JP2005097355A - Spherical polymer particle and method for producing the same - Google Patents

Spherical polymer particle and method for producing the same Download PDF

Info

Publication number
JP2005097355A
JP2005097355A JP2003330181A JP2003330181A JP2005097355A JP 2005097355 A JP2005097355 A JP 2005097355A JP 2003330181 A JP2003330181 A JP 2003330181A JP 2003330181 A JP2003330181 A JP 2003330181A JP 2005097355 A JP2005097355 A JP 2005097355A
Authority
JP
Japan
Prior art keywords
particles
polymer
amphiphilic
organic solvent
micelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003330181A
Other languages
Japanese (ja)
Other versions
JP4079862B2 (en
Inventor
Shigeru Ikeda
茂 池田
Keita Ikegami
啓太 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003330181A priority Critical patent/JP4079862B2/en
Publication of JP2005097355A publication Critical patent/JP2005097355A/en
Application granted granted Critical
Publication of JP4079862B2 publication Critical patent/JP4079862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide polymer particles each of whose surfaces is composed of a plurality of hemispherical concavities and to provide a method for producing the same. <P>SOLUTION: The polymer particles have each a surface composed of a plurality of hemispherical concavities. The method for producing the polymer particles comprises the step (a) of dispersing amphiphilic particles capable of forming micelle-like particles in an organic solvent in which a polymer is dissolved, the step (b) of mixing the dispersion obtained in the step (a) with water to form micelle-like particles in which the polymer and the organic solvent are enclosed with the aid of the amphiphilic particles, the step (c) of removing the organic solvent from the micelle-like particles obtained in the step (b), and the step (d) of removing the amphiphilic particles from the micelle-like particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、球状ポリマー粒子及びその製造方法に関する。さらに詳しくは、複数の半球様の凹面により表面が形成された球状ポリマー粒子及びその製造方法に関する。   The present invention relates to spherical polymer particles and a method for producing the same. More specifically, the present invention relates to a spherical polymer particle having a surface formed by a plurality of hemispherical concave surfaces and a method for producing the same.

有機、無機化合物にかかわらず、微粒子素材の物性は、サイズ、形状、内部構造、表面構造等に大きく作用されるため、微粒子合成技術は、これらの特性を自由に制御することにつきる。これまでに、液相を利用した化学的又は物理的な合成技術が数多く開発されており、なかでも、相溶性のない液体中に液滴が分散した系(エマルション)や分子状の界面活性剤がつくるミセルが分散した系(マイクロエマルション)において、液滴やミセルの内部空間を利用して微粒子を調製する方法は、ポリマー粒子等の有機化合物を、サイズを制御して合成し得る点で注目されている(非特許文献1、2参照)。しかしながら、これらの方法の組み合わせにより、任意のサイズを有する粒子を合成することは可能であるものの、個々の粒子の形状は凹凸のない真球状である場合が多く、形状あるいは表面構造を自在に操ることは達成されていない。
Langmur, 2003, 19, p.4817-4824 J. Am. Chem. Soc., 2003, 125, p.8838-8840
Regardless of the organic or inorganic compound, the physical properties of the fine particle material are greatly affected by the size, shape, internal structure, surface structure, etc. Therefore, the fine particle synthesis technology is free to control these characteristics. So far, many chemical or physical synthesis techniques using liquid phases have been developed. Among them, a system (emulsion) in which droplets are dispersed in an incompatible liquid or a molecular surfactant. In a system (microemulsion) in which micelles are made, the method of preparing microparticles using the internal space of droplets or micelles is notable because it can synthesize organic compounds such as polymer particles with controlled size (See Non-Patent Documents 1 and 2). However, although it is possible to synthesize particles having an arbitrary size by a combination of these methods, the shape of each particle is often a perfect sphere with no irregularities, and the shape or surface structure can be manipulated freely. That has not been achieved.
Langmur, 2003, 19, p.4817-4824 J. Am. Chem. Soc., 2003, 125, p.8838-8840

本発明の目的は、複数の半球様の凹面により表面が形成された球状ポリマー粒子及びその製造方法を提供することにある。   An object of the present invention is to provide spherical polymer particles having a surface formed by a plurality of hemispherical concave surfaces and a method for producing the same.

本発明は、
〔1〕 複数の半球様の凹面により表面が形成されてなる球状ポリマー粒子、
〔2〕 球状ポリマー粒子がポリスチレンからなる、前記〔1〕記載の球状ポリマー粒子、並びに
〔3〕(a) ポリマーが溶解した有機溶媒中に、ミセル状粒子の形成が可能な両親媒性粒子を分散させる工程、
(b) 工程(a)で得られた分散液を水と混合し、両親媒性粒子によりポリマー及び有機溶媒を内部に取り込んだミセル状粒子を形成する工程、
(c) 工程(b)で得られたミセル状粒子内に含まれる有機溶媒を除去して、該ミセル状粒子内のポリマーを固化する工程、及び
(d) ミセル状粒子から両親媒性粒子を除去する工程
を有する、前記〔1〕又は〔2〕記載の球状ポリマー粒子の製造方法
に関する。
The present invention
[1] Spherical polymer particles having a surface formed by a plurality of hemispherical concave surfaces,
[2] The spherical polymer particles according to [1], wherein the spherical polymer particles are made of polystyrene, and [3] (a) amphiphilic particles capable of forming micellar particles in an organic solvent in which the polymer is dissolved. Dispersing step,
(B) The step of mixing the dispersion obtained in step (a) with water to form micellar particles in which the polymer and organic solvent are taken into the interior by amphiphilic particles,
(C) removing the organic solvent contained in the micellar particles obtained in step (b) to solidify the polymer in the micelle particles, and (d) amphiphilic particles from the micelle particles. The present invention relates to a method for producing spherical polymer particles according to [1] or [2], which comprises a step of removing.

