposes an oil-water separation method using a microporous membrane made of a polymer with a certain critical surface tension.
There are limits to the degree of oil-water separation, as the processing speed is slow and separation becomes difficult when the oil-water composition exceeds a certain level.

本発明者らは、油水分離の原理及び従来の方法の欠点を
4合的、基本的に鋭意検討し、油水分離に適し之全く新
しい構造及び物性を有する多孔性漠倉cA発し、本発明
を完成したり 一本発明の目的は、油水分離性能に優れ
た新規な多孔6惇膜を提供するにあり、又池の目的は油
水分離性能に優れた新規な多孔性膜の製造方法を提供す
るにめる。      、    1本発明は互いに非
相溶な流水性重合体及び親水・生息合体よりな扛各々の
重合体が相分離構造を有しておりかつ各1合体の界面間
に相分離に二る空孔を有する油水惣離性lLに優れた多
孔性膜であり、本発明方法は疎水性重合体及び疎水性重
合体と混和性:ζン、るが非相溶性の親水性重合体の混
合物を薄膜状に成形した後少なくとも一軸方向に砥伸し
、疎水性重合体及び親水性重合体の界面間に相分離によ
る空孔を発生さぜる事を特徴とする特 本発明の多孔性膜は互いに非相溶な疎水性重合体(以下
重合体Aと呼ぶ)と親水性重合体(以下重合体Bと呼ぶ
)とよりなる。非相溶とは重合体Aと重合体Bの混合物
を溶融混合したとき、あるいは各々の溶液を混合したと
き互いに溶解せず単一の溶融液あるいは溶液、とならな
め事、あるいはそれら融液又は溶液を冷却固化又は脱溶
剤したときに各々の重合体成分が析出する事を意味する
The present inventors thoroughly studied the principles of oil-water separation and the shortcomings of conventional methods, and developed a porous chamber cA having a completely new structure and physical properties suitable for oil-water separation, and developed the present invention. An object of the present invention is to provide a novel porous 6-layer membrane with excellent oil/water separation performance, and a further object of the present invention is to provide a method for producing a novel porous membrane with excellent oil/water separation performance. Smell. , 1 The present invention is characterized in that each of the mutually incompatible water-flowing polymer and the hydrophilic/living polymer has a phase-separated structure, and there are two pores between the interfaces of each one of the polymers for phase separation. It is a porous membrane with excellent oil-water separation properties, and the method of the present invention is to form a thin film using a mixture of a hydrophobic polymer and a hydrophilic polymer that is miscible with the hydrophobic polymer and is incompatible with the hydrophobic polymer. The porous membrane of the present invention is characterized in that the porous membrane of the present invention is characterized in that it is formed into a shape and then stretched in at least one axis to generate pores due to phase separation between the interfaces of a hydrophobic polymer and a hydrophilic polymer. It consists of an incompatible hydrophobic polymer (hereinafter referred to as polymer A) and a hydrophilic polymer (hereinafter referred to as polymer B). Incompatibility means that when a mixture of Polymer A and Polymer B is melt-mixed, or when their respective solutions are mixed, they do not dissolve each other and form a single melt or solution, or when these melts or This means that each polymer component precipitates when the solution is cooled and solidified or the solvent is removed.

重合体入は、疎水性であり、疎水性の程度としては例え
ば水との接触角が850 以上、好ましくは90°以上
である。重合体Bは親水性であり親水性の程度としては
、水との接触角85°以下、好ましくは800以下であ
る。
The polymer is hydrophobic, and the degree of hydrophobicity is, for example, a contact angle with water of 850° or more, preferably 90° or more. Polymer B is hydrophilic and has a contact angle with water of 85° or less, preferably 800° or less.

重合体Aとして列えはポリテトツフルオロエチレン、ポ
リトリフルオロエチレン、ポリトリプルオルクロルエチ
レン等のy y fg 系ビニルポリマー、ポリプロピ
レン、ポリエチレン、ポリエチレンーグロビレン等のポ
リオレフィン類、ポリブタジェン、ネオプレン等の合成
ゴム類、ポリエチレン、ポリアルキルシはキサン等のシ
リコンゴム類等が上げられ、又それらのブレンド物、又
共重合体が上げられる。
Polymer A includes the synthesis of y y fg vinyl polymers such as polytetrafluoroethylene, polytrifluoroethylene, and polytrifluorochloroethylene, polyolefins such as polypropylene, polyethylene, and polyethylene-globylene, polybutadiene, neoprene, etc. Rubbers, polyethylene, and polyalkyl rubbers include silicone rubbers such as xane, and blends and copolymers thereof.

重合体Bとしては、セルローズ、アセチルセルローズ、
硫酸セルローズ、メチルセルローズ、カルボキシメチル
セルローズ等のセルローズ類、ポリビニルアルコール、
ポリビニルブチラール、ポリビニルシアンエチルエーテ
ル、ポリビニルメチルエーテル等のポリビニルアルコー
ル誘導体類、ポリ酢酸ビニル、ポリ塩化ビニル、ポリ塩
化ビニル−酢酸ビニル、等のポリ塩化ビニル誘導体類、
6ナイロン、6ローナイロン等が亭事が好ましい。
Polymer B includes cellulose, acetylcellulose,
Celluloses such as cellulose sulfate, methyl cellulose, and carboxymethyl cellulose, polyvinyl alcohol,
Polyvinyl alcohol derivatives such as polyvinyl butyral, polyvinyl cyanethyl ether, polyvinyl methyl ether, polyvinyl chloride derivatives such as polyvinyl acetate, polyvinyl chloride, polyvinyl chloride-vinyl acetate,
6 nylon, 6 row nylon, etc. are preferred.

