JP2007217616A - Deformed polymer particulate and method for producing the same - Google Patents

Deformed polymer particulate and method for producing the same Download PDF

Info

Publication number
JP2007217616A
JP2007217616A JP2006041686A JP2006041686A JP2007217616A JP 2007217616 A JP2007217616 A JP 2007217616A JP 2006041686 A JP2006041686 A JP 2006041686A JP 2006041686 A JP2006041686 A JP 2006041686A JP 2007217616 A JP2007217616 A JP 2007217616A
Authority
JP
Japan
Prior art keywords
fine particles
polymer
polymer fine
solvent
polar solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006041686A
Other languages
Japanese (ja)
Inventor
Masayoshi Okubo
政芳 大久保
Hideto Minami
秀人 南
Toyoko Suzuki
登代子 鈴木
Teruhisa Fujibayashi
輝久 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2006041686A priority Critical patent/JP2007217616A/en
Publication of JP2007217616A publication Critical patent/JP2007217616A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide deformed polymer particulates having dents on their surfaces and a method for producing such particulates with ease. <P>SOLUTION: The method for producing such deformed polymer particulates is provided, which comprises a 1st step of dispersing nonpolar solvent drops incompatible with a polar solvent and polymer particulates in the polar solvent and a 2nd step of forming dents on the polymeric particulate surface by agitating the dispersion fluid. The polymer particulate obtained by the method has one, two, or more dents on its surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面に一つもしくは二つ以上の窪みを有する異形高分子微粒子、及びその製造方法に関する。   The present invention relates to irregularly shaped polymer fine particles having one or more depressions on the surface, and a method for producing the same.

一般に、乳化重合法や懸濁重合法等により高分子微粒子を製造する場合には、その表面エネルギーを最小にしようとする働きから真球状又は略真球状の微粒子が得られる。それ以外の異形高分子微粒子を製造することは困難である。   In general, when polymer fine particles are produced by an emulsion polymerization method, a suspension polymerization method, or the like, true spherical or substantially spherical fine particles are obtained because of the function of minimizing the surface energy. It is difficult to produce other irregular shaped polymer particles.

このような状況の下で本発明者は、異形高分子微粒子の製造方法として、表面に多数の凹部を有する高分子微粒子を製造する方法としてシード乳化重合法を提案している(特開平6−287244号、特開平6−287245号)。   Under such circumstances, the present inventor has proposed a seed emulsion polymerization method as a method for producing irregularly shaped polymer fine particles, as a method for producing polymer fine particles having a large number of recesses on the surface (Japanese Patent Laid-Open No. 6-1994). No. 287244, JP-A-6-287245).

この方法は、水溶性有機溶媒と水との混合溶媒中又は水中で、シードポリマー粒子としてのポリスチレン粒子にモノマーとしてのアクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステルを吸収させた後、該モノマーを乳化重合させることを特徴とする方法であって、ゴルフボール状高分子複合体微粒子を製造することができる。   In this method, in a mixed solvent of water-soluble organic solvent and water or in water, polystyrene particles as seed polymer particles are absorbed with acrylic acid alkyl ester and / or methacrylic acid alkyl ester as monomers, and then the monomers are used. This is a method characterized by emulsion polymerization, and golf ball-like polymer composite fine particles can be produced.

特開平6−287244号及び特開平6−287245号に記載の従来法は、ポリマー粒子表面に多数の凹部を有するゴルフボール状高分子微粒子を形成するという点で画期的なものであった。   The conventional methods described in JP-A-6-287244 and JP-A-6-287245 are epoch-making in that golf ball-like polymer fine particles having a large number of recesses are formed on the surface of polymer particles.

しかし、上記従来法では、凹部を形成するためには、異種モノマーをシードポリマー粒子に吸収させた後に重合反応を行う必要があり、操作がやや煩雑である。また、重合工程を経るため、微粒子の大きさの制御や、単分散微粒子を得ることが難しい。さらに、シード粒子由来のポリマーとその中で重合して得られる異種ポリマーとの複合微粒子になるため、単一種類のポリマーを含む異形微粒子は得られない。   However, in the above conventional method, in order to form the concave portion, it is necessary to perform a polymerization reaction after absorbing the different monomer in the seed polymer particles, and the operation is somewhat complicated. In addition, since the polymerization process is performed, it is difficult to control the size of the fine particles and obtain monodispersed fine particles. Furthermore, since it becomes composite fine particles of a polymer derived from seed particles and a different polymer obtained by polymerization in the polymer, deformed fine particles containing a single type of polymer cannot be obtained.

本発明は、表面に窪みを有する異形高分子微粒子、及びこのような微粒子を簡単に製造できる方法を提供することを課題とする。   An object of the present invention is to provide irregularly shaped polymer fine particles having depressions on the surface and a method for easily producing such fine particles.

本発明者は、上記目的を達成すべく鋭意研究を重ね、以下の知見を得た。即ち、少量の分散安定剤を溶解させるか又は溶解させない極性溶媒中に、極性溶媒と相溶しない非極性溶剤と高分子微粒子とを分散させると、非極性溶剤の液滴の表面に高分子微粒子が一部を液滴中に埋没させた状態で付着ないしは吸着する。さらに、この分散液を軽く攪拌若しくは震盪すれば、表面に窪みを有する高分子微粒子が得られる。窪みの数は、一つの原料高分子微粒子と接触する非極性溶媒の液滴の数により一つ又は二つ以上となる。この窪みは分散液から高分子微粒子を回収した後も維持される。   The present inventor has conducted extensive studies to achieve the above object, and has obtained the following knowledge. That is, when a non-polar solvent and polymer fine particles that are not compatible with a polar solvent are dispersed in a polar solvent that dissolves or does not dissolve a small amount of the dispersion stabilizer, the polymer fine particles are formed on the surface of the non-polar solvent droplets. Adheres or adsorbs in a state where a part of the liquid is buried in the droplet. Furthermore, if this dispersion is lightly stirred or shaken, polymer fine particles having depressions on the surface can be obtained. The number of depressions is one or more depending on the number of nonpolar solvent droplets in contact with one raw material fine polymer particle. This depression is maintained even after the polymer fine particles are recovered from the dispersion.