本発明により、複数の半球様の凹面により表面が形成された球状ポリマー粒子が提供される。かかる球状ポリマー粒子は、両親媒性粒子により形成されたミセル状粒子の内部空間を利用して容易に製造することができ、その特徴的な表面構造を利用して、各種分野への応用が期待されるものである。   According to the present invention, spherical polymer particles having a surface formed by a plurality of hemispherical concave surfaces are provided. Such spherical polymer particles can be easily manufactured using the internal space of micellar particles formed by amphiphilic particles, and their characteristic surface structure is expected to be applied in various fields. It is what is done.

本発明の球状ポリマー粒子は、複数の半球様の凹面により表面が形成されていることを特徴とするものであり、エマルション中の液滴や、マイクロエマルション中の分子状の界面活性剤により形成されるミセルの内部空間を利用して得られる従来の凹凸のない真球状の粒子に比べて、表面積が大きく、特異な表面活性点、吸着点を有する触媒や触媒担体、又はその他機能性を有する物質の担体等として、より有効に機能するものと期待される。   The spherical polymer particles of the present invention are characterized in that the surface is formed by a plurality of hemispherical concave surfaces, and are formed by droplets in an emulsion or molecular surfactants in a microemulsion. Compared to conventional spherical particles without irregularities obtained by using the inner space of micelles, the catalyst or catalyst carrier having a specific surface active point, adsorption point, or other functional material has a larger surface area. It is expected to function more effectively as a carrier and the like.

本発明において、「複数」の半球様の凹面により表面が形成された球状ポリマー粒子とは、半球様の凹面を有する部分が球状ポリマー粒子表面上に複数箇所存在することを意味し、その数は凹面の大きさ等により異なるので一概には規定できないが、実質的に球状ポリマー粒子の表面全体に渡って半球様の凹面を有する部分が形成される程度に多数の凹面が存在するのが好ましい。「半球様の凹面」とは、半球状又は半球に近い曲面を有する凹面をいう。また、本発明の「球状」ポリマー粒子は、表面に複数の凹面を有していることから、厳密には「球状」ではないが、粒子全体としてみるとほぼ球状に近い形状を示すものである。   In the present invention, the spherical polymer particles having a surface formed by "a plurality of" hemispherical concave surfaces means that there are a plurality of portions having a hemispherical concave surface on the surface of the spherical polymer particles, and the number is Since it differs depending on the size of the concave surface, etc., it cannot be defined unconditionally, but it is preferable that there are a large number of concave surfaces to such an extent that a portion having a hemispherical concave surface is formed over the entire surface of the spherical polymer particles. “Hemispherical concave surface” refers to a concave surface having a hemispherical shape or a curved surface close to a hemisphere. In addition, since the “spherical” polymer particles of the present invention have a plurality of concave surfaces on the surface, they are not strictly “spherical”, but show a nearly spherical shape as a whole. .

本発明において、例えば、球状ポリマー粒子は、両親媒性粒子により形成されるミセル状粒子を鋳型として利用し、その内部空間にポリマー粒子を形成する方法、例えば、
(a) ポリマーが溶解した有機溶媒中に、ミセル状粒子の形成が可能な両親媒性粒子を分散させる工程、
(b) 工程(a)で得られた分散液を水と混合し、両親媒性粒子によりポリマー及び有機溶媒を内部に取り込んだミセル状粒子を形成する工程、
(c) 工程(b)で得られたミセル状粒子内に含まれる有機溶媒を除去して、該ミセル状粒子内のポリマーを固化する工程、及び
(d) ミセル状粒子から両親媒性粒子を除去する工程
を有する方法により得られる。
In the present invention, for example, spherical polymer particles use micelle-like particles formed of amphiphilic particles as a template, and a method of forming polymer particles in the internal space thereof, for example,
(A) a step of dispersing amphiphilic particles capable of forming micellar particles in an organic solvent in which a polymer is dissolved;
(B) The step of mixing the dispersion obtained in step (a) with water to form micellar particles in which the polymer and organic solvent are taken into the interior by amphiphilic particles,
(C) removing the organic solvent contained in the micellar particles obtained in step (b) to solidify the polymer in the micelle particles, and (d) amphiphilic particles from the micelle particles. It is obtained by a method having a step of removing.

工程(a)では、ポリマーが溶解した有機溶媒中に、ミセル状粒子の形成が可能な両親媒性粒子を分散させる。   In the step (a), amphiphilic particles capable of forming micellar particles are dispersed in an organic solvent in which the polymer is dissolved.