もちろん疎水性、親水性は重合体の表面によって決定さ
れる要素が大きく、表面コーティングや親水性物質又は
親油・叱物質の添加やグラフト重合、油剤処理、グッズ
マ処理、電子的や放射線処理等によって表面改質をした
屯のでもよい。
Of course, hydrophobicity and hydrophilicity are largely determined by the surface of the polymer, and can be achieved by surface coating, addition of hydrophilic substances or lipophilic substances, graft polymerization, oil treatment, Goodsma treatment, electronic or radiation treatment, etc. It may also be surface-modified tun.

これらの処理は成聾前・後いずれでも可能であるO 重合体Aと重合体Bの混合比率は目的とする油水分離液
及び方法によって決定される。例えば油水混合物より水
成分を選択分離するときは1合体A中に重合体Bが粒状
に分散した膜を使用する。
These treatments can be performed either before or after deafening.O The mixing ratio of polymer A and polymer B is determined depending on the intended oil-water separation liquid and method. For example, when selectively separating a water component from an oil-water mixture, a membrane in which polymer B is dispersed in granular form in polymer A is used.

この場合重合体Aの量は重合体Bの量より大きい方が上
記構造を形成しゃすく好ましい。重合体Aの量は50〜
98%が好ましく、更に好ましくは60〜95%であり
、籍に好ましくは70〜90%である。重合/XAが5
0%未満では重合体A中1cli合体Bの粒状分散とい
う構造がとりに<<、又98%kmえると相分離の量が
少なく処理速度が小さくなる。
In this case, it is preferable that the amount of polymer A be larger than the amount of polymer B so that the above structure can be easily formed. The amount of polymer A is 50~
It is preferably 98%, more preferably 60-95%, and most preferably 70-90%. Polymerization/XA is 5
If it is less than 0%, the structure of granular dispersion of 1 cli coalescence B in polymer A will be particularly small, and if it exceeds 98% km, the amount of phase separation will be small and the processing speed will be low.

逆に油7に混合物より油成分のみを選択分離するときは
1合体B中に重合体Aが粒状分散した膜を使用する。こ
こでは、重合体Bのlは重合体Aの量より大舞い方が上
述の構造をとる膜が作りやすい。重合体Bのiとしては
50〜98%が好ましく、更に好ましくは70〜95%
でちり、特に好ましくは70〜9ozであシ、重合体B
が5Q%未満では重合体B平に重合体Bの粒状分散とい
う構造がとりにくい。又98′Xを越えると相分離の盪
が少なく処理速度が小さくなる。
On the contrary, when selectively separating only the oil component from the mixture into the oil 7, a membrane in which the polymer A is dispersed in granular form in the monomer B is used. Here, if l of polymer B is larger than the amount of polymer A, it is easier to form a film having the above-mentioned structure. i of polymer B is preferably 50 to 98%, more preferably 70 to 95%
Polymer B, particularly preferably 70 to 9 oz.
If it is less than 5Q%, it is difficult to form a structure in which polymer B is dispersed in granular form. Moreover, if it exceeds 98'X, phase separation will be less likely and the processing speed will be lower.

更に油又は水の選択透過でなく、本発明の多孔性膜を通
過させる事により油中水湿又は水中油製の油γ混金物の
エマルンgノを破壊スる目的のときは、重合体A及び重
合体Bのいずれもが海成分として使用もできる。
Furthermore, when the purpose is to destroy the emulsion of water-in-oil or oil-in-water oil gamma mixtures by passing through the porous membrane of the present invention instead of selectively permeating oil or water, polymer A may be used. and Polymer B can also be used as the sea component.

この場合の重合体Ac”>iとしては30〜7a重−童
焉位が好ましV′−o重合体人中の島成分重合体Biる
いは重合体B中の島成分重合体Aは粒状lこ分散してh
なければならない。
In this case, the polymer Ac">i is preferably 30 to 7a, and the island component polymer Bi in the V'-o polymer or the island component polymer A in polymer B is dispersed in granular form. Teh
There must be.

粒状分散は重合体入及び重合体Bが1和性があり、かつ
相溶性が少ない場合には通盾の混合操作で容易に発生さ
せることができる。島成分の分散形態としては球状特に
均一な球径を有する球状に分散していた方かより好まし
い。
Particulate dispersion can be easily generated by a continuous mixing operation when the polymer and polymer B have monocompatibility and have little compatibility. The dispersion form of the island component is preferably spherical, particularly spherical with a uniform diameter.

これは重合BA及び重合体Bの組合せ、混合比、混合方
法及び分散剤等によりある程度達成する事ができる。
This can be achieved to some extent by changing the combination of polymer BA and polymer B, mixing ratio, mixing method, dispersant, etc.

又、重合体Aと重合体Bが混合しにぐい場合例えば重合
体Aがポリテトラフルオロエチレン等の融点が高いもの
や溶剤に溶解しにくいものは微小な粉体にして重合体B
中へ混合して成形する事も可能である。
In addition, if polymer A and polymer B are difficult to mix, for example, if polymer A has a high melting point such as polytetrafluoroethylene or is difficult to dissolve in a solvent, it can be made into a fine powder and then polymer B can be mixed.
It is also possible to mix and mold the mixture.

重合体A及び重合体Bの界面にはフィルムを少なくとも
一軸方向へ延伸する事により重合体A及び重合体Bの相
分離による空孔を発生させる事ができる。これは相分離
した一2相間の凝集力が各成分の髪形に要する力より小
さい為に生じるものと考えられる。との空孔は重合体へ
及び重合体Bの界面すべてに同様に発生するものでるり
、その空孔の量及び大きさは重合体3の大きさ及び延伸
倍率等により適宜変える事ができるO ここで得られる空孔の大きさは、(11式で表示される
範囲のものでるる。
By stretching the film in at least one axis, pores can be generated at the interface between the polymer A and the polymer B due to phase separation of the polymer A and the polymer B. This is thought to occur because the cohesive force between the 12 phase-separated phases is smaller than the force required for each component to form a hairstyle. The pores are generated in the same way in the polymer and at all the interfaces of the polymer B, and the amount and size of the pores can be changed as appropriate depending on the size of the polymer 3, the stretching ratio, etc. The size of the pores obtained here is within the range expressed by equation (11).