本発明は、上記知見に基づき完成されたものであり、以下の異形高分子微粒子及びその製造方法を提供する。
項1. 極性溶媒中に、極性溶媒と相溶しない非極性溶剤滴及び高分子微粒子を分散させる第1工程と、分散液を撹拌することにより高分子微粒子表面に窪みを形成する工程とを含む異形高分子微粒子の製造方法。
項2. 極性溶媒として、水と極性有機溶媒との混合物を用い、極性溶媒の使用量を水の容量の5倍以下とする項1に記載の方法。
項3. 非極性溶剤として炭素数5〜18の脂肪族炭化水素系溶媒を用いる項1又は2に記載の方法。
項4. 非極性溶剤の使用量を、極性溶媒に対して0.5容量%以上とする項1〜3のいずれかに記載の方法。
項5. 高分子微粒子の数平均粒径が50nm〜50μmである項1〜4のいずれかに記載の方法。
項6. 高分子微粒子を構成する高分子の重量平均分子量が5千〜100万である項1〜5のいずれかに記載の方法。
項7. 高分子微粒子が単官能性ビニル系高分子微粒子である項1〜6のいずれかに記載の方法。
項8. 高分子微粒子の使用量が非極性溶剤に対して0.01〜200重量%である項1〜7のいずれかに記載の方法。
項9. 第1工程において、攪拌、膜乳化法、又は動的膨潤法により、極性溶媒中に非極性溶剤及び高分子微粒子を分散させる項1〜8のいずれかに記載の方法。
項10. 第1工程において、非極性溶剤をその液滴の大きさが50nm〜100μm程度となるように分散させる項1〜9のいずれかに記載の方法。
項11. 第1工程において、分散時の分散液の温度を高分子微粒子のガラス転移温度および極性溶媒の沸点以下とする項1〜10のいずれかに記載の方法。
項12. 第2工程において、攪拌時の分散液の温度を高分子微粒子のガラス転移温度および極性溶媒の沸点以下とする項1〜11のいずれかに記載の方法。
項13. 表面に一つ以上の窪みを有する異形高分子微粒子であり、窪みがないと仮定した場合の数平均粒径が50nm〜100μmである異形高分子微粒子。
項14. 窪んでいないところの総表面積が、窪みがないと仮定した場合の微粒子の全表面積の20%以上である項13に記載の微粒子。
項15. 窪みの深さが微粒子の直径の1/2以下である項13又は14に記載の微粒子。
項16. 高分子が単官能性ビニル系モノマーの重合又は共重合による得られる高分子である項13〜15のいずれかに記載の微粒子。
The present invention has been completed based on the above findings, and provides the following irregular shaped polymer fine particles and a method for producing the same.
Item 1. A deformed polymer comprising a first step of dispersing non-polar solvent droplets and polymer fine particles incompatible with a polar solvent in a polar solvent, and a step of forming depressions on the surface of the polymer fine particles by stirring the dispersion. A method for producing fine particles.
Item 2. Item 2. The method according to Item 1, wherein a mixture of water and a polar organic solvent is used as the polar solvent, and the amount of the polar solvent used is 5 times or less the capacity of water.
Item 3. Item 3. The method according to Item 1 or 2, wherein an aliphatic hydrocarbon solvent having 5 to 18 carbon atoms is used as the nonpolar solvent.
Item 4. Item 4. The method according to any one of Items 1 to 3, wherein the amount of the nonpolar solvent used is 0.5% by volume or more based on the polar solvent.
Item 5. Item 5. The method according to any one of Items 1 to 4, wherein the polymer fine particles have a number average particle size of 50 nm to 50 μm.
Item 6. Item 6. The method according to any one of Items 1 to 5, wherein the polymer constituting the polymer fine particles has a weight average molecular weight of 5,000 to 1,000,000.
Item 7. Item 7. The method according to any one of Items 1 to 6, wherein the polymer particles are monofunctional vinyl polymer particles.
Item 8. Item 8. The method according to any one of Items 1 to 7, wherein the amount of the polymer fine particles used is 0.01 to 200% by weight based on the nonpolar solvent.
Item 9. Item 9. The method according to any one of Items 1 to 8, wherein in the first step, the nonpolar solvent and the polymer fine particles are dispersed in the polar solvent by stirring, a membrane emulsification method, or a dynamic swelling method.
Item 10. Item 10. The method according to any one of Items 1 to 9, wherein in the first step, the nonpolar solvent is dispersed so that the size of the droplets is about 50 nm to 100 μm.
Item 11. Item 11. The method according to any one of Items 1 to 10, wherein in the first step, the temperature of the dispersion during dispersion is set to be equal to or lower than the glass transition temperature of the polymer fine particles and the boiling point of the polar solvent.
Item 12. Item 12. The method according to any one of Items 1 to 11, wherein in the second step, the temperature of the dispersion during stirring is set to be equal to or lower than the glass transition temperature of the polymer fine particles and the boiling point of the polar solvent.
Item 13. An irregularly shaped polymer fine particle having one or more depressions on the surface, and having a number average particle diameter of 50 nm to 100 μm when it is assumed that there is no depression.
Item 14. Item 14. The fine particle according to Item 13, wherein the total surface area of the non-recessed portion is 20% or more of the total surface area of the fine particle assuming that there is no depression.
Item 15. Item 15. The fine particle according to Item 13 or 14, wherein the depth of the recess is ½ or less of the diameter of the fine particle.
Item 16. Item 16. The fine particles according to any one of Items 13 to 15, wherein the polymer is a polymer obtained by polymerization or copolymerization of a monofunctional vinyl monomer.

本発明によれば、極性溶媒中に非極性溶剤の液滴を形成するとともに、その分散液中に高分子微粒子を分散させて熟成させるという極めて簡単な方法により、高分子微粒子に窪みを形成することができる。     According to the present invention, the droplets of the nonpolar solvent are formed in the polar solvent, and the depressions are formed in the polymer fine particles by an extremely simple method of dispersing and ripening the polymer fine particles in the dispersion. be able to.

本発明方法では、何らかの方法で得られた原料高分子微粒子と非極性溶媒滴を分散させる工程によってのみこの微粒子に窪みを形成することができ、即ち重合工程を経る必要がない。このため、粒子径や単分散の制御を容易に行える方法で原料高分子微粒子を製造しておくだけで、窪みを有する微粒子の粒子径を制御したり、単分散のものにすることができる。     In the method of the present invention, depressions can be formed in the fine particles only by the step of dispersing the raw polymer fine particles and nonpolar solvent droplets obtained by any method, that is, it is not necessary to go through a polymerization step. For this reason, it is possible to control the particle diameter of the fine particles having dents or make them monodispersed simply by producing the raw polymer fine particles by a method that can easily control the particle diameter and monodispersion.

また、極性溶媒及び非極性溶剤の種類、これらの使用比率、高分子微粒子の材料、その使用量などを調節することにより、窪みの形状を種々変化させることができる。また、得られる微粒子の窪みの大きさは極めて均一である。     Moreover, the shape of a hollow can be variously changed by adjusting the kind of polar solvent and a nonpolar solvent, these usage ratios, the material of polymer fine particles, the usage-amount, etc. Moreover, the size of the hollows of the obtained fine particles is extremely uniform.

このような表面が窪んだ単一ポリマー成分からなる異形微粒子は、懸濁重合、乳化重合、塊状重合等の従来公知の方法では得られなかったものである。   Such irregularly shaped fine particles composed of a single polymer component having a depressed surface cannot be obtained by a conventionally known method such as suspension polymerization, emulsion polymerization, or bulk polymerization.

以下、本発明を具体的に説明する。
(I)異形高分子微粒子の製造方法
本発明の異形高分子微粒子の製造方法は、極性溶媒中に、極性溶媒と相溶しない非極性溶剤滴及び高分子微粒子を分散させる第1工程と、分散液を撹拌することにより高分子微粒子表面に窪みを形成する第2工程とを含む方法である。
極性溶媒
極性溶媒としては、水、又は水と極性有機溶媒との混合液を使用できる。極性有機溶媒の種類は特に限定されず、水と相溶する有機溶媒を制限無く用いることができる。このような有機溶媒として、例えば、メタノール,エタノール,イソプロパノール等の低級アルコール;エチレングリコール,プロピレングリコール,ブタンジオール,ジエチレングリコール,トリエチレングリコール等の多価アルコール;メチルセロソルブ,エチルセロソルブ等のセロソルブ類、アセトン,メチルエチルケトン等のケトン類;テトラヒドロフラン等のエーテル類;ギ酸メチル等のエステル類のような親水性有機溶媒が挙げられる。
The present invention will be specifically described below.
(I) Method for producing irregularly shaped polymer fine particles The method for producing irregularly shaped polymer fine particles of the present invention comprises a first step of dispersing nonpolar solvent droplets and polymer fine particles incompatible with a polar solvent in a polar solvent, and dispersion. And a second step of forming depressions on the surface of the polymer fine particles by stirring the liquid.
Polar solvent As the polar solvent, water or a mixed solution of water and a polar organic solvent can be used. The kind of the polar organic solvent is not particularly limited, and an organic solvent compatible with water can be used without limitation. Examples of such organic solvents include lower alcohols such as methanol, ethanol, and isopropanol; polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, diethylene glycol, and triethylene glycol; cellosolves such as methyl cellosolve and ethyl cellosolve, and acetone. , Ketones such as methyl ethyl ketone; ethers such as tetrahydrofuran; and hydrophilic organic solvents such as esters such as methyl formate.