工程(a)に用いられるポリマー、即ち本発明の球状ポリマー粒子を構成するポリマーとしては、ポリスチレン、ポリメタクリル酸メチル、ポリエチレン等の各種ポリマーを用いることができるが、本発明においては、剛性、成形性、着色性、電気絶縁性及び改質の容易さの観点から、ポリスチレンが好ましい。   As the polymer used in the step (a), that is, the polymer constituting the spherical polymer particle of the present invention, various polymers such as polystyrene, polymethyl methacrylate, polyethylene and the like can be used. From the viewpoints of colorability, colorability, electrical insulation, and ease of modification, polystyrene is preferred.

ポリマーを溶解させる有機溶媒は、用いるポリマーの種類により適宜選択すればよく、特に限定されないが、トルエン、ベンゼン、シクロヘキサン等が挙げられる。   The organic solvent for dissolving the polymer may be appropriately selected depending on the type of polymer to be used, and is not particularly limited, and examples thereof include toluene, benzene, and cyclohexane.

有機溶媒の使用量は、ポリマーの溶解度によるが、ポリマー100重量部に対して、300〜2000重量部程度が好ましく、600〜1200重量部がより好ましい。   The amount of the organic solvent used depends on the solubility of the polymer, but is preferably about 300 to 2000 parts by weight, more preferably 600 to 1200 parts by weight with respect to 100 parts by weight of the polymer.

本発明において、ミセル状粒子の形成が可能な両親媒性粒子とは、一つの粒子の表面に親水性部分と親油性部分を同時に有する粒子であって、該親水性部分と親油性部分とがそれぞれ局在化して存在し、界面活性剤が球状ミセルを形成するように、ミセル状粒子を形成し得る粒子をいう。   In the present invention, the amphiphilic particles capable of forming micellar particles are particles having a hydrophilic portion and a lipophilic portion at the same time on the surface of one particle, and the hydrophilic portion and the lipophilic portion are These are particles that exist in a localized manner and can form micellar particles so that the surfactant forms spherical micelles.

両親媒性粒子の表面には、ミセル状粒子の形成が可能な範囲で、親水性表面に親油性部分が分散して存在していても、親油性表面に親水性部分が分散して存在していてもよく、また親水性部分と親水性部分とが区分けして存在していてもよいが、本発明では、親水性部分と親油性部分とが二分して存在し、液/液界面を形成する不均一系中に添加した際に、該液/液界面により近接して配置される粒子(異相界面粒子)ほど、ミセル状粒子の形成が容易であり、好ましい。   On the surface of the amphiphilic particles, a hydrophilic portion is dispersed on the lipophilic surface even if the lipophilic portion is dispersed on the hydrophilic surface within a range in which micelle-like particles can be formed. The hydrophilic portion and the hydrophilic portion may be present separately, but in the present invention, the hydrophilic portion and the lipophilic portion are present in half, and the liquid / liquid interface is When added to the heterogeneous system to be formed, the particles arranged closer to the liquid / liquid interface (heterophasic interface particles) are preferable because micelle-like particles can be easily formed.

両親媒性粒子表面において、親水性部分は、親水性を示す限り、すべて同じ親水性を示していてもよく、異なった親水性を示していてもよい。同様に、親油性部分は、親油性を示す限り、すべて同じ親油性を示してもよく、異なった親油性を示してもよい。   On the surface of the amphiphilic particles, as long as the hydrophilic portion shows hydrophilicity, all of them may show the same hydrophilicity, or may show different hydrophilicity. Similarly, as long as a lipophilic part shows lipophilicity, all may show the same lipophilicity, and may show different lipophilicity.

本発明において好適に用いられる両親媒性粒子は、例えば、親水性又は親油性を有する粒子を凝集させた後に、得られた凝集粒子表面に、親水性粒子を用いた場合は親油性部分を、親油性粒子を用いた場合は親水性部分を、導入する方法により、得ることができる。かかる方法により、例えば親水性粒子に親油性基により親油性部分を導入すると、図1(a)に示す模式図のように、凝集粒子の最外表面に露出していた表面部分にのみ親油性基2が導入された両親媒性粒子1が得られる。親水性部分3と親油性部分4が局在化して存在する両親媒性粒子1は、水相5中である濃度に達すると親水性部分3を外側に、親油性部分4を内側に向けて集合し、図1(b)に示す模式図のように油相6を内部に取り込んでミセル状粒子7を形成する。   The amphiphilic particles suitably used in the present invention, for example, after aggregating particles having hydrophilicity or lipophilicity, on the surface of the obtained aggregated particles, when hydrophilic particles are used, the lipophilic part is When lipophilic particles are used, the hydrophilic portion can be obtained by a method of introducing. For example, when a lipophilic portion is introduced into the hydrophilic particles by a lipophilic group by such a method, as shown in the schematic diagram of FIG. 1A, only the surface portion exposed on the outermost surface of the aggregated particles is lipophilic. An amphiphilic particle 1 in which the group 2 is introduced is obtained. The amphiphilic particles 1 in which the hydrophilic part 3 and the lipophilic part 4 are localized exist, when the concentration in the aqueous phase 5 reaches a certain level, the hydrophilic part 3 faces outward and the lipophilic part 4 faces inward. The oil phase 6 is collected inside to form micellar particles 7 as shown in the schematic diagram of FIG.