2く(λ−1)D  ・・・・・・・・(1)ここで°
2:空孔の延伸方向への最大長O:島成分の延伸方向へ
の長さ 入:延伸1倍率 通常7以下 本発明による多孔性膜の空孔の大、きな特徴は空孔の形
が従来の空孔と非常に異なっている事であゆ、更に図を
用いて空孔の形状を詳しく説明する。
2ku(λ-1)D ・・・・・・・・・(1) Here °
2: Maximum length of the pores in the stretching direction O: Length of the island component in the stretching direction In: Stretching ratio Normally 7 or less The size of the pores in the porous membrane according to the present invention, the key feature is the shape of the pores This is because the holes are very different from conventional holes, and the shape of the holes will be explained in detail using figures.

第1図は成形後の延伸フィルムの拡大説明図である。1
は海成分重合体を、2は島成分重合体を、Sは界面に生
じた空孔を示し島成分重合体が球状状態で海成分重合体
中に分散している事を示す◇ 第2図及び第5図は本発明に係る多孔性フィルムの空孔
部の説′!A図であり、第2図は未慝伸71ルムを、図
中圧右方向への一41B延呻を行なったもので、第3図
Vよ図中左右及び上下方向へ二軸延伸を行なったもので
めろう 本発明の空孔の特徴は、上述したように形態的には空孔
の容積に比べて面積及び空孔周囲が大きい事であり、こ
の事が空孔が閉塞しにくいという性能の向上につながる
。又空孔の中に重合体A(9るいはB)の粒状分散物が
残っており膜の両備に大きな差圧を加えたときもこれが
支えになって膜の圧密化が生じにくいという特徴も有す
る。この重合体A及び重合体Bの相分離による空孔は重
合体A及び重合体Bの組合せ、混合比率、混合条件及び
延伸条件によって異なるが油水分離用に便用するには空
孔の最大炎が0.05μ〜50μ立が好ましい。(10
5μ未満では処理速度が小さくかつ寿命の低下が太きい
し、又50μ以上では選択分離性能の低下がみられる。
FIG. 1 is an enlarged explanatory view of the stretched film after molding. 1
indicates the sea component polymer, 2 indicates the island component polymer, and S indicates the pores generated at the interface, indicating that the island component polymer is dispersed in the sea component polymer in a spherical state◇ Figure 2 And FIG. 5 shows the pores of the porous film according to the present invention! Figure A shows the unstretched 71 lums in Figure 2, which has been stretched 141B in the right direction in the figure, and Figure 3, V, has undergone biaxial stretching in the horizontal and vertical directions in the figure. As mentioned above, the characteristics of the pores of the present invention are that the area and periphery of the pores are larger than the volume of the pores, and this makes it difficult for the pores to become clogged. Leads to improved performance. In addition, a granular dispersion of polymer A (9 or B) remains in the pores, and even when a large differential pressure is applied to both sides of the membrane, this provides support and makes it difficult for the membrane to become compacted. have Although the pores due to phase separation of polymer A and polymer B vary depending on the combination of polymer A and polymer B, mixing ratio, mixing conditions, and stretching conditions, the maximum flame of the pores is required for convenient use in oil-water separation. is preferably 0.05 μm to 50 μm. (10
If it is less than 5μ, the processing speed will be slow and the life will be significantly reduced, and if it is more than 50μ, the selective separation performance will be degraded.

上述したように不発明の油水分離性能に優れた微多孔性
膜は表面に疎水性部分と親水性部分が相分離構造を有し
てめる事李、及びその界面に相分離による空孔を有する
事が必須条件でちる。
As mentioned above, the uninvented microporous membrane with excellent oil/water separation performance has a phase-separated structure of hydrophobic and hydrophilic parts on the surface, and pores due to phase separation at the interface. Having it is a necessary condition.

表面が疎水性部分及び親水性部分の相分離構造の為に油
水温合物が膜表面で各成分に凝渠分離しゃすぐなる。つ
まり表面が一種のエマ・レジコンプレーカー的効果を発
する。更に多孔注漢でめっでも凰−重合体又は1合重合
体については疎水性あるいは親水性の度合が似刀島よっ
たもののブレンド膜では表面の親水性及び疎水性部分の
差がなく膜表面が油又は水で汚染されやすくその為処理
速度の低下p≦大きいものでめった。
Due to the phase separation structure of the hydrophobic part and hydrophilic part on the surface, the oil-water mixture is condensed and separated into each component on the membrane surface. In other words, the surface emits a kind of Emma Regicompoker effect. In addition, although the degree of hydrophobicity or hydrophilicity of the polymer or monopolymer in the porous pouring was similar, the blend membrane had no difference in the hydrophilic and hydrophobic parts of the surface, and the membrane surface is easily contaminated with oil or water, and as a result, the processing speed decreases (p≦large).