極性有機溶媒を使用する場合のその種類は、原料粒子を構成するポリマーの種類によって異なるが、中でも、毒性が低く、取り扱い易く、安価である点で炭素数1〜4の低級アルコールが好ましく、メタノールがより好ましい。極性有機溶媒を使用する場合は、1種を単独で又は2種以上を組み合わせて使用できる。     When the polar organic solvent is used, the type varies depending on the type of polymer constituting the raw material particles. Among them, a lower alcohol having 1 to 4 carbon atoms is preferable because methanol is low in toxicity, easy to handle, and inexpensive. Is more preferable. When using a polar organic solvent, it can be used individually by 1 type or in combination of 2 or more types.

水に加えて極性有機溶媒を使用する場合の使用量は、その種類と微粒子を構成するポリマーの種類とに応じて適宜決定できる。極性有機溶媒の使用比率の上限は、水に対して容量比で通常5倍以下程度とすればよく、4倍以下程度が好ましい。極性有機溶媒の比率が上記範囲であれば、極性溶媒に非極性溶剤が溶解して液滴を形成しなくなるということがない。
非極性溶剤
極性溶媒と相溶性を有しない非極性溶剤の種類は特に限定されず、公知の水難溶性溶媒を使用できる。このような水難溶性溶媒として、例えば、ベンゼン、トルエン、キシレンのような芳香族溶媒;酢酸エチル、酢酸ブチルのようなエステル系溶媒;ヘキサン、シクロヘキサン、ヘプタン、シクロヘプタン、オクタン、デカン、デカリン、テレピン、ドデカンのような炭素数5〜18の脂肪族炭化水素系溶媒などが挙げられる。中でも、適度な粘度を有するなど取り扱い易い点や、安価である点で炭素数5〜12の脂肪族炭化水素系溶媒が好ましく、炭素数6〜11の脂肪族炭化水素系溶媒がより好ましい。
The amount of use in the case of using a polar organic solvent in addition to water can be appropriately determined according to the type and the type of polymer constituting the fine particles. The upper limit of the use ratio of the polar organic solvent is usually about 5 times or less in terms of volume ratio with respect to water, and preferably about 4 times or less. When the ratio of the polar organic solvent is within the above range, the nonpolar solvent does not dissolve in the polar solvent and no droplets are formed.
The kind of nonpolar solvent that is not compatible with the nonpolar solvent polar solvent is not particularly limited, and a known poorly water-soluble solvent can be used. Examples of such poorly water-soluble solvents include aromatic solvents such as benzene, toluene and xylene; ester solvents such as ethyl acetate and butyl acetate; hexane, cyclohexane, heptane, cycloheptane, octane, decane, decalin, and terpine And an aliphatic hydrocarbon solvent having 5 to 18 carbon atoms such as dodecane. Among them, an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms is preferable, and an aliphatic hydrocarbon solvent having 6 to 11 carbon atoms is more preferable in terms of being easy to handle such as having an appropriate viscosity and being inexpensive.

非極性溶剤は1種を単独で又は2種以上を組み合わせて使用できる。   A nonpolar solvent can be used individually by 1 type or in combination of 2 or more types.

非極性溶剤の使用量は、極性溶媒に対して0.5容量%以上程度が好ましく、5〜20容量%程度がより好ましい。非極性溶剤の使用量が上記範囲であれば、高分子微粒子が付着すべき液滴表面が十分になって、表面に窪みを有する異形高分子微粒子の生産性が十分になる。また、非極性溶剤の使用量が上記範囲であれば、極性溶媒中に非極性溶剤の液滴を形成することができる。
分散安定剤
極性溶媒中に分散安定剤を溶解させた溶液を使用することにより、極性溶媒中での非極性溶剤の液滴および高分子微粒子の分散状態を一層安定化させることができる。しかし必ずしも必要とするものではない。
The amount of the nonpolar solvent used is preferably about 0.5% by volume or more, more preferably about 5 to 20% by volume with respect to the polar solvent. When the amount of the nonpolar solvent used is in the above range, the surface of the droplet to which the polymer fine particles should adhere is sufficient, and the productivity of the deformed polymer fine particles having a depression on the surface is sufficient. Moreover, if the usage-amount of a nonpolar solvent is the said range, the droplet of a nonpolar solvent can be formed in a polar solvent.
Dispersion Stabilizer By using a solution in which a dispersion stabilizer is dissolved in a polar solvent, it is possible to further stabilize the dispersion state of the nonpolar solvent droplets and polymer fine particles in the polar solvent. However, this is not always necessary.

分散安定剤としては、従来から分散重合に慣用されている分散安定剤を制限無く使用できる。このような分散安定剤として、例えば、ポリビニルピロリドン、ポリアクリル酸、ポリビニルアルコール、メチルセルロース、エチルセルロース、ポリアクリルアミド、ポリエチレンオキシド、ポリ(ハイドロオキシステアリン酸−g−メタクリル酸メチル−co−メタクリル酸共重合体等の高分子分散安定剤;ノニオン系界面活性剤;アニオン系界面活性剤;両性界面活性剤等が挙げられる。     As the dispersion stabilizer, a dispersion stabilizer conventionally used in dispersion polymerization can be used without limitation. Examples of such a dispersion stabilizer include polyvinyl pyrrolidone, polyacrylic acid, polyvinyl alcohol, methyl cellulose, ethyl cellulose, polyacrylamide, polyethylene oxide, and poly (hydroxystearic acid-g-methyl methacrylate-co-methacrylic acid copolymer). Polymer dispersion stabilizers such as: nonionic surfactants; anionic surfactants; amphoteric surfactants.

また、高分子微粒子を製造する際に使用した分散安定剤をそのまま使用してもよい。   Further, the dispersion stabilizer used when producing the polymer fine particles may be used as it is.

分散安定剤は1種を単独で又は2種以上を組み合わせて使用できる。     A dispersion stabilizer can be used individually by 1 type or in combination of 2 or more types.

分散安定剤を用いる場合の使用量は、非極性溶剤の100重量部に対して、通常、10重量部以下とすればよく、5重量部以下とするのが好ましい。上記範囲であれば、非極性溶剤滴と微粒子との吸着が阻害されずに、非極性溶剤滴および高分子微粒子の分散状態を安定化することができる。
高分子微粒子
高分子微粒子は、通常、単分散又はほぼ単分散の粒度分布を有するものである。その数平均粒径は、得られる窪み微粒子の用途に応じて定めればよい。数平均粒径は、50nm〜50μm程度が好ましく、500nm〜20μm程度がより好ましい。上記粒径の範囲であれば、容易に回収できるとともに、その構造評価を容易に行える。また、上記粒径の範囲であれば、単分散性の高い高分子微粒子を容易に作製できる。本発明において、高分子微粒子の数平均粒径は実施例に記載の方法で測定した値である。
The amount used in the case of using the dispersion stabilizer is usually 10 parts by weight or less with respect to 100 parts by weight of the nonpolar solvent, and is preferably 5 parts by weight or less. If it is the said range, the dispersion | distribution state of a nonpolar solvent droplet and a polymer microparticle can be stabilized, without inhibiting adsorption | suction with a nonpolar solvent droplet and microparticles | fine-particles.
Polymer fine particles Polymer fine particles usually have a monodisperse or almost monodisperse particle size distribution. The number average particle diameter may be determined according to the use of the hollow fine particles obtained. The number average particle diameter is preferably about 50 nm to 50 μm, more preferably about 500 nm to 20 μm. If it is the range of the said particle size, while it can collect | recover easily, the structure evaluation can be performed easily. In addition, when the particle diameter is in the above range, highly monodisperse polymer fine particles can be easily produced. In the present invention, the number average particle diameter of the polymer fine particles is a value measured by the method described in Examples.