親水性部分と親油性部分との割合としては、特に限定されず、親水性部分の親水性の強さや親油性部分の親油性の強さ、両親媒性粒子が添加される液相の種類等により適宜調整される。   The ratio between the hydrophilic portion and the lipophilic portion is not particularly limited, and the hydrophilic strength of the hydrophilic portion, the lipophilic strength of the lipophilic portion, the type of liquid phase to which the amphiphilic particles are added, etc. Is adjusted as appropriate.

両親媒性粒子に用いられる親水性又は親油性粒子は、本発明の球状ポリマー粒子を構成するポリマーの種類によって適宜選択されるが、親水性粒子としては、シリカ、ゼオライト、酸化チタン、アルミナ等が挙げられ、これらの中では、粒子の真球性が高く、またミセル状粒子形成後の除去が容易である点から、シリカが好ましい。   The hydrophilic or lipophilic particles used for the amphiphilic particles are appropriately selected depending on the type of polymer constituting the spherical polymer particles of the present invention. Examples of the hydrophilic particles include silica, zeolite, titanium oxide, and alumina. Among these, silica is preferable because the particles have high sphericity and are easy to remove after the formation of micellar particles.

親水性粒子の表面に親油性部分を導入する方法としては、アルキルシリル化剤により、親水性粒子の表面の一部をアルキルシリル化する方法が好ましい。アルキルシリル化剤のアルキル基の炭素数やアルキルシリル化剤の使用量は、特に限定されず、導入される親水性部分の親水性の強さや両親媒性粒子が添加される液相の種類等により適宜調整することができる。   As a method for introducing a lipophilic part into the surface of the hydrophilic particle, a method in which a part of the surface of the hydrophilic particle is alkylsilylated with an alkylsilylating agent is preferable. The number of carbons in the alkyl group of the alkyl silylating agent and the amount of the alkyl silylating agent used are not particularly limited. The hydrophilic strength of the hydrophilic portion to be introduced, the type of liquid phase to which amphiphilic particles are added, etc. Can be adjusted as appropriate.

例えば、シリカ粒子にアルキルシリル化を施して、本発明に用いられる両親媒性粒子を製造する場合は、シリカに予め水等を添加して凝集させた後、得られた凝集粒子の表面をアルキルシリル化することにより、凝集粒子の最外表面に露出していた部分のみがアルキルシリル化されたシリカ粒子を得ることができる。この際、トリエチルアミン等の触媒存在下でアルキルシリル化を行うことにより、シリカの水酸基を活性化し、アルキルシリル化剤との反応を促進させることもできる。   For example, when the silica particles are alkylsilylated to produce the amphiphilic particles used in the present invention, after adding water or the like to silica in advance and aggregating, the surface of the obtained agglomerated particles is alkylated. By silylated, silica particles in which only the portion exposed on the outermost surface of the aggregated particles is alkylsilylated can be obtained. In this case, by performing alkylsilylation in the presence of a catalyst such as triethylamine, the hydroxyl group of silica can be activated and the reaction with the alkylsilylating agent can be promoted.

また、両親媒性粒子に用いられる親油性粒子としては、ポリスチレン、ポリメタクリル酸メチル等が挙げられる。   Examples of the lipophilic particles used for the amphiphilic particles include polystyrene and polymethyl methacrylate.

親油性粒子の表面に親水性部分を導入する方法としては、蒸着により親油性粒子の表面の一部を金微粒子で被覆し、アミノ基を親水基とするアミノアルキルチオールを金微粒子上に選択的に結合させる方法等が挙げられる。   As a method for introducing a hydrophilic portion on the surface of the lipophilic particle, a part of the surface of the lipophilic particle is coated with gold fine particles by vapor deposition, and an aminoalkylthiol having an amino group as a hydrophilic group is selectively applied to the gold fine particles. And the like.

両親媒性粒子の使用量は、粒子同士が凝集を起こさない程度の量であれば特に限定されず、通常、工程(a)で用いられる、ポリマーを溶解させた有機溶媒100重量部に対して、0.5〜5重量部程度が好ましく、1〜1.5重量部がより好ましい。   The amount of amphiphilic particles used is not particularly limited as long as the particles do not cause aggregation, and is usually used in step (a) with respect to 100 parts by weight of the organic solvent in which the polymer is dissolved. 0.5 to 5 parts by weight is preferable, and 1 to 1.5 parts by weight is more preferable.

ポリマーが溶解した有機溶媒中に、両親媒性粒子を分散させる方法は特に限定されないが、続く工程(b)において、両親媒性粒子がミセル状粒子を形成する際に、ポリマーがミセル状粒子内部に取り込まれやすいよう、超音波処理等により、両親媒性粒子を均一に分散させることが好ましい。   The method for dispersing the amphiphilic particles in the organic solvent in which the polymer is dissolved is not particularly limited. However, when the amphiphilic particles form micelle-like particles in the subsequent step (b), the polymer is incorporated into the micelle-like particles. It is preferable to disperse the amphiphilic particles uniformly by sonication or the like so that the particles can be easily taken in.