ところが本発明のような疎水性部分と、親水性部分の相
分離構造を有する膜は油又は水に膜表面が汚染されにく
く処理速度の低下は非常に小さいものであった。この理
由は詳細には不明であるが推測するところ、疎水性部分
と親水性部分が膜表面にモザ・rり状に相分離した4造
を有しており、この為疎水性部分、あるいは親水性部分
への油成分又は、水成分の付着がその領域だけにとソま
り、ある程度以上の1付着すれば液中へ命脱落していく
ものと考えられる。
However, in the case of a membrane having a phase-separated structure of a hydrophobic part and a hydrophilic part as in the present invention, the membrane surface was less likely to be contaminated by oil or water, and the reduction in processing speed was very small. The reason for this is not known in detail, but it is speculated that the hydrophobic part and the hydrophilic part have a four-structure phase separation on the surface of the membrane in a mosaic pattern. It is thought that the adhesion of the oil component or water component to the sexual part will be limited to that area, and if more than a certain amount adheres, it will drop into the liquid.

これらの点が本発明の非常に大きな特徴であり従来の脛
にない新しi性能である。3膜の形態は平膜あるいは中
空系状のいずれもとることができ製造法は従来の雲造万
去、;ζよジ作ることができる。
These points are very important features of the present invention, and are new i-performances that are not available in conventional models. The form of the membrane can be either a flat membrane or a hollow system, and the manufacturing method can be conventional.

但し本発明では平膜あるいは中空系に成形後、1合体A
及び重合体Bの界1の相分離による空孔発生の促進の為
にりなぐとも一軸方向への延伸が必要である。
However, in the present invention, after forming into a flat membrane or hollow system, one united A
In order to promote the generation of pores due to the phase separation of the field 1 of the polymer B, stretching in the uniaxial direction is necessary at least.

不発明の多孔性膜は疎水性重合体(重合体A)及び疎水
性重合体と混和性はあるが、非相溶性の親水性重合体(
重合体B)を混合しこの混合物より薄膜状に成形した後
、少なくとも一軸方向へ延伸することによって製造する
The uninvented porous membrane is miscible with the hydrophobic polymer (Polymer A) and the hydrophobic polymer, but with the incompatible hydrophilic polymer (Polymer A).
It is manufactured by mixing the polymer B), forming the mixture into a thin film, and then stretching the film in at least one axis.

重合体A及び重合体Bの混合方法としては各重合体を加
熱溶融し混合する方法、或いはエクストルーダーを用い
て加圧力Ω熱下に混合する方法、あるいは混合物を単に
溶融する方法、らるいは溶成にして混合する方法、ある
いは一方の重合体のニー物、又は溶成の率へ他方の重合
体を微小な粉本にして1会する固液混合の方法など重合
体の組合せ及び目的に応じて種々の混合方法が採用でき
る。
The method of mixing Polymer A and Polymer B is to heat and melt each polymer and mix them, or to mix them under heat under a pressure of Ω using an extruder, or to simply melt the mixture. Depending on the combination and purpose of the polymers, such as melting and mixing methods, or solid-liquid mixing methods in which one polymer is kneaded or the other polymer is made into fine powder and mixed together. Various mixing methods can be adopted depending on the situation.

混合操作もヘンシエルミキサ−、バンバリーミキサ−1
−軸又は二輪二ノストルーダー、ホモミキサー、ラボデ
ィスパー、ボールミル、コロイドミル、サンドグライン
ダーなど種々の装置が目的に応じて採用できる◎ 混合物は融液でも溶液でも重合体Aと重合体Bが相分離
している。相分離の状態はどちらか一方の重合体又は双
方の重合体が他の重合体中へ粒状に分散している。重合
体A中に重合体Bが分散した薄膜を作る場合は重合体へ
が5o〜98重量%で、重合体Bが2〜50重量%であ
り、更に好ましくは重合体へが60〜95重量%で重合
体Bが5〜40電量%であシ、荷に好ましくは重合本人
が70〜90%、重合体Bが10〜30y;でろる。
Mixing operation is also done using Henschel mixer and Banbury mixer 1.
-A variety of equipment can be used depending on the purpose, such as a shaft or two-wheeled two-nostruder, homo mixer, lab body spar, ball mill, colloid mill, sand grinder, etc.◎ Polymer A and polymer B phase separate in the mixture, whether it is a melt or a solution. ing. In the state of phase separation, one or both of the polymers is dispersed in the form of particles in the other polymer. When making a thin film in which polymer B is dispersed in polymer A, the amount of polymer B is 50 to 98% by weight, and the amount of polymer B is 2 to 50% by weight, and more preferably 60 to 95% by weight of polymer B. The amount of polymer B is preferably 5 to 40 y, and preferably the polymer itself is 70 to 90 y and the polymer B is 10 to 30 y.

又重合体B干に重合体Aが分散した薄膜全作1す る場合は重合体Bが50〜ν8重蓋%で重合法人が2〜
5L]J[i%が好ましく、更に好ましくは重合体Bが
60〜95zt%で重合体Aが5〜401瀘%であり、
特に好ましくは重合体Bが70〜90重1%、重合体A
が10〜30重号%である。
In addition, in the case of a thin film in which Polymer A is dispersed in Polymer B, Polymer B is 50 to ν8% and the polymer is 2 to 5%.
5L]J[i% is preferred, and more preferably polymer B is 60 to 95zt% and polymer A is 5 to 401zt%,
Particularly preferably, polymer B is 70 to 90% by weight and polymer A is 1% by weight.
is 10 to 30%.

分数状態は1合本の組合せ、混合比、混合方法により異
なるが好ましく+d球状に、更に好ましくは犬ささの均
一な球状に分散する九のがよい。又混合の際に分数状態
を良好にする分散剤を添訓する事も可能である。
Although the fractional state varies depending on the combination of bundles, mixing ratio, and mixing method, it is preferable that the fraction be dispersed in a +d spherical shape, and more preferably in a uniform spherical shape like a dogfish. It is also possible to add a dispersant to improve the fractional state during mixing.