このような高分子微粒子は、一般の重合体粒子の製法である、懸濁重合法、分散重合法、乳化重合法により得ることができる。単分散状態のシードポリマーの微粒子も従来公知の方法、例えば、コロイド・アンド・ポリマー・サイエンス(Colloid & Polymer Science), 267, 193 (1989)及び同誌,269,222(1991)に記載の方法に従い、製造することができる。ポリマー粒子の粒子径の調整方法もこれらの文献に記載されている。高分子微粒子は、重合法だけでなく乳化法や、重合体を粉砕、分級することによっても得ることができる。必要であれば、高分子微粒子は種々の粒径を有する微粒子の集合物であっても構わない。   Such polymer fine particles can be obtained by a suspension polymerization method, a dispersion polymerization method, or an emulsion polymerization method, which are general polymer particle production methods. The monodispersed seed polymer fine particles are also prepared by a conventionally known method, for example, the methods described in Colloid & Polymer Science, 267, 193 (1989) and the same publication, 269, 222 (1991). Can be manufactured. Methods for adjusting the particle size of the polymer particles are also described in these documents. The polymer fine particles can be obtained not only by the polymerization method but also by an emulsification method or by pulverizing and classifying the polymer. If necessary, the polymer fine particles may be an aggregate of fine particles having various particle sizes.

微粒子を構成するポリマーは、非極性溶剤を吸収して膨潤するものであればよく、特に限定されない。代表的には、単官能性のビニル系モノマーの重合体又は共重合体を使用できる。このような単官能性ビニル系モノマーとしては、例えば、モノビニル芳香族単量体、アクリル系単量体、ビニルエステル系単量体、ビニルエーテル系単量体、モノオレフィン系単量体、ハロゲン化オレフィン系単量体、ジオレフィン等が挙げられる。これらは単独であるいは2種以上を混合して使用できる。   The polymer constituting the fine particles is not particularly limited as long as it absorbs a nonpolar solvent and swells. Typically, a polymer or copolymer of a monofunctional vinyl monomer can be used. Examples of such monofunctional vinyl monomers include monovinyl aromatic monomers, acrylic monomers, vinyl ester monomers, vinyl ether monomers, monoolefin monomers, and halogenated olefins. System monomers, diolefins and the like. These can be used alone or in admixture of two or more.

上記モノビニル芳香族単量体としては、下記一般式(1)で表されるモノビニル芳香族炭化水素、低級(炭素数1〜4)アルキル基で置換されていてもよいビニルビフェニル、低級(炭素数1〜4)アルキル基で置換されていてもよいビニルナフタレン等が挙げられる。   Examples of the monovinyl aromatic monomer include a monovinyl aromatic hydrocarbon represented by the following general formula (1), a vinylbiphenyl optionally substituted with a lower (1 to 4 carbon) alkyl group, and a lower (carbon number). 1-4) Vinyl naphthalene which may be substituted with an alkyl group.

Figure 2007217616
[式中、Rは、水素原子、低級(炭素数1〜4)アルキル基又はハロゲン原子であり、Rは、水素原子、低級(炭素数1〜4)アルキル基、ハロゲン原子、−SONa基、低級(炭素数1〜4)アルコキシ基、アミノ基又はカルボキシル基を示す。]
上記一般式(1)において、Rは、水素原子、メチル基又は塩素原子が好ましく、Rは、水素原子、塩素原子、メチル基又は−SONa基であるのが好ましい。
Figure 2007217616
[Wherein, R 1 is a hydrogen atom, a lower (1 to 4 carbon atoms) alkyl group or a halogen atom, and R 2 is a hydrogen atom, a lower (1 to 4 carbon atoms) alkyl group, a halogen atom, —SO 2 3 represents a Na group, a lower (C1-4) alkoxy group, an amino group or a carboxyl group. ]
In the general formula (1), R 1 is preferably a hydrogen atom, a methyl group or a chlorine atom, and R 2 is preferably a hydrogen atom, a chlorine atom, a methyl group or a —SO 3 Na group.

上記一般式(1)で示されるモノビニル芳香族炭化水素の具体例としては、スチレン、α−メチルスチレン、ビニルトルエン、α−クロロスチレン、o−クロロスチレン、m−クロロスチレン、p−クロロスチレン、スチレンスルホン酸ナトリウム等があげられる。   Specific examples of the monovinyl aromatic hydrocarbon represented by the general formula (1) include styrene, α-methylstyrene, vinyltoluene, α-chlorostyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, Examples thereof include sodium styrene sulfonate.

更に、低級アルキル基で置換されていてもよいビニルビフェニル、低級アルキル基で置換されていてもよいビニルナフタレンとしては、ビニルビフェニル、メチル基、エチル基等の低級アルキル基で置換されているビニルビフェニル、ビニルナフタレン、メチル基、エチル基等の低級アルキル基で置換されているビニルナフタレン等を例示できる。これらモノビニル芳香族単量体は、単独であるいは2種類以上併用することができる。   Furthermore, vinyl biphenyl which may be substituted with a lower alkyl group, and vinyl naphthalene which may be substituted with a lower alkyl group include vinyl biphenyl substituted with a lower alkyl group such as vinyl biphenyl, methyl group and ethyl group. And vinylnaphthalene substituted with a lower alkyl group such as vinylnaphthalene, methyl group, and ethyl group. These monovinyl aromatic monomers can be used alone or in combination of two or more.

また、上記アクリル系単量体としては、下記の一般式(2)で表されるアクリル系単量体が挙げられる。   Moreover, as said acrylic monomer, the acrylic monomer represented by following General formula (2) is mentioned.

Figure 2007217616
[式中、Rは、水素原子又は低級(炭素数1〜4)アルキル基を示し、Rは、水素原子、炭素数1〜12のアルキル基、フェニル基、炭素数1〜6のヒドロキシアルキル基、低級(炭素数1〜4)アミノアルキル基又はジ(C-Cアルキル)アミノ−(C-C)アルキル基を示す。]
一般式(2)において、Rは、水素原子又はメチル基であるのが好ましく、Rは、水素原子、炭素数1〜8のアルキル基、フェニル基、低級(炭素数1〜4)ヒドロキシアルキル基、低級(炭素数1〜4)アミノアルキル基が好ましい。
Figure 2007217616
Wherein, R 3 represents a hydrogen atom or a lower (1-4 carbon atoms) alkyl group, R 4 is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a phenyl group, a hydroxy 1 to 6 carbon atoms An alkyl group, a lower (C 1-4) aminoalkyl group or a di (C 1 -C 4 alkyl) amino- (C 1 -C 4 ) alkyl group is shown. ]
In the general formula (2), R 3 is preferably a hydrogen atom or a methyl group, and R 4 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group, or lower (1 to 4 carbon atoms) hydroxy. An alkyl group and a lower (C1-4) aminoalkyl group are preferred.

上記アクリル系単量体の具体例としては、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルエキシル、アクリル酸シクロヘキシル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸ヘキシル、メタクリル酸2−エチルヘキシル、アクリル酸β−ヒドロキシエチル、アクリル酸γ−ヒドロキシブチル、アクリル酸δ−ヒドロキシブチル、メタクリル酸β−ヒドロキシエチル、アクリル酸γ−アミノプロピル、アクリル酸γ−N,N−ジエチルアミノプロピル等が挙げられる。   Specific examples of the acrylic monomer include acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylexyl acrylate, cyclohexyl acrylate, phenyl acrylate, methyl methacrylate, and methacrylic acid. Hexyl, 2-ethylhexyl methacrylate, β-hydroxyethyl acrylate, γ-hydroxybutyl acrylate, δ-hydroxybutyl acrylate, β-hydroxyethyl methacrylate, γ-aminopropyl acrylate, γ-N, N acrylate -Diethylaminopropyl and the like.

上記ビニルエステル系単量体としては、下記の一般式(3)で表されるものが挙げられる。   Examples of the vinyl ester monomer include those represented by the following general formula (3).

Figure 2007217616
[式中、Rは水素原子又は低級(炭素数1〜4)アルキル基を示す。]
上記ビニルエステル系単量体の具体例としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル等が挙げられる。
Figure 2007217616
[Wherein, R 5 represents a hydrogen atom or a lower (1 to 4 carbon atoms) alkyl group. ]
Specific examples of the vinyl ester monomer include vinyl formate, vinyl acetate, vinyl propionate and the like.

