JP5382700B2 - Rod-shaped porous silica particles - Google Patents

Rod-shaped porous silica particles Download PDF

Info

Publication number
JP5382700B2
JP5382700B2 JP2009079589A JP2009079589A JP5382700B2 JP 5382700 B2 JP5382700 B2 JP 5382700B2 JP 2009079589 A JP2009079589 A JP 2009079589A JP 2009079589 A JP2009079589 A JP 2009079589A JP 5382700 B2 JP5382700 B2 JP 5382700B2
Authority
JP
Japan
Prior art keywords
rod
particle
particles
porous silica
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009079589A
Other languages
Japanese (ja)
Other versions
JP2010228986A (en
Inventor
勝典 小菅
敦夫 伊藤
霞 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009079589A priority Critical patent/JP5382700B2/en
Publication of JP2010228986A publication Critical patent/JP2010228986A/en
Application granted granted Critical
Publication of JP5382700B2 publication Critical patent/JP5382700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、単分散性に優れたロッド状多孔質シリカ粒子に関し、更にはその製造方法及び生体内埋入材料や珪素徐放性薬剤等への応用に関するものである。   The present invention relates to rod-shaped porous silica particles excellent in monodispersibility, and further relates to a production method thereof and application to an in vivo implant material, a silicon sustained-release drug, and the like.

1992年に多孔体MCM−41の合成法がNature誌上に発表されて以来、メソポーラス材料への関心が高まり、4級アンモニウム塩等のイオン系界面活性剤を使用した研究が数多く報告されている。その後、無毒性で、生分解性を有し、除去が容易であり、更には、安価なオリゴマー或はポリマー系の非イオン系界面活性剤をテンプレートとしてメソポーラス材料が合成可能なことが報告された(非特許文献1)。   Since the synthesis method of porous MCM-41 was published in Nature in 1992, interest in mesoporous materials has increased, and many studies using ionic surfactants such as quaternary ammonium salts have been reported. Later, it was reported that non-toxic, biodegradable, easy removal, and mesoporous materials could be synthesized using inexpensive oligomer or polymer nonionic surfactants as templates. (Non-Patent Document 1).

一方、メソポーラス材料の創製当初から、メソ細孔の規則構造のみならず、ミクロンからミリメートルサイズのマクロ形態まで制御した高次規則構造を有する多孔質材料の開発が注目されている(非特許文献2)。特に、最近ではメソポーラスシリカの吸着現象がマクロ形態に著しく依存し、形態制御が重要な研究課題となっている。   On the other hand, from the beginning of the creation of mesoporous materials, not only the regular structure of mesopores but also the development of porous materials having a high-order ordered structure controlled from micron to millimeter-sized macro form has attracted attention (Non-Patent Document 2). ). In particular, recently, the adsorption phenomenon of mesoporous silica remarkably depends on the macro form, and the form control is an important research subject.

本発明者等は、先に、ロッド状粒子が連鎖した繊維状多孔質シリカ粒子の揮発性有機化合物(VOC)に対するガス吸着現象において、長いメソチャンネル孔がマイクロ孔によって連結した二元細孔構造に起因して、高いVOC吸着能と易脱着能を発揮することを明らかにした(非特許文献3)。また、溶液中での吸着現象においては、繊維状粒子の基本構成単位であるロッド状粒子の方が、吸着質との接触面積が大きいことにより、繊維状粒子と比較すると吸着速度が速く、例えば分子量の大きな酵素等の吸着においては大きなメソ細孔を持ち、粒子径の小さいロッド状粒子ほど顕著な吸着効果が認められている(非特許文献4)。   The present inventors previously described a dual pore structure in which long mesochannel pores are connected by micropores in a gas adsorption phenomenon of volatile organic compounds (VOC) of fibrous porous silica particles in which rod-like particles are linked. It was clarified that the high VOC adsorption ability and the easy desorption ability are exhibited due to the above (Non-patent Document 3). In addition, in the adsorption phenomenon in the solution, the rod-shaped particles, which are the basic structural units of the fibrous particles, have a larger contact area with the adsorbate, so the adsorption speed is faster than the fibrous particles, for example, In the adsorption of an enzyme or the like having a large molecular weight, a rod-like particle having a large mesopore and a smaller particle diameter is recognized to have a remarkable adsorption effect (Non-patent Document 4).