分数形態を艮好なものとする為に混合物を肉眼4察、顕
微鏡観察、光散乱法などにより確認しながら重合を行な
うのがよい。
In order to obtain a good fractional morphology, it is preferable to carry out the polymerization while checking the mixture by visual observation, microscopic observation, light scattering method, etc.

混合物から薄膜への成形方法は従来のフィルム形成方法
、中空系の製造方法などが採用されフィルムの厚みや中
空系の内径・外径は目的とする油水分離てより異なるが
薄い方が好ましく一般には厚み0.1〜0.21以下で
るる。
Conventional film forming methods, hollow system manufacturing methods, etc. are used to form a thin film from the mixture.The thickness of the film and the inner and outer diameters of the hollow system vary depending on the target oil/water separation, but thinner is generally preferable. The thickness is 0.1 to 0.21 or less.

薄膜状に成形した俊重合体入及び重合体Bは相分薯状悪
を示しておりこの薄膜を少なくとも−S方向へ延伸する
事により重合体A及び重合休日の界lに相分農する・空
孔2形成する事ができる。
Polymer A and Polymer B formed into thin films exhibit poor phase distribution, and by stretching these thin films at least in the -S direction, they can be divided into Polymer A and Polymer B. Two holes can be formed.

一1111延伸の場合、延伸店率は1.05倍以上7倍
以下が好lしい07倍を越えると延1甲の際に高温が必
要であったり、又は大へな方を必要としたり、又は!を
揮甲KvJ断したり、又は延伸物がフィブリル化してし
まうといった・不都合が生じる0又、1.05倍未満で
は重合体の弾性変形の為に界面に空孔が発生しK〈い。
In the case of 11111 stretching, the stretching ratio is preferably 1.05 times or more and 7 times or less.If it exceeds 0.7 times, a high temperature may be required during stretching, or a larger one may be required. Or! If it is less than 1.05 times, pores will be generated at the interface due to elastic deformation of the polymer.

延伸l工好ましくは1.05〜5倍、更に好ましくは、
1.5〜5倍である。延伸は熱水中又は薄膜に対して不
活性な気体、液体の媒体中で行なう事が好ましいっ一軸
延伸は操作も容易であり空孔の発生も良好でるるか強度
に異方性が生じる。従って力学的強度を要求される用途
には二軸延伸を行なう◇二軸(伸でも前途したよりに一
軸延伸と同itζ良好な空孔が発生する。二軸延伸は一
軸延伸嗟、更に他方向への延伸を行なってもよいし、又
、同時に二方同への延伸を行なってもよい。延伸援の薄
膜には前述した図及び第11)式で示した空孔の発生が
みられる。
Stretching process is preferably 1.05 to 5 times, more preferably,
It is 1.5 to 5 times. The stretching is preferably carried out in hot water or in a gas or liquid medium that is inert to the thin film.Uniaxial stretching is easy to operate, produces good pores, and produces anisotropy in strength. Therefore, for applications that require mechanical strength, biaxial stretching is performed. Stretching may be carried out, or stretching may be carried out in both directions at the same time.The pores shown in the above-mentioned figure and equation 11) are observed in the stretched thin film.

延伸後、薄膜は耐熱性向上、強安定性向上の為ic&処
理を行なう事ができる。熱処理は通常熱水、水蒸気、刀
0熱媒体中で行なうが、薄aは寸法を固定して行なう方
が、形態のたわみ、ゆがみ等の発生防止の為に好ましい
。又、熱処理呈度は延伸によって発生じた空孔を消滅さ
せない温度で行なう事は当然である。この熱処理により
多孔性膜は形態安定性及び力学的物性の向上を生じる事
が多い。
After stretching, the thin film can be subjected to IC& treatment to improve heat resistance and strength stability. Heat treatment is usually carried out in hot water, steam, or a hot medium, but it is preferable to fix the dimensions of the thin film in order to prevent bending and distortion of the shape. Furthermore, it goes without saying that the heat treatment should be carried out at a temperature that does not eliminate the pores generated by stretching. This heat treatment often improves the morphological stability and mechanical properties of porous membranes.

本発明により得られる多孔性膜は、膜表面における疎水
性部分と親水性部分の相分離構造及びその界面に空孔を
有する事、又その空孔の形態が従来にないものである事
等これまでに得られた冊本分離用膜と至〈違った構造、
物性を有するものでるる。又、本発明による多孔性膜の
γ田水分離に関する注11Mに表語の疎水性、親水性の
相分離構造によるエマルジMノブレーカー的な効果及び
膜表面の汚染防止及び相分離による空孔のもつ油又は水
の選択逼過圧という元来にない優れたものである。
The porous membrane obtained by the present invention has a phase-separated structure of a hydrophobic portion and a hydrophilic portion on the membrane surface, and has pores at the interface, and the shape of the pores is unprecedented. It has a completely different structure from the book separation membranes obtained up to now.
Something that has physical properties. In addition, note 11M regarding γ-field water separation of the porous membrane according to the present invention describes the emulsion M knob breaker-like effect due to the hydrophobic and hydrophilic phase separation structure, prevention of membrane surface contamination, and reduction of pores due to phase separation. It has an unprecedented advantage of selective overpressure of oil or water.

本発明により得”られた膜の用途としては、固液分層又
は固気分層、気放分雇といった一般的な濾過、精g!p
遍に及び油水分論文。2互いに溶解しない液体混合物の
分離といった液3友分離に使用可能でめる。
The membrane obtained according to the present invention can be used for general filtration such as solid-liquid separation layer or solid separation layer, air release separation, etc.
A paper on oil and water all over the place. It can be used for separation of two liquids and three liquids, such as separation of liquid mixtures that do not dissolve in each other.