上記ビニルエーテル系単量体としては、下記の一般式(4)で表されるビニルエーテル系単量体が挙げられる。   Examples of the vinyl ether monomer include vinyl ether monomers represented by the following general formula (4).

Figure 2007217616
[Rは、炭素数1〜12のアルキル基、フェニル基又はシクロヘキシル基を示す。]
上記ビニルエーテル系単量体の具体例としては、ビニルメチルエーテル、ビニルエチルエーテル、ビニルn−ブチルエーテル、ビニルフェニルエーテル、ビニルシクロヘキシルエーテル等が挙げられる。
Figure 2007217616
[R 6 represents an alkyl group having 1 to 12 carbon atoms, a phenyl group, or a cyclohexyl group. ]
Specific examples of the vinyl ether monomer include vinyl methyl ether, vinyl ethyl ether, vinyl n-butyl ether, vinyl phenyl ether, vinyl cyclohexyl ether and the like.

上記モノオレフィン系単量体としては、下記の一般式(5)で表されるものが挙げられる。   Examples of the monoolefin monomer include those represented by the following general formula (5).

Figure 2007217616
[式中、R及びRは、水素原子又は低級(炭素数1〜4)アルキル基であり、それぞれ異なっていても同一でもよい。]
上記モノオレフィン系単量体の具体例としては、エチレン、プロピレン、ブテン−1、ペンテン−1、4−メチルペンテン−1等が挙げられる。
Figure 2007217616
[In formula, R < 7 > and R < 8 > is a hydrogen atom or a lower (C1-C4) alkyl group, and may differ or may be the same respectively. ]
Specific examples of the monoolefin monomer include ethylene, propylene, butene-1, pentene-1, 4-methylpentene-1.

上記ハロゲン化オレフィン系単量体としては、例えば、塩化ビニル、塩化ビニリデンをあげることができる。   Examples of the halogenated olefin monomer include vinyl chloride and vinylidene chloride.

さらに、ジオレフィン類である、ブタジエン、イソプレン、クロロプレン等も単官能性単量体に含めることができる。   Furthermore, diolefins such as butadiene, isoprene and chloroprene can also be included in the monofunctional monomer.

ポリマーを構成する単官能性モノマーとしては、ビニル系単量体が好ましく、中でもスチレンが好ましい。   As the monofunctional monomer constituting the polymer, vinyl monomers are preferable, and styrene is particularly preferable.

微粒子を構成するポリマーの重量平均分子量は、5,000〜1,000,000程度が好ましく、5,000〜200,000程度がより好ましい。上記分子量の範囲であれば、製造後の異形高分子微粒子の形状が一定に保持される。また上記分子量の範囲であれば、また、原料高分子微粒子と非極性溶媒との間の吸着による異形化が起こり易い。本発明において重量平均分子量はGPC法で測定した値である。   The weight average molecular weight of the polymer constituting the fine particles is preferably about 5,000 to 1,000,000, and more preferably about 5,000 to 200,000. If it is the said molecular weight range, the shape of the irregular-shaped fine polymer particle after manufacture will be kept constant. In addition, when the molecular weight is within the above range, deformation due to adsorption between the raw polymer fine particles and the nonpolar solvent tends to occur. In the present invention, the weight average molecular weight is a value measured by the GPC method.

高分子微粒子の使用量は、非極性溶剤に対して、0.01〜200重量%程度が好ましく、0.1〜100重量%程度がより好ましい。上記範囲であれば、効率よく窪み微粒子を製造することができ、かつ原料高分子微粒子の全てに確実に窪みを形成することができる。
好ましい材料の組み合わせ
極性溶媒、非極性溶剤、及び微粒子構成ポリマーの好ましい組み合わせとしては、以下の表1に示す組み合わせを例示できる。
The amount of the polymer fine particles used is preferably about 0.01 to 200% by weight, more preferably about 0.1 to 100% by weight with respect to the nonpolar solvent. If it is the said range, a hollow microparticle can be manufactured efficiently and a hollow can be reliably formed in all the raw material polymer microparticles.
Preferred combinations of materials Examples of preferred combinations of the polar solvent, the nonpolar solvent, and the fine particle constituent polymer include the combinations shown in Table 1 below.

Figure 2007217616
第1工程
第1工程では、極性溶媒中に非極性溶剤と高分子微粒子とを分散させる。高分子微粒子の添加タイミングは、特に限定されず、極性溶媒中に非極性溶剤と高分子微粒子とをほぼ同時に混合し分散させてもよく、或いは、極性溶媒中に非極性溶剤の液滴を分散させた後に高分子微粒子を添加し分散させてもよい。さらに、極性溶媒中に高分子微粒子を分散させた後に、非極性溶剤の液滴を分散させることもできる。
Figure 2007217616
First Step In the first step, a nonpolar solvent and polymer fine particles are dispersed in a polar solvent. The addition timing of the polymer fine particles is not particularly limited, and the nonpolar solvent and the polymer fine particles may be mixed and dispersed almost simultaneously in the polar solvent, or the nonpolar solvent droplets may be dispersed in the polar solvent. Then, the polymer fine particles may be added and dispersed. Further, after the polymer fine particles are dispersed in the polar solvent, the nonpolar solvent droplets can also be dispersed.

分散により、非極性溶媒滴と高分子微粒子とが互いに吸着する。液滴が微粒子に吸着するか、又は微粒子が液滴に吸着するかは、互いのサイズに依存する。   Due to the dispersion, the nonpolar solvent droplets and the polymer fine particles are adsorbed to each other. Whether the droplets adsorb to the fine particles or the fine particles adsorb to the droplets depends on the size of each other.

非極性溶剤と高分子微粒子とをほぼ同時に分散させる場合や、高分子微粒子を非極性溶媒より先に分散させる場合は、ホモジナイザーやポリトロンなどの公知の手段で攪拌して分散させればよい。また、極性溶媒中に非極性溶剤の液滴を分散させた後に高分子微粒子を添加し分散させる場合は、非極性溶剤の液滴の分散は、ホモジナイザーやポリトロンなどの他に膜乳化法も利用できる。さらに高分子微粒子の分散系で非極性溶剤の液滴を作製する場合には,上記の方法に加え,本発明者の一人が提案している動的膨潤法と呼称する方法(特公平7-21011号公報)も利用できる。膜乳化法は、孔径の大きさのそろった多孔膜の孔中を、非極性溶剤を通過させることにより,非極性溶剤の液滴を極性媒体中に分散させる方法である。動的膨潤法は、高分子微粒子の分散系で,非極性溶剤が溶解している媒体を,ゆっくり冷却するもしくは媒体にゆっくり水を添加することにより,媒体における非極性溶剤の溶解度を低下させ,非極性溶剤を徐々に媒体から微少な液滴として分離させる方法である。特に、動的膨潤法を用いた場合には、微少な液滴の作製が容易である。   When the nonpolar solvent and the polymer fine particles are dispersed almost simultaneously, or when the polymer fine particles are dispersed before the nonpolar solvent, they may be dispersed by stirring with a known means such as a homogenizer or polytron. In addition, when polymer particles are added and dispersed after dispersing nonpolar solvent droplets in a polar solvent, non-polar solvent droplets can be dispersed using a membrane emulsification method in addition to a homogenizer or polytron. it can. Furthermore, in the case of producing nonpolar solvent droplets in a dispersion system of polymer fine particles, in addition to the above method, a method called a dynamic swelling method proposed by one of the present inventors (JPB-7- No. 21011) can also be used. The membrane emulsification method is a method in which nonpolar solvent droplets are dispersed in a polar medium by passing a nonpolar solvent through the pores of a porous membrane having a uniform pore size. The dynamic swelling method is a dispersion of polymer fine particles. The medium in which the nonpolar solvent is dissolved is slowly cooled, or water is slowly added to the medium to reduce the solubility of the nonpolar solvent in the medium. In this method, the nonpolar solvent is gradually separated from the medium as fine droplets. In particular, when the dynamic swelling method is used, it is easy to produce minute droplets.