他方、メソポーラスシリカの用途開発を可能とするには、効率的な量産化プロセスの確立が必須の課題であり、アルカリ珪酸塩等の安価なシリカ源を出発原料とすることは極めて重要なことと考えられる(非特許文献5)。   On the other hand, to enable the development of mesoporous silica applications, it is essential to establish an efficient mass production process, and it is extremely important to use an inexpensive silica source such as alkali silicate as a starting material. It is possible (Non-Patent Document 5).

しかし、安価なシリカ源であるアルカリ珪酸塩と非イオン性の界面活性剤とを用いる合成手法はよく知られているものの、両化合物を同時に使用し、他物質を添加することなく、細孔径とともにマクロ形態をも制御した報告例は極めて少ない(非特許文献6および非特許文献7)。
その理由は、細孔径の制御とともにマクロ形態を制御する効率的な方法を見いだすことが大変に難しい点にある。実際、例えば、特許文献1には、珪酸ナトリウムと非イオン性界面活性剤の酸性溶液を原料とするメソポーラスシリカの合成方法が報告されているが、マクロ形態の制御方法並びに最終生成物の粒子形状等に関しては全く記載されておらず、得られた生成物のメソ構造の規則性も極めて低いことがX線回折パターンから推定される。
However, although the synthesis method using an alkali silicate which is an inexpensive silica source and a nonionic surfactant is well known, both compounds can be used simultaneously, without adding other substances, and with the pore size There are very few reports of controlling the macro form (Non-patent Document 6 and Non-patent Document 7).
The reason is that it is very difficult to find an efficient method for controlling the macro morphology as well as controlling the pore diameter. Actually, for example, Patent Document 1 reports a method for synthesizing mesoporous silica using an acidic solution of sodium silicate and a nonionic surfactant as a raw material. Etc. are not described at all, and it is presumed from the X-ray diffraction pattern that the regularity of the mesostructure of the obtained product is extremely low.

また、これまでにロッド状に形態制御されたメソポーラスシリカに関しての報告は数例あるが、発明者の知る限り、発明者等による特許文献2に対応する以外は、シリカ源としてアルコキシシラン等の有機シリカを使用した例に限られている。しかも、アルコキシシランを使用する場合には、ロッド状粒子のアスペクト比は1以上が一般的であり(非特許文献8)、さらに単分散性を向上させアスペクト比を1未満にするためには有機化合物等の他物質の添加が不可欠と考えられる。   In addition, there have been several reports on mesoporous silica whose shape has been controlled in the form of a rod so far. Limited to examples using silica. In addition, when alkoxysilane is used, the aspect ratio of the rod-like particles is generally 1 or more (Non-patent Document 8), and in order to further improve the monodispersity and make the aspect ratio less than 1, it is organic. Addition of other substances such as compounds is considered essential.

例えば、酵素吸着に効果的な機能を発揮する大きなメソ孔を持つ小粒子状メソポーラスシリカは、アルコキシシランを用い、さらにフッ化物やアルカン類を添加した複雑な反応工程を経由して合成されている(非特許文献9)。   For example, small particulate mesoporous silica with large mesopores that exhibit an effective function for enzyme adsorption is synthesized through a complex reaction process using alkoxysilane and further adding fluorides and alkanes. (Non-patent document 9).

本発明者らは、このような背景において、メソポーラス材料の開発には、低コスト原料を使用した効率的な合成手法によるマクロ形態の制御と高いメソ構造の規則性が重要なポイントであるとの考えのもとに検討を進め、その過程で得られた知見から新しい技術提案を行ってきている。
例えば、アルカリ珪酸塩と非イオン系界面活性剤としてトリブロック共重合体を使用してのロッド状並びに繊維状多孔質シリカ粒子(特許文献2)や球状シリカ多孔体(特許文献3及び4)の合成方法を提案している。
In such a background, the present inventors have found that the control of macro form and the regularity of high mesostructure are important points for the development of mesoporous materials by an efficient synthesis method using low-cost raw materials. We have been studying based on our thoughts, and have made new technical proposals based on the knowledge gained in the process.
For example, rod-like and fibrous porous silica particles (Patent Literature 2) and spherical silica porous materials (Patent Literatures 3 and 4) using a triblock copolymer as an alkali silicate and a nonionic surfactant. A synthesis method is proposed.