以下、実施例を示して更に評細な説明を行なうが、実施
例中特に記載しない限す、部、%は重1郁、重量%を示
す。又、容量%はVoL%と略記するー、。
Hereinafter, a more detailed explanation will be given with reference to Examples. In the Examples, unless otherwise specified, parts and % indicate weight. Also, capacity % is abbreviated as VoL%.

なお、空孔の大きさは光単顕微鏡又は電子顕微鏡顧察に
より求め実嶌例中Vこは巌大孔の大きさを前記(11式
の込として表わした。又、薄膜の空孔率は(23式によ
り求めた。
The size of the pores was determined by observing a single light microscope or an electron microscope. (Determined using formula 23.

空孔率v(容49に ) = (+ −乞) x +o
o  L2J但し ア薄膜の見掛けの比重 fニアJ鹿の真の比ム 見掛けの比ムは薄膜のN−と水j中での容積より求めた
か真の比重は#膜ケ形成する1合体と同一組成を有する
1合体の空孔のガい状態での比Iである。
Porosity v (to 49) = (+ -) x +o
o L2J However, A Apparent specific gravity of the thin film f Near J Deer's true ratio Apparent ratio was determined from the volume of the thin film in N- and water It is the ratio I in the state of a single integrated vacancy having the composition.

実施例1 第1表に示すA成分重合体(海成分となる)80%とB
成分重合体(島成分となる)20%との混合物のジメチ
ルホルムアミド溶液をホモミキサーにて十分攪拌し、ガ
ラス板上へドクターブレードで用いて流延し、熱風乾燥
機にて芝燥した◎乾燥フィルムはガラス板よりはぎとり
熱水中くて1.5倍の−am伸を行なった0延伸膜の厚
みは大体15μであった0 、油水分離テストは灯油80%、水20%の混合物を2
ボデイスパーにて強力攪拌し、油中水星エマルシヨンに
したものを処理液として用いた。テスト装置は市販の一
過テスト機に攪拌機を取りつけたものでめる。
Example 1 80% of the A component polymer (sea component) shown in Table 1 and B
A dimethylformamide solution of a mixture with 20% of the component polymer (which will become the island component) was thoroughly stirred in a homomixer, cast onto a glass plate using a doctor blade, and dried in a hot air dryer.◎Drying The film was peeled off from the glass plate and stretched 1.5 times -am in hot water.The thickness of the stretched film was approximately 15μ.0 The oil-water separation test was conducted using a mixture of 80% kerosene and 20% water.
A mercury-in-oil emulsion was obtained by vigorously stirring with a body spar and used as a treatment liquid. The test equipment is a commercially available transient tester with a stirrer attached.

尚本テストで用い7を憲合体は次のものでめるアクリル
系重合体・・・・アクリロニトリル:アクリル駿メチル
:アリルスルホ ン或ナトリウム=90.0:9.Q二1.0(ん)平均
重合度 115O WP表セルローズ・・・酢化度 55′X 平均重合t
 170塩ビ酢ビ共重合体・・・・塩化ビニル:酢設ビ
ニル=88:12(%)平均重合度  00 ポリ7ノ化ビニリデン ・・・・・米国ペンウォルト社
展商品名Kynarを使用 ポリスチレン  ・・・・・平均分子量1[)000第
1表 ! 喝 実施例2 籐2表に示すλ成分重合体(海成分と耽る)85%とB
E分重重合体島成分となる)15%の各成分溶液を混合
し、フィルム作成原液とした。尚アクリル系重合体は実
施例1のものを用い、55%チオンアン駿ナト、リウム
水溶液に重合体濃度10%になるよう溶解したつポリビ
ニルアルコール(平均重合度j’500 )は水に重合
体濃度10%になるよう溶解した。ポリブタジェン(平
均分子量130000)はトルエンに重合体濃度10%
になるよう溶解した。
The polymer used in this test is an acrylic polymer composed of the following: Acrylonitrile: Acrylic methyl: Allyl sulfone or sodium = 90.0:9. Q2 1.0 (mm) Average degree of polymerization 115O WP table Cellulose...degree of acetylation 55'X Average polymerization t
170 Vinyl chloride/vinyl acetate copolymer...Vinyl chloride: Vinyl acetate = 88:12 (%) Average degree of polymerization 00 Polyvinylidene heptanide...Used the trade name Kynar at the Pennwalt Exhibition in the U.S. Polystyrene. ...Average molecular weight 1 [)000 Table 1! Refreshing Example 2 Rattan 2 85% of the λ component polymer shown in Table 2 (mixed with the sea component) and B
A 15% solution of each component (which will become the E-portion polymer island component) was mixed to prepare a film-forming stock solution. The acrylic polymer used in Example 1 was dissolved in a 55% aqueous solution of thione anhydride at a polymer concentration of 10%, and polyvinyl alcohol (average degree of polymerization j'500) was dissolved in water at a polymer concentration of 10%. It was dissolved to 10%. Polybutadiene (average molecular weight 130,000) was added to toluene at a polymer concentration of 10%.
It was dissolved to become

フィルム形成原液はガラス板上へドクタープルードを用
いて、厚み200μになるよう塗布しその後熱風乾燥機
にて乾燥した。
The film-forming stock solution was applied onto a glass plate using a doctor prude to a thickness of 200 μm, and then dried in a hot air dryer.

乾燥後ExpNo−7は、水中に浸漬し、チオシアン改
ナトリウムを抽出し、更に150℃で熱プレスし厚み1
5μのフィルムを作った。EII)No 8は乾燥後胞
和芒礪水溶液中7QCにてポリビニルアルコールの安定
化を行ない厚み20μのフィルムを得た。未−延坤フィ
ルムは熱水中で、2倍の−S延1甲を行ない多孔性フ1
ルムを得た。
After drying, ExpNo.
A 5μ film was made. EII) No. 8 was dried, and then the polyvinyl alcohol was stabilized in 7QC in an aqueous solution of polyvinyl alcohol to obtain a film with a thickness of 20 μm. The unrolled film was rolled twice as much -S in hot water to form a porous film.
Got Lum.