非極性溶剤の液滴の大きさは、50nm〜100μm程度が好ましく、100nm〜50μm程度がより好ましい。液滴の大きさは攪拌速度や膜の孔径、動的膨潤法の操作条件を調節することにより調節することができる。液滴の大きさは、窪み形成の効率の他に、形成される窪みの形状に影響を与える。液滴が小さいほど窪み表面(凹面)の曲率が大きくなり、高分子微粒子に形成される窪みの湾曲が大きくなる。また、液滴が小さいほど一つの原料高分子微粒子との間で吸着する液滴数が多くなるため、一つの微粒子に形成される窪みの数が多くなる。非極性溶剤と高分子微粒子との間の界面張力や相溶性の度合いによって、極性溶剤液滴内に浸入する高分子微粒子の体積は変化すると考えられるので、用いる極性溶剤、非極性溶剤、分散安定剤、高分子微粒子の成分、組成によって窪みの曲率は制御が可能である。   The size of the nonpolar solvent droplets is preferably about 50 nm to 100 μm, and more preferably about 100 nm to 50 μm. The size of the droplets can be adjusted by adjusting the stirring speed, the pore size of the membrane, and the operating conditions of the dynamic swelling method. The size of the droplet affects the shape of the formed depression, in addition to the efficiency of forming the depression. The smaller the droplet, the larger the curvature of the depression surface (concave surface), and the greater the curvature of the depression formed in the polymer fine particles. In addition, since the number of droplets adsorbed between one raw material fine polymer particle increases as the droplet size decreases, the number of depressions formed in one fine particle increases. Depending on the degree of interfacial tension and compatibility between the nonpolar solvent and the polymer fine particles, the volume of the polymer fine particles entering the polar solvent droplets may change, so the polar solvent used, nonpolar solvent, dispersion stability The curvature of the dent can be controlled by the agent, the components of the polymer fine particles, and the composition.

分散時の温度は、限定されず、媒体の沸点及び高分子微粒子のガラス転移温度以下であればよい。
第2工程
第2工程では、分散液を攪拌することにより、原料高分子微粒子に窪みを形成する。本発明において、「攪拌」には、容器内で分散液を流動させることや、容器ごと分散液を震盪させること等も含まれる。攪拌は、非極性溶剤滴や高分子微粒子が極性溶媒中で浮いて固まることのないように行えばよい。
The temperature at the time of dispersion is not limited as long as it is not higher than the boiling point of the medium and the glass transition temperature of the polymer fine particles.
Second Step In the second step, the dispersion liquid is agitated to form depressions in the raw polymer fine particles. In the present invention, “stirring” includes flowing the dispersion in a container, shaking the dispersion together with the container, and the like. The stirring may be performed so that the nonpolar solvent droplets and the polymer fine particles are not floated and solidified in the polar solvent.

攪拌時の温度は、極性溶媒の沸点及び高分子微粒子のガラス転移温度よりも低温とすればよい。そのため、好適な温度は用いる極性溶媒、非極性溶剤、高分子微粒子のポリマー組成により変化する。また、攪拌時の温度は一定であることが好ましいが、極性溶媒の沸点及び高分子微粒子のガラス転移温度よりも低温であれば必ずしも一定でなくてよい。     The temperature at the time of stirring may be lower than the boiling point of the polar solvent and the glass transition temperature of the polymer fine particles. Therefore, a suitable temperature changes with the polymer composition of the polar solvent to be used, a nonpolar solvent, and polymer fine particles. The temperature at the time of stirring is preferably constant, but it is not necessarily constant as long as it is lower than the boiling point of the polar solvent and the glass transition temperature of the polymer fine particles.

また、攪拌時間は、通常30分間〜6時間程度とすればよく、好ましくは1〜2時間程度とすればよい。この程度の時間攪拌することにより、非極性溶剤滴にその一部が埋没した高分子微粒子の表面がへこむ。形成される窪みの数は非極性溶媒の液滴のサイズにより異なる。
分離・乾燥工程
このようにして得られる表面に窪みを有する高分子微粒子を、ろ過、遠心分離などにより回収すればよい。また、必要に応じて温度0〜90℃程度、圧力1〜1×10 Pa程度の減圧又は常圧で、乾燥すればよい。
(II)異形高分子微粒子
このようにして得られる本発明の表面に一つもしくは二つ以上の窪みを有する高分子微粒子は、窪みがないと仮定した場合の数平均粒径が、通常50nm〜100μm程度、特に500nm〜20μm程度の微粒子である。この数平均粒径は、原料高分子微粒子の平均粒径と同様に、実施例に記載の方法で測定した値である。
Further, the stirring time may be usually about 30 minutes to 6 hours, preferably about 1 to 2 hours. By stirring for this amount of time, the surface of the polymer fine particles partially embedded in the nonpolar solvent droplets is dented. The number of depressions formed depends on the size of the nonpolar solvent droplets.
Separation / Drying Step The polymer fine particles having dents on the surface thus obtained may be recovered by filtration, centrifugation or the like. The temperature 0 to 90 ° C. approximately optionally at reduced pressure or atmospheric pressure of about the pressure 1 to 1 × 10 5 Pa, may be dried.
(II) Deformed polymer fine particles The polymer fine particles having one or more dents on the surface of the present invention thus obtained have a number average particle diameter of 50 nm to 50 nm, assuming that there are no dents. Fine particles of about 100 μm, particularly about 500 nm to 20 μm. This number average particle diameter is a value measured by the method described in the Examples, similarly to the average particle diameter of the raw material fine polymer particles.

各微粒子の窪みは通常1個以上である。各微粒子は、窪みがないと仮定した場合の形状が通常真球状またはほぼ真球状である。窪んでいない部分の総表面積は、窪みがないと仮定した場合の微粒子の総表面積の20%以上である。また、窪みの深さは、通常高分子微粒子の粒子径の半分以下である。     There are usually one or more depressions for each particle. Each fine particle has a generally spherical or almost spherical shape when it is assumed that there is no depression. The total surface area of the non-recessed portion is 20% or more of the total surface area of the fine particles assuming that there is no recess. Further, the depth of the depression is usually less than or equal to half the particle diameter of the polymer fine particles.

微粒子を構成するポリマーは、この微粒子の製造に供する高分子微粒子について説明した通りである。
用途
本発明の表面に一つもしくは二つ以上の窪みを有する高分子微粒子は、真球状微粒子とは異なる流動性、充填性、光学特性を示す。従って、樹脂等の充填剤、電子写真用トナー等として用いれば、特異な特性が得られる。例えば、樹脂の充填剤として用いる場合は樹脂塗布面への付着性を制御することができる。また、例えばトナーとして用いる場合には、窪み部分に潤滑剤のような外添剤を保持することができる。さらに、窪み部分を利用して光散乱性を与えることができ、窪みの数やその大きさを適宜設定すれば可視光線を効率的に散乱できるものとなる。
実施例
以下に実施例を揚げて本発明をより一層詳しく説明するが、本発明はこれらに限定されるものではない。
<数平均粒子径の測定方法>
本発明における高分子微粒子の数平均粒子径(Dn)は、微粒子群の走査型電子顕微鏡写真(微粒子数150個以上)を画像解析法(Mac Scope、三谷商事社製)に供することにより求めた最大径から算出した値である。
<原料ポリマー粒子の製造>
一例として,エタノール560重量部に対して分散安定剤としてポリビニルピロリドンの10重量部を溶解した溶液に、モノマーとしてスチレン100重量部及び開始剤としてアゾビスイソブチロニトリルを2重量部を添加し、窒素雰囲気下で、速度130rpmで撹拌しながら70℃で加熱しつつ、24時間かけて分散重合させた。
The polymer constituting the fine particles is as described for the polymer fine particles used for the production of the fine particles.
Applications Polymer fine particles having one or more depressions on the surface of the present invention exhibit fluidity, filling properties, and optical properties different from those of true spherical fine particles. Therefore, when used as a filler such as a resin, an electrophotographic toner or the like, unique characteristics can be obtained. For example, when used as a resin filler, adhesion to the resin-coated surface can be controlled. For example, when used as a toner, an external additive such as a lubricant can be held in the recess. Furthermore, light scatterability can be imparted using the depressions, and visible light can be efficiently scattered by appropriately setting the number and size of the depressions.
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
<Measurement method of number average particle diameter>
The number average particle diameter (Dn) of the polymer fine particles in the present invention was determined by subjecting a scanning electron micrograph of the fine particle group (the number of fine particles to 150 or more) to an image analysis method (Mac Scope, manufactured by Mitani Corporation). It is a value calculated from the maximum diameter.
<Manufacture of raw polymer particles>
As an example, 100 parts by weight of styrene as a monomer and 2 parts by weight of azobisisobutyronitrile as an initiator are added to a solution in which 10 parts by weight of polyvinylpyrrolidone as a dispersion stabilizer is dissolved in 560 parts by weight of ethanol. In a nitrogen atmosphere, dispersion polymerization was performed over 24 hours while heating at 70 ° C. with stirring at a speed of 130 rpm.