前者のロッド状並びに繊維状多孔質シリカ粒子の合成方法では、珪酸ソーダとトリブロック共重合体(商品名 Pluronic P123)を塩酸酸性溶液中において反応させ、攪拌の有無によって、ロッド状並びに繊維状のシリカメソ多孔体を選択的に合成している。   In the former method for synthesizing rod-like and fibrous porous silica particles, sodium silicate and a triblock copolymer (trade name Pluronic P123) are reacted in an acidic hydrochloric acid solution. Silica mesoporous material is selectively synthesized.

また、特許文献5の薄板状多孔質シリカ粒子の製造方法においては、シリカ骨格のSiを他金属で交換することによって、ロッドの長さ0.2μm程度で、アスペクト比は0.2以下であることが明らかにされているが、純粋なシリカ成分から成るアスペクト比0.1〜1未満のロッド状シリカ粒子を得ることはできない。   In addition, in the method for producing thin plate-like porous silica particles of Patent Document 5, the length of the rod is about 0.2 μm and the aspect ratio is 0.2 or less by exchanging Si of the silica skeleton with another metal. However, it is not possible to obtain rod-like silica particles having an aspect ratio of less than 0.1 to 1 comprising a pure silica component.

更に、ごく最近、新規物質として酸性溶液中において薄板状多孔質粒子が論文発表され、発明者の製造方法と同様、Siを他金属、具体的にはZrで置換することによってプレート状シリカが得られることが報告されている(非特許文献10)。   Furthermore, recently, a thin plate-like porous particle was published as a new substance in an acidic solution, and a plate-like silica was obtained by substituting Si with another metal, specifically Zr, as in the production method of the inventors. Has been reported (Non-patent Document 10).

一方、メソポーラスシリカの生体組織内埋入材料や珪素徐放性薬剤としての用途に関しては、ドラッグデリバリー担体(非特許文献11、12)、遺伝子導入剤(非特許文献13)、免疫賦活剤(非特許文献14)の用途が有望視されている。またSiは骨組織形成や結合組織形成に必須元素でもあるため、生体内で珪素を徐放する薬剤として利用可能と考えられる。   On the other hand, regarding the use of mesoporous silica as a material for embedding in living tissue or a sustained-release silicon drug, drug delivery carriers (Non-patent Documents 11 and 12), gene introduction agents (Non-patent Document 13), immunostimulators (non-patent documents) The use of Patent Document 14) is considered promising. In addition, since Si is an essential element for bone tissue formation and connective tissue formation, it can be used as a drug that releases silicon in vivo.

しかしながら、メソポーラスシリカを含め、一般にシリカ素材を生体埋入材料や薬剤として利用する際には、細胞内に取り込まれて細胞を破壊する細胞毒性が問題点となる可能性がある(非特許文献15、16)。
この細胞毒性は主に粒子径と粒子濃度に依存する。すなわち、細胞毒性は粒子が小さい程高くなるため、粒子径を小さくした場合は粒子の濃度を低くする必要がある。そのため、メソポーラスシリカが生体材料や薬剤として効果を発揮するには、細孔特性の最適化と同時に、粒子径に応じた細胞毒性を示さない粒子濃度範囲を特定する必要がある。メソポーラスシリカを生体埋入材料や硅素徐放性薬剤として応用する場合、細胞の大きさや生体との親和性及び安全性を考慮すると、粒子径20μm以下で細胞毒性を示さないことが重要な課題と考えられる。
However, when silica materials including mesoporous silica are generally used as living implants or drugs, cytotoxicity that is taken into cells and destroys cells may become a problem (Non-patent Document 15). 16).
This cytotoxicity mainly depends on the particle size and particle concentration. That is, since the cytotoxicity increases as the particles become smaller, it is necessary to lower the concentration of the particles when the particle diameter is reduced. Therefore, in order for mesoporous silica to exert its effect as a biomaterial or a drug, it is necessary to specify a particle concentration range that does not exhibit cytotoxicity in accordance with the particle diameter as well as optimization of pore characteristics. When applying mesoporous silica as a bio-implant material or a sustained-release drug for silicon