工程(b)では、工程(a)で得られた分散液を水と混合し、両親媒性粒子によりポリマー及び有機溶媒を内部に取り込んだミセル状粒子を形成する。   In the step (b), the dispersion obtained in the step (a) is mixed with water to form micellar particles in which the polymer and the organic solvent are taken into the interior by the amphiphilic particles.

水の使用量は、両親媒粒子が親油性部分を内面にミセル状粒子を形成し得る濃度となる量であれば特に限定されないが、通常、工程(a)で得られた分散液100重量部に対して、100〜1000重量部程度が好ましく、200〜500重量部がより好ましい。   The amount of water used is not particularly limited as long as the amphiphilic particles are in such a concentration that the micelle-like particles can be formed on the inner surface of the lipophilic part, but usually 100 parts by weight of the dispersion obtained in step (a). The amount is preferably about 100 to 1000 parts by weight, more preferably 200 to 500 parts by weight.

分散液を水と混合した後、ミセル状粒子の形成を促進させる観点から、超音波処理を施すことが好ましい。さらに、超音波処理は、該処理による必要以上の加熱を回避する観点から、アイスバス等により混合液を冷却しながら行うことが好ましい。   From the viewpoint of promoting the formation of micellar particles after mixing the dispersion with water, it is preferable to perform ultrasonic treatment. Furthermore, the ultrasonic treatment is preferably performed while cooling the mixed solution with an ice bath or the like from the viewpoint of avoiding unnecessary heating due to the treatment.

工程(c)では、工程(b)で得られたミセル状粒子内に含まれる有機溶媒を除去して、該ミセル状粒子内のポリマーを固化する。   In the step (c), the organic solvent contained in the micellar particles obtained in the step (b) is removed, and the polymer in the micelle particles is solidified.

ミセル状粒子内に含まれる有機溶媒を除去する方法は特に限定されないが、例えば、工程(b)で得られたミセル状粒子を含む混合液は、静置により油相と水相に分離し、ミセル状粒子は水相中に移行するため、油相を除去し、さらに、水を除去することにより、ミセル状粒子を回収することができるが、この際、加熱により水を蒸発させることにより、水を除去すると同時にミセル状粒子内の有機溶媒も除去することができ、ポリマーを固化することができる。   The method for removing the organic solvent contained in the micellar particles is not particularly limited. For example, the mixed solution containing the micelle particles obtained in the step (b) is separated into an oil phase and an aqueous phase by standing, Since the micelle particles move into the aqueous phase, the oil phase is removed, and further, the micelle particles can be recovered by removing the water, but at this time, by evaporating the water by heating, Simultaneously with the removal of water, the organic solvent in the micellar particles can also be removed, and the polymer can be solidified.

工程(d)では、ミセル状粒子から両親媒性粒子を除去する。   In the step (d), amphiphilic particles are removed from the micellar particles.

両親媒性粒子の除去方法は、両親媒性粒子の種類によって適宜選択することができ、特に限定されないが、例えば、両親媒性粒子としてシリカを用いた場合は、シリカをフッ化水素酸水溶液等に溶解させて除去することができる。   The method for removing the amphiphilic particles can be appropriately selected depending on the type of the amphiphilic particles, and is not particularly limited. For example, when silica is used as the amphiphilic particles, the silica is hydrofluoric acid aqueous solution or the like. It can be dissolved and removed.

ミセル状粒子から両親媒性粒子を除去すると、表面に、両親媒性粒子の形状を一部反映したような構造、すなわち複数の半球様の凹面により表面が形成された、球状ポリマー粒子が得られる。   When the amphiphilic particles are removed from the micellar particles, spherical polymer particles having a structure that partially reflects the shape of the amphiphilic particles, that is, a surface formed by a plurality of hemispherical concave surfaces, are obtained. .

さらに、本発明においては、前記のようにポリマーを一度溶解させた後、ミセル状粒子内で固化する方法以外に、ポリマーのモノマーをミセル状粒子内で重合させる方法により、本発明の球状ポリマー粒子を得ることもできる。この方法によれば、例えば、スチレンとジビニルベンゼンをミセル状粒子内で共重合させて、架橋ポリスチレンの球状粒子を製造することも可能であり、かかる架橋ポリスチレンの粒子は、イオン交換樹脂用の担体やゲルろ過クロマトグラフィー用ゲルにも適用することができる。   Furthermore, in the present invention, the spherical polymer particles of the present invention can be obtained by a method in which the polymer monomer is polymerized in the micellar particles in addition to the method in which the polymer is once dissolved and then solidified in the micellar particles as described above. You can also get According to this method, for example, it is possible to produce spherical particles of crosslinked polystyrene by copolymerizing styrene and divinylbenzene in micellar particles. The crosslinked polystyrene particles are used as a carrier for an ion exchange resin. It can also be applied to gel filtration gels.