これにより、数平均粒子径2μmの真球状又は略真球状のポリスチレン微粒子が得られた。
実施例1
水20重量部に対してメタノールを80重量部加えた極性媒体中に,非極性溶剤としてデカンを50重量部,ポリスチレン粒子を5重量部加え,60℃においてマグネッチクスターラーにより600rpmの速度で撹拌しながら6時間保っておくと,図1に示したような表面に一つの窪みを有するポリスチレン微粒子が作製された。
実施例2
水40重量部に対してメタノールを60重量部加えた極性媒体中,他は実施例1と同条件で実験を行ったところ,実施例1よりもへこみ度合いの小さな一つの窪みを有するポリスチレン微粒子が作製された。
As a result, spherical or nearly spherical polystyrene fine particles having a number average particle diameter of 2 μm were obtained.
Example 1
In a polar medium in which 80 parts by weight of methanol is added to 20 parts by weight of water, 50 parts by weight of decane and 5 parts by weight of polystyrene particles are added as a nonpolar solvent, and the mixture is stirred at 60 ° C. at a speed of 600 rpm by a magnetic costar. However, when kept for 6 hours, polystyrene fine particles having one depression on the surface as shown in FIG. 1 were produced.
Example 2
In a polar medium in which 60 parts by weight of methanol was added to 40 parts by weight of water, other experiments were performed under the same conditions as in Example 1. As a result, polystyrene fine particles having one dent with a smaller degree of dent than in Example 1 were found. It was made.


実施例3
水50重量部に対してアセトンを50重量部加えた極性媒体中に,非極性媒体としてデカンを10重量部,ポリスチレン粒子を5重量部加え,60℃においてマグネッチクスターラーにより400rpmの速度で撹拌しながら2時間保っておくと,表面に一つの窪みを有するポリスチレン微粒子が作製された。
実施例4
メタノールを80重量部にデカン50重量部,ポリビニルピロリドン 2重量部,ポリスチレン粒子5重量部を150rpmの速度でマグネッチクスターラーにより撹拌しながら分散させた系に,20℃にて水20重量部を6g/時間の速度で加えたところ,図2に示すような,ポリスチレン粒子に微少な複数のデカン滴が吸着した。これを60℃においてマグネッチクスターラーにより400rpmの速度で撹拌しながら6時間保っておくと,ほとんどのポリスチレン微粒子の表面に複数の窪みが形成された。
実施例5
ポリビニルピロリドンを0.5重量部,他は実施例1と同様の実験条件で実験を行ったところ,表面に一つの窪みを有するポリスチレン微粒子が作製された。

Example 3
In a polar medium in which 50 parts by weight of acetone is added to 50 parts by weight of water, 10 parts by weight of decane and 5 parts by weight of polystyrene particles are added as a non-polar medium, and the mixture is stirred at a speed of 400 rpm by a magnetic stirrer at 60 ° C. However, when kept for 2 hours, polystyrene fine particles having one depression on the surface were produced.
Example 4
In a system in which methanol is dispersed in 80 parts by weight, decane 50 parts by weight, polyvinyl pyrrolidone 2 parts by weight, polystyrene particles 5 parts by weight with stirring at a speed of 150 rpm by a magnetic costarr, 20 parts by weight of water at 20 ° C. 6 g When added at a rate of / hour, a plurality of minute decane droplets were adsorbed on the polystyrene particles as shown in FIG. When this was kept at 60 ° C. for 6 hours while stirring at a speed of 400 rpm with a magnetic costar, a plurality of depressions were formed on the surface of most polystyrene fine particles.
Example 5
Experiments were performed under the same experimental conditions as in Example 1 except for 0.5 parts by weight of polyvinylpyrrolidone, and polystyrene fine particles having one depression on the surface were produced.

実施例1で作製した表面にひとつの窪みを有するポリスチレン粒子の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of polystyrene particles having one depression on the surface produced in Example 1. FIG. 実施例4で作製した周囲に3つのデカン滴が吸着したポリスチレン粒子の光学顕微鏡写真である。4 is an optical micrograph of polystyrene particles having three decane droplets adsorbed on the periphery produced in Example 4. FIG.

Claims (16)

極性溶媒中に、極性溶媒と相溶しない非極性溶剤滴及び高分子微粒子を分散させる第1工程と、分散液を撹拌することにより高分子微粒子表面に窪みを形成する工程とを含む異形高分子微粒子の製造方法。 A deformed polymer comprising a first step of dispersing non-polar solvent droplets and polymer fine particles incompatible with a polar solvent in a polar solvent, and a step of forming depressions on the surface of the polymer fine particles by stirring the dispersion. A method for producing fine particles. 極性溶媒として、水と極性有機溶媒との混合物を用い、極性溶媒の使用量を水の容量の5倍以下とする請求項1に記載の方法。 The method according to claim 1, wherein a mixture of water and a polar organic solvent is used as the polar solvent, and the amount of the polar solvent used is 5 times or less the capacity of water. 非極性溶剤として炭素数5〜18の脂肪族炭化水素系溶媒を用いる請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein an aliphatic hydrocarbon solvent having 5 to 18 carbon atoms is used as the nonpolar solvent. 非極性溶剤の使用量を、極性溶媒に対して0.5容量%以上とする請求項1〜3のいずれかに記載の方法。 The method according to claim 1, wherein the amount of the nonpolar solvent used is 0.5% by volume or more based on the polar solvent. 高分子微粒子の数平均粒径が50nm〜50μmである請求項1〜4のいずれかに記載の方法。 The method according to claim 1, wherein the polymer fine particles have a number average particle diameter of 50 nm to 50 μm. 高分子微粒子を構成する高分子の重量平均分子量が5千〜100万である請求項1〜5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the polymer constituting the polymer fine particles has a weight average molecular weight of 5,000 to 1,000,000. 高分子微粒子が単官能性ビニル系高分子微粒子である請求項1〜6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the polymer fine particles are monofunctional vinyl polymer fine particles. 高分子微粒子の使用量が非極性溶剤に対して0.01〜200重量%である請求項1〜7のいずれかに記載の方法。 The method according to any one of claims 1 to 7, wherein the amount of the polymer fine particles used is 0.01 to 200% by weight based on the nonpolar solvent. 第1工程において、攪拌、膜乳化法、又は動的膨潤法により、極性溶媒中に非極性溶剤及び高分子微粒子を分散させる請求項1〜8のいずれかに記載の方法。 The method according to any one of claims 1 to 8, wherein in the first step, the nonpolar solvent and the polymer fine particles are dispersed in the polar solvent by stirring, a membrane emulsification method, or a dynamic swelling method. 第1工程において、非極性溶剤をその液滴の大きさが50nm〜100μm程度となるように分散させる請求項1〜9のいずれかに記載の方法。 The method according to any one of claims 1 to 9, wherein in the first step, the nonpolar solvent is dispersed so that the size of the droplets is about 50 nm to 100 µm. 第1工程において、分散時の分散液の温度を高分子微粒子のガラス転移温度および極性溶媒の沸点以下とする請求項1〜10のいずれかに記載の方法。 The method according to any one of claims 1 to 10, wherein in the first step, the temperature of the dispersion during dispersion is set to be equal to or lower than the glass transition temperature of the polymer fine particles and the boiling point of the polar solvent. 第2工程において、攪拌時の分散液の温度を高分子微粒子のガラス転移温度および極性溶媒の沸点以下とする請求項1〜11のいずれかに記載の方法。 The method according to any one of claims 1 to 11, wherein in the second step, the temperature of the dispersion during stirring is set to be equal to or lower than the glass transition temperature of the polymer fine particles and the boiling point of the polar solvent. 表面に一つ以上の窪みを有する異形高分子微粒子であり、窪みがないと仮定した場合の数平均粒径が50nm〜100μmである異形高分子微粒子。 An irregularly shaped polymer fine particle having one or more depressions on the surface, and having a number average particle diameter of 50 nm to 100 μm when it is assumed that there is no depression. 窪んでいないところの総表面積が、窪みがないと仮定した場合の微粒子の全表面積の20%以上である請求項13に記載の微粒子。 The fine particles according to claim 13, wherein the total surface area of the non-recessed portion is 20% or more of the total surface area of the fine particles when it is assumed that there is no recess. 窪みの深さが微粒子の直径の1/2以下である請求項13又は14に記載の微粒子。 The fine particle according to claim 13 or 14, wherein the depth of the depression is ½ or less of the diameter of the fine particle. 高分子が単官能性ビニル系モノマーの重合又は共重合による得られる高分子である請求項13〜15のいずれかに記載の微粒子。 The fine particles according to any one of claims 13 to 15, wherein the polymer is a polymer obtained by polymerization or copolymerization of a monofunctional vinyl monomer.
JP2006041686A 2006-02-18 2006-02-18 Deformed polymer particulate and method for producing the same Pending JP2007217616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041686A JP2007217616A (en) 2006-02-18 2006-02-18 Deformed polymer particulate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041686A JP2007217616A (en) 2006-02-18 2006-02-18 Deformed polymer particulate and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007217616A true JP2007217616A (en) 2007-08-30