油水分離テストは水95%、灯油5%の混合物をラボデ
 スパーにて強力攪拌し水中油型エマイ ルジョンを用いた。テスト方法は実施例1と同じに行な
った。
For the oil/water separation test, a mixture of 95% water and 5% kerosene was vigorously stirred in a LabDesper and an oil-in-water emulsion was used. The test method was the same as in Example 1.

第2表 実施例5 実適例1のnXp4の未延伸フィルムより熱水中での延
伸倍準を各々変化させて多孔性フィルムを得た。油水分
離テストは実施例1と同様性なった。
Table 2 Example 5 Porous films were obtained from the unstretched nXp4 film of Practical Example 1 by varying the stretching ratio in hot water. The oil/water separation test was similar to Example 1.

第3表 刀ネボウ合繊株式会社 手  続  補  正  書 昭和57年9月ノφ8 11!件の表示 昭和57年特許頭第87167@ Z発明の名称 油水分ml!II及びその製造方法 6補正をする者 事件との関係  特許出願人 住所 東京都墨田区墨田五丁目17番4号〒554大阪
市部島区友淵町1丁目5番80号鐘紡株式会社特許部 5、補正により増加する発明の数   な し6、補正
の対象 明細書の「図面のWAtaな説明」の欄7補正の内容 用aM第25頁第ろ表の次に以Fの記載を追加する。
Table 3 Tonebo Gosen Co., Ltd. Procedures Amendment Book September 1982 φ8 11! Display of 1987 Patent Head No. 87167 @ Name of Z Invention Oil/Water ml! II and its manufacturing method 6. Relationship with the person making the amendment Patent applicant address: 5-17-4 Sumida, Sumida-ku, Tokyo Address: 1-5-80 Tomobuchi-cho, Bejima-ku, Osaka 554, Japan Patent Department, Kanebo Co., Ltd. 5. The number of inventions increased by the amendment None. 6. The following F is added next to the table on page 25 of column 7 for the content of the amendment in "WAta explanation of the drawings" of the specification subject to the amendment. .

「4、図面の簡単な説明 @1図に成形後の延11IIフィルムの拡大説明図、第
2図は一軸延伸、第5図は二軸延伸した犬々のフィルム
の空孔の状at示す説明図でろる。」
4. Brief explanation of the drawings @ Figure 1 is an enlarged explanatory view of the stretched 11II film after forming, Figure 2 is an explanation showing the state of pores in the uniaxially stretched film, and Figure 5 is the biaxially stretched film. It’s a diagram.”

Claims (1)

【特許請求の範囲】 (1)  互いに非相溶な疎水性重合体及び親水性重合
体よりなり、夫々の重合体が相分離構造を有しておりか
つ、各重合体の界面間に相分離による空孔を有する油水
分離接性能に優れた多孔性膜◎ (2J  疎水性重合体中に親水性重合体が粒状に分散
した構造を有する特許請求の範囲第1項記載の多孔性膜
。 (3)  疎水性重合体が50〜98重量%である特許
請求の範囲第2項記載の多孔性膜。 (4>  疎水性重合体が60〜95重量%でちる特許
請求の範囲第2項套址唸葉i項記載の多孔性膜。 (5)  親水性重合体中に疎水性重合体が粒状に分散
した構造を有する特許請求の範囲第1項記載の多孔性膜
。 (6)  親水性重合体が50〜98重量%である特許
請求の範囲第5項記載の多孔性膜。 (71![水性重合体が60〜95重量%である特許請
求の範囲第5項或いは第6項記載の多孔性膜。 (8)  疎水性重合体及び親水性重合体−の界面間の
相分離による空孔が0.05〜50μである特許請求の
範囲第1項記載の多孔性膜。 (9)  疎水性重合体及び親水性重合体の界面間の相
分離による空孔が11〜10μである特許請求の範囲第
1項或いは第8項記載の多孔性膜a (Kl)  疎水性重合体と]該疎水性重合体と混和性
延伸し、疎水性重合体及び親水性重合体の界面間に相分
離による空孔を発生させる事を特徴とする油水分離性能
に優れた多孔性膜の製造方法◎ (11)  疎水性重付体及び親水性重合体のいずれか
一方が粒状の島成分として他方の重合体中に分散してい
る特許請求の範囲第10項記載の方法。 (t2)  疎水性重合体が50〜98重1%でちる特
許請求の範囲第10項記載の方法。 (S)  疎水性重合体が60〜95重量%でちる特許
請求の範囲第10項或いは第12項記載の方法。 (S4)親水性重合体が50〜98重量%でおる特許請
求の範囲第10項記載の方法。 (i5)親水性重合体が60〜95重量%である特許請
求の範囲第10項或いは第14項記載の方法。 (紛 延伸倍率が1.05〜5倍の一軸延伸である特許
請求の範囲第10項記載の方法。 (17)  延伸倍率が1,5〜3@の一軸延伸である
特許請求の範囲第10項或いは第16項記載の方法。 (13)延伸を2鵬方同に行なう特許請求の範囲第10
項記載の方法0
[Scope of Claims] (1) Consisting of a hydrophobic polymer and a hydrophilic polymer that are incompatible with each other, each polymer having a phase separation structure, and a phase separation between the interfaces of each polymer. A porous membrane with excellent oil-water separation performance having pores of 3) The porous membrane according to claim 2, wherein the hydrophobic polymer is 50 to 98% by weight. (4> The porous membrane according to claim 2, wherein the hydrophobic polymer is 60 to 95% by weight. The porous membrane according to claim i. (5) The porous membrane according to claim 1, which has a structure in which a hydrophobic polymer is dispersed in granules in a hydrophilic polymer. (6) Hydrophilicity The porous membrane according to claim 5, in which the polymer content is 50 to 98% by weight. (71! [Claim 5 or 6, in which the aqueous polymer is 60 to 95% by weight (8) The porous membrane according to claim 1, which has pores of 0.05 to 50μ due to phase separation between the hydrophobic polymer and the hydrophilic polymer interface. (9 ) The porous membrane a (Kl) according to claim 1 or 8, wherein the pores due to phase separation between the hydrophobic polymer and the hydrophilic polymer are 11 to 10μ. ] A method for producing a porous membrane with excellent oil/water separation performance, which is characterized by stretching the hydrophobic polymer to be miscible with the hydrophobic polymer and generating pores due to phase separation between the interfaces of the hydrophobic polymer and the hydrophilic polymer. ◎ (11) The method according to claim 10, wherein either the hydrophobic polymer or the hydrophilic polymer is dispersed as a particulate island component in the other polymer. (t2) Hydrophobicity The method according to claim 10, wherein the polymer comprises 50 to 98% by weight. (S) The method according to claim 10 or 12, wherein the hydrophobic polymer comprises 60 to 95% by weight. Method. (S4) The method according to claim 10, wherein the hydrophilic polymer is 50 to 98% by weight. (i5) The method according to claim 10, wherein the hydrophilic polymer is 60 to 95% by weight. Or the method according to claim 14. (Powder) The method according to claim 10, wherein the stretching ratio is 1.05 to 5 times. (13) A method according to claim 10 or 16, in which the stretching is carried out in two directions.
Method 0 described in section 0
JP8716782A 1982-05-22 1982-05-22 Oil-water separating film and its production Pending JPS58205503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8716782A JPS58205503A (en) 1982-05-22 1982-05-22 Oil-water separating film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8716782A JPS58205503A (en) 1982-05-22 1982-05-22 Oil-water separating film and its production