本発明により、1〜10μm程度の粒径を有する球状ポリマー粒子を得ることができる。本発明の方法によれば、ポリマー、有機溶媒及び水の配合比や両親媒性粒子のサイズを変えることにより、粒子やその凹面のサイズを調整することができるため、例えば、従来法では調製が困難な大きさ、例えば、5μmを超えるサイズの揃った球状ポリマー粒子を得ることも可能である。   According to the present invention, spherical polymer particles having a particle size of about 1 to 10 μm can be obtained. According to the method of the present invention, the size of the particles and their concave surfaces can be adjusted by changing the blending ratio of the polymer, organic solvent and water and the size of the amphiphilic particles. It is also possible to obtain spherical polymer particles having a difficult size, for example, a size exceeding 5 μm.

以下に、実施例に基づいて本発明をさらに詳細に説明するが、本発明はかかる実施例になんら限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the examples.

両親媒性粒子の製造例
シリカ((株)日本触媒製のシーホスター(KEP−30)、平均粒子径0.3μm)2.5gに水0.3gを添加した。得られた混合液を、アルキルシリル化剤〔オクタデシルトリメトキシシラン(OTS)〕2.5ミリモルを溶解させたトルエン50ml中に懸濁させた後、トリエチルアミン2.5ミリモルを添加した。この懸濁液を10分間攪拌した後、遠心分離し、真空中室温で3時間乾燥させて、粒子表面の一部を長鎖アルキル基で修飾したシリカ粒子を得た。
Production Example of Amphiphilic Particles 0.3 g of water was added to 2.5 g of silica (Seahoster (KEP-30) manufactured by Nippon Shokubai Co., Ltd., average particle size: 0.3 μm). The obtained mixed liquid was suspended in 50 ml of toluene in which 2.5 mmol of alkylsilylating agent [octadecyltrimethoxysilane (OTS)] was dissolved, and 2.5 mmol of triethylamine was added. The suspension was stirred for 10 minutes, then centrifuged, and dried in vacuum at room temperature for 3 hours to obtain silica particles in which part of the particle surface was modified with long-chain alkyl groups.

さらに、得られたシリカ粒子を、トルエン相と水相からなる2相系に分散させて、界面付近に存在する粒子のみを抽出して、精製した。得られた粒子を両親媒性粒子Aとする。   Further, the obtained silica particles were dispersed in a two-phase system composed of a toluene phase and an aqueous phase, and only the particles existing in the vicinity of the interface were extracted and purified. The obtained particles are referred to as amphiphilic particles A.

疎水性粒子の製造例
シリカを水に添加することなく、アルキルシリル化剤〔オクタデシルトリメトキシシラン(OTS)〕2.5ミリモルを溶解させたトルエン50ml中に懸濁させた後、トリエチルアミン2.5ミリモルを添加した。この懸濁液を10分間攪拌した後、遠心分離し、真空中室温で3時間乾燥させて、粒子表面を長鎖アルキル基で修飾したシリカ粒子を得た。得られた粒子を疎水性粒子Aとする。
Preparation Example of Hydrophobic Particles Suspension in 50 ml of toluene in which 2.5 mmol of alkylsilylating agent [octadecyltrimethoxysilane (OTS)] was dissolved without adding silica to water, followed by 2.5% of triethylamine 2.5 Millimol was added. The suspension was stirred for 10 minutes, then centrifuged and dried in vacuum at room temperature for 3 hours to obtain silica particles whose particle surfaces were modified with long-chain alkyl groups. The obtained particles are designated as hydrophobic particles A.

実施例1
トルエン3gにポリスチレン0.5gを溶解させた後、両親媒性粒子A 0.05gを添加して、超音波処理を1時間行い、両親媒性粒子Aを溶液中に分散させた。得られた分散液を純水10mlに添加し、アイスバス中で1時間超音波処理を行ってミセル状粒子を形成させた後、室温で12時間放置した。放置後、溶液はポリスチレンとトルエンからなる油相(上層)と水相(下層)に分離し、ミセル状粒子は底部に沈殿した。油相を完全に除去し、残存した水相を、常圧下、333Kに加熱して水及びミセル状粒子内のトルエンを蒸発させることによって、ミセル状粒子を回収した。ミセル状粒子を、50%フッ化水素酸水溶液に浸漬することによって、両親媒性粒子Aを溶解させ、ミセル状粒子の内部空間に形成された球状ポリスチレン粒子を得た。得られた球状ポリスチレン粒子の粒径は約2μm程度であり、粒子の大きさはほぼ均一であった。さらに、球状ポリスチレン粒子を走査電子顕微鏡(SEM)で観察すると、半球状の凹面構造を表面に有していることが確認された。球状ポリスチレン粒子の電子顕微鏡写真を図2(a)及び(b)に示す。
Example 1
After 0.5 g of polystyrene was dissolved in 3 g of toluene, 0.05 g of amphiphilic particles A was added and sonication was performed for 1 hour to disperse the amphiphilic particles A in the solution. The obtained dispersion was added to 10 ml of pure water and subjected to ultrasonic treatment for 1 hour in an ice bath to form micellar particles, and then allowed to stand at room temperature for 12 hours. After standing, the solution was separated into an oil phase (upper layer) and an aqueous phase (lower layer) composed of polystyrene and toluene, and micelle particles were precipitated at the bottom. The oily phase was completely removed, and the remaining aqueous phase was heated to 333 K under normal pressure to evaporate water and toluene in the micellar particles, thereby recovering the micelle particles. By immersing the micellar particles in a 50% aqueous hydrofluoric acid solution, the amphiphilic particles A were dissolved to obtain spherical polystyrene particles formed in the internal space of the micellar particles. The obtained spherical polystyrene particles had a particle size of about 2 μm, and the particle sizes were almost uniform. Furthermore, when spherical polystyrene particles were observed with a scanning electron microscope (SEM), it was confirmed that the surface had a hemispherical concave structure. Electron micrographs of spherical polystyrene particles are shown in FIGS. 2 (a) and 2 (b).