Family

ID=38495235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041686A Pending JP2007217616A (en) 2006-02-18 2006-02-18 Deformed polymer particulate and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007217616A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235686A (en) * 2009-03-30 2010-10-21 National Cardiovascular Center Non-spherical fine particle and method for producing non-spherical fine particle
WO2011030569A1 (en) * 2009-09-08 2011-03-17 竹本油脂株式会社 Irregular-shaped microparticles, process for production of irregular-shaped microparticles, and cosmetics and resin compositions containing irregular-shaped microparticles
WO2011111179A1 (en) * 2010-03-10 2011-09-15 竹本油脂株式会社 Organic silicone particles, method of producing organic silicone particles, and cosmetic, resin composition and coating composition containing organic silicone particles
JP2014160051A (en) * 2013-01-25 2014-09-04 Hitachi Chemical Co Ltd Core shell type particle for column, and manufacturing method for the same
CN113061267A (en) * 2021-04-08 2021-07-02 华南理工大学 Preparation method of controllable monodisperse anisotropic groove tetrahedral colloidal particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214222A (en) * 1988-07-01 1990-01-18 Mitsui Toatsu Chem Inc Flat emulsion particle having dent part and production thereof
JPH06287245A (en) * 1993-03-30 1994-10-11 Nippon Zeon Co Ltd Organic pigment and composition for coating paper
JP2000038455A (en) * 1998-07-23 2000-02-08 Soken Chem & Eng Co Ltd Acrylic anti-blocking particles and their production
JP2005097355A (en) * 2003-09-22 2005-04-14 Japan Science & Technology Agency Spherical polymer particle and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214222A (en) * 1988-07-01 1990-01-18 Mitsui Toatsu Chem Inc Flat emulsion particle having dent part and production thereof
JPH06287245A (en) * 1993-03-30 1994-10-11 Nippon Zeon Co Ltd Organic pigment and composition for coating paper
JP2000038455A (en) * 1998-07-23 2000-02-08 Soken Chem & Eng Co Ltd Acrylic anti-blocking particles and their production
JP2005097355A (en) * 2003-09-22 2005-04-14 Japan Science & Technology Agency Spherical polymer particle and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235686A (en) * 2009-03-30 2010-10-21 National Cardiovascular Center Non-spherical fine particle and method for producing non-spherical fine particle
WO2011030569A1 (en) * 2009-09-08 2011-03-17 竹本油脂株式会社 Irregular-shaped microparticles, process for production of irregular-shaped microparticles, and cosmetics and resin compositions containing irregular-shaped microparticles
JP2011057785A (en) * 2009-09-08 2011-03-24 Takemoto Oil & Fat Co Ltd Variant fine particle, method for producing variant fine particle, cosmetics containing variant fine particle, and resin composition
WO2011111179A1 (en) * 2010-03-10 2011-09-15 竹本油脂株式会社 Organic silicone particles, method of producing organic silicone particles, and cosmetic, resin composition and coating composition containing organic silicone particles
JP5366341B2 (en) * 2010-03-10 2013-12-11 竹本油脂株式会社 Organic silicone fine particles, method for producing organic silicone fine particles, cosmetics containing organic silicone fine particles, resin composition, and coating composition
JP2014160051A (en) * 2013-01-25 2014-09-04 Hitachi Chemical Co Ltd Core shell type particle for column, and manufacturing method for the same
CN113061267A (en) * 2021-04-08 2021-07-02 华南理工大学 Preparation method of controllable monodisperse anisotropic groove tetrahedral colloidal particles

Similar Documents

Publication Publication Date Title
JP4448930B2 (en) Hollow polymer fine particles and production method thereof
US7943236B2 (en) Narrow particle size distribution porous microspheres and method of making the same
US7741378B2 (en) Porous monodispersed particles and method for production thereof, and use thereof
JP5566152B2 (en) Method for producing monodisperse polymer particles
Camli et al. Functional, uniform, and macroporous latex particles: Preparation, electron microscopic characterization, and nonspecific protein adsorption properties
JP2007217616A (en) Deformed polymer particulate and method for producing the same
JP2006241226A (en) Porous monodisperse particle and its manufacturing process
JP2008266504A (en) Method for manufacturing hollow particles
JP4794313B2 (en) Polymer particles and method for producing the same
JP2004109178A (en) Colloidal crystal and its manufacturing method
JP3600845B2 (en) Hollow polymer particles and method for producing the same
JP5358242B2 (en) Polymer particles and method for producing the same
US7540962B2 (en) Method of preparing spheroid polymer particles having a narrow size distribution by dispersion polymerization, particles obtainable by the method and use of these particles
JP5054920B2 (en) Method for producing non-aqueous fine particle dispersion and antireflection plate or antireflection film using the dispersion
KR20060110087A (en) Process for preparing various shapes and sizes of polymer particles by soap-free emulsion polymerization
Nuisin et al. Dependence of morphological changes of polymer particles on hydrophobic/hydrophilic additives
JP2006143968A (en) Method for producing polymeric particulate of irregular shape
JP5214922B2 (en) Method for producing vinyl-based crosslinked resin particles
TWI464186B (en) A method for producing hydrophilized microparticles, and a hydrophilic microparticle obtained by the method
JP4317941B2 (en) Aperture fine particles and method for producing the same
JP3790793B2 (en) Method for producing irregularly shaped polymer particles and irregularly shaped particulate polymer
Tawonsree et al. Control of various morphological changes of poly (meth) acrylate microspheres and their swelling degrees by SPG emulsification
JP3935074B2 (en) Crosslinked resin fine particles, crosslinked resin fine particle emulsion used for producing the crosslinked resin fine particles, and method for producing crosslinked resin fine particles
JP3339091B2 (en) Method for producing polymer particles
JP6123156B2 (en) True spherical cross-linked polyacrylonitrile fine particles with large surface area

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327