Publications (1)

Publication Number Publication Date
JPS58205503A true JPS58205503A (en) 1983-11-30

Family

ID=13907426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8716782A Pending JPS58205503A (en) 1982-05-22 1982-05-22 Oil-water separating film and its production

Country Status (1)

Country Link
JP (1) JPS58205503A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257203A (en) * 1985-05-10 1986-11-14 Terumo Corp Hydrophilic porous membrane and its preparation
JPS6397666A (en) * 1986-10-15 1988-04-28 Toray Ind Inc Low-temperature soluble type stock solution and production thereof
US5059327A (en) * 1986-08-26 1991-10-22 Director-General, Agency Of Industrial Science And Technology Cross-linked separation membrane and process for pervaporation
WO2006001528A1 (en) * 2004-06-28 2006-01-05 Kureha Corporation Porous membrane for water treatment and process for producing the same
JP2006326497A (en) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd Semi-permeable membrane for water treatment and its production method
JP2007126341A (en) * 2005-11-07 2007-05-24 Toshiba Corp Anisotropic porous material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257203A (en) * 1985-05-10 1986-11-14 Terumo Corp Hydrophilic porous membrane and its preparation
JPH0451209B2 (en) * 1985-05-10 1992-08-18 Terumo Corp
US5059327A (en) * 1986-08-26 1991-10-22 Director-General, Agency Of Industrial Science And Technology Cross-linked separation membrane and process for pervaporation
JPS6397666A (en) * 1986-10-15 1988-04-28 Toray Ind Inc Low-temperature soluble type stock solution and production thereof
WO2006001528A1 (en) * 2004-06-28 2006-01-05 Kureha Corporation Porous membrane for water treatment and process for producing the same
JP2006326497A (en) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd Semi-permeable membrane for water treatment and its production method
JP2007126341A (en) * 2005-11-07 2007-05-24 Toshiba Corp Anisotropic porous material

Similar Documents

Publication Publication Date Title
JP4448930B2 (en) Hollow polymer fine particles and production method thereof
Förster et al. Polyelectrolyte block copolymer micelles
WO1997020885A1 (en) Microporous materials of ethylene-vinyl alcohol copolymer and methods for making same
JPH0458824B2 (en)
US7741378B2 (en) Porous monodispersed particles and method for production thereof, and use thereof
AU661678B2 (en) Method of forming fine polymer particles and polymer-encapsulated particulates
Burke et al. Multiple vesicular morphologies from block copolymers in solution
JPS6137827A (en) Synthetic resin film for printing
JPS58205503A (en) Oil-water separating film and its production
Mahmoudian et al. Investigation of structure‐performance properties of a special type of polysulfone blended membranes
KR101977195B1 (en) Method for Preparing Porous Polymer Composite Particles
JPH0422428A (en) Very fine porous film, and composition for and manufacture of the same
JP6787488B2 (en) Method for manufacturing composite semipermeable membrane and composite semipermeable membrane
JP2021178948A (en) Porous membrane composed of polytetrafluoroethylene and/or modified polytetrafluoroethylene having high strength and small pore diameter
JP2004190038A (en) Hollow polymer fine particle and method for producing the same
WO1998041572A1 (en) Process for the production of porous polyolefin
JP2007217616A (en) Deformed polymer particulate and method for producing the same
JPS63210144A (en) Production of microporous film
JP3538882B2 (en) Cavity-containing polyolefin resin film
JP2009242632A (en) Method for producing hydrophilic resin particle
JPS58189235A (en) Microporous film
JP3551485B2 (en) Polyolefin composite film
JP2000309645A5 (en)
JP3428462B2 (en) Manufacturing method of polyolefin resin film
JP2019147133A (en) Composite semipermeable membrane