比較例1
トルエン3gにポリスチレン0.5gを溶解させた後、シリカ((株)日本触媒製のシーホスター(KEP−30)、平均粒子径0.3μm)0.05gを添加して、超音波処理を1時間行い、シリカを溶液中に分散させた。得られた分散液を純水10mlに添加し、アイスバス中で1時間超音波処理を行うと水相が白濁し、そのまま12時間放置すると水相の底部に沈殿物が生じた。
Comparative Example 1
After dissolving 0.5 g of polystyrene in 3 g of toluene, 0.05 g of silica (Seahoster (KEP-30) manufactured by Nippon Shokubai Co., Ltd., average particle size 0.3 μm) is added, and sonication is performed for 1 hour. And silica was dispersed in the solution. When the obtained dispersion was added to 10 ml of pure water and subjected to ultrasonic treatment for 1 hour in an ice bath, the aqueous phase became cloudy, and when left as it was for 12 hours, a precipitate was formed at the bottom of the aqueous phase.

生じた沈殿物を回収し、50%フッ化水素酸水溶液に浸漬することによって、シリカを溶解させて得られた残渣を走査電子顕微鏡(SEM)で観察すると、無定型のポリスチレンのみが観測された。   When the resulting precipitate was collected and immersed in a 50% hydrofluoric acid aqueous solution to dissolve the silica and the residue obtained was observed with a scanning electron microscope (SEM), only amorphous polystyrene was observed. .

比較例2
トルエン3gにポリスチレン0.5gを溶解させた後、疎水性粒子A 0.05gを添加して、超音波処理を1時間行い、疎水性粒子Aを溶液中に分散させた。得られた分散液を純水10mlに添加し、アイスバス中で1時間超音波処理を行うと、水相が白濁した。沈殿物は生じず、ポリスチレン粒子を得ることはできなかった。
Comparative Example 2
After dissolving 0.5 g of polystyrene in 3 g of toluene, 0.05 g of hydrophobic particles A were added and sonication was performed for 1 hour to disperse the hydrophobic particles A in the solution. When the obtained dispersion was added to 10 ml of pure water and sonicated for 1 hour in an ice bath, the aqueous phase became cloudy. No precipitate was formed, and polystyrene particles could not be obtained.

さらに、そのまま12時間放置すると、水相の白濁は、ポリスチレンとトルエンからなる油相の側に引き寄せられた。これは疎水性粒子Aは表面全体にわたってアルキルシリル化されているために、疎水性粒子表面のアルキルシリル基が油相に引き寄せられたためと推定される。   Furthermore, when left as it is for 12 hours, the white turbidity of the aqueous phase was drawn to the oil phase side consisting of polystyrene and toluene. This is presumably because the hydrophobic particles A are alkylsilylated over the entire surface, so that the alkylsilyl groups on the surface of the hydrophobic particles are attracted to the oil phase.

本発明の球状ポリマー粒子は、複数の半球様の凹面により表面が形成された非常に特徴的な構造を有しており、触媒、バイオセンサー、その他機能性を有する物質の担体、新規構造物質の鋳型物質等、各種分野への応用が期待されるものである。   The spherical polymer particle of the present invention has a very characteristic structure in which a surface is formed by a plurality of hemispherical concave surfaces, and supports a catalyst, a biosensor, a functional material carrier, a novel structural material. Application to various fields such as mold materials is expected.

図1において、(a)は本発明で用いられる両親媒性粒子の一態様を示す模式図であり、(b)は該両親媒性粒子により形成されるミセル状粒子の模式図である。In FIG. 1, (a) is a schematic diagram showing an embodiment of amphiphilic particles used in the present invention, and (b) is a schematic diagram of micellar particles formed by the amphiphilic particles. 図2(a)及び(b)はいずれも、実施例1で得られた球状ポリスチレン粒子の電子顕微鏡写真である。2A and 2B are electron micrographs of the spherical polystyrene particles obtained in Example 1. FIG.

符号の説明Explanation of symbols

1 両親媒性粒子
2 親油性基
3 親水性部分
4 親油性部分
5 水相
6 油相
7 ミセル状粒子
DESCRIPTION OF SYMBOLS 1 Amphiphilic particle 2 Lipophilic group 3 Hydrophilic part 4 Lipophilic part 5 Water phase 6 Oil phase 7 Micellar particle

Claims (3)

複数の半球様の凹面により表面が形成されてなる球状ポリマー粒子。   Spherical polymer particles having a surface formed by a plurality of hemispherical concave surfaces. 球状ポリマー粒子がポリスチレンからなる、請求項1記載の球状ポリマー粒子。   The spherical polymer particle according to claim 1, wherein the spherical polymer particle is made of polystyrene. (a) ポリマーが溶解した有機溶媒中に、ミセル状粒子の形成が可能な両親媒性粒子を分散させる工程、
(b) 工程(a)で得られた分散液を水と混合し、両親媒性粒子によりポリマー及び有機溶媒を内部に取り込んだミセル状粒子を形成する工程、
(c) 工程(b)で得られたミセル状粒子内に含まれる有機溶媒を除去して、該ミセル状粒子内のポリマーを固化する工程、及び
(d) ミセル状粒子から両親媒性粒子を除去する工程
を有する、請求項1又は2記載の球状ポリマー粒子の製造方法。
(A) a step of dispersing amphiphilic particles capable of forming micellar particles in an organic solvent in which a polymer is dissolved;
(B) The step of mixing the dispersion obtained in step (a) with water to form micellar particles in which the polymer and organic solvent are taken into the interior by amphiphilic particles,
(C) removing the organic solvent contained in the micellar particles obtained in step (b) to solidify the polymer in the micelle particles, and (d) amphiphilic particles from the micelle particles. The manufacturing method of the spherical polymer particle of Claim 1 or 2 which has the process to remove.
JP2003330181A 2003-09-22 2003-09-22 Method for producing spherical polymer particles Expired - Fee Related JP4079862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330181A JP4079862B2 (en) 2003-09-22 2003-09-22 Method for producing spherical polymer particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330181A JP4079862B2 (en) 2003-09-22 2003-09-22 Method for producing spherical polymer particles

Publications (2)

Publication Number Publication Date
JP2005097355A true JP2005097355A (en) 2005-04-14
JP4079862B2 JP4079862B2 (en) 2008-04-23

Family

ID=34459226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330181A Expired - Fee Related JP4079862B2 (en) 2003-09-22 2003-09-22 Method for producing spherical polymer particles

Country Status (1)

Country Link
JP (1) JP4079862B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217616A (en) * 2006-02-18 2007-08-30 Kobe Univ Deformed polymer particulate and method for producing the same
JP2011083753A (en) * 2009-10-19 2011-04-28 San Nopco Ltd Amphiphilic particle and producing method of the same
JP2011157311A (en) * 2010-02-02 2011-08-18 San Nopco Ltd Emulsified dispersion composition, method for producing the same, and aqueous dispersion of amphiphilic particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217616A (en) * 2006-02-18 2007-08-30 Kobe Univ Deformed polymer particulate and method for producing the same
JP2011083753A (en) * 2009-10-19 2011-04-28 San Nopco Ltd Amphiphilic particle and producing method of the same
JP2011157311A (en) * 2010-02-02 2011-08-18 San Nopco Ltd Emulsified dispersion composition, method for producing the same, and aqueous dispersion of amphiphilic particle

Also Published As

Publication number Publication date
JP4079862B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
Petkovich et al. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating
Bao et al. Recent progress in hollow silica: Template synthesis, morphologies and applications
Kumar et al. Synthesis methods of mesoporous silica materials
Hu et al. Fabrication, properties and applications of Janus particles
Sun et al. Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: A review
Zhao et al. Well-defined hierarchical templates for multimodal porous material fabrication
Sue et al. Synthesis of hierarchical micro/mesoporous structures via solid–aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of water/ethanol mixtures
Wu et al. Raspberry-like silica hollow spheres: Hierarchical structures by dual latex− surfactant templating route
Tan et al. Interfacial alignment mechanism of forming spherical silica with radially oriented nanopores
Li et al. Interfacially controlled synthesis of hollow mesoporous silica spheres with radially oriented pore structures
US8696955B2 (en) Method of making polymer hollow particles with controllable holes in their surfaces
US9683218B2 (en) Bionanomaterials and their synthesis
US8685323B2 (en) Virus/nanowire encapsulation within polymer microgels for 2D and 3D devices for energy and electronics
JP2005263550A (en) High dispersion silica nano hollow particle and its producing method
CN103962074B (en) A kind of hollow sub-micron, its preparation method and application
Wang et al. Synthesis of NaCl single crystals with defined morphologies as templates for fabricating hollow nano/micro-structures
Han et al. A new model for the synthesis of hollow particles via the bubble templating method
CN107522894B (en) Preparation method of hollow polymer nano-microsphere with mesopores and product thereof
Wang et al. Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor
CN101348254B (en) Preparation of hollow nanosilica white sphere
JP5382700B2 (en) Rod-shaped porous silica particles
JP4079862B2 (en) Method for producing spherical polymer particles
Zhou et al. Toward Scalable Fabrication of Hierarchical Silica Capsules with Integrated Micro‐, Meso‐, and Macropores
Qiao et al. Temperature‐Regulated Core Swelling and Asymmetric Shrinkage for Tunable Yolk@ Shell Polydopamine@ Mesoporous Silica Nanostructures
JP7391328B2 (en) Method for producing chiral metal oxide structures, and block copolymers, chiral complexes, and chiral metal oxide complexes suitable therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Written amendment

Effective date: 20071130

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080111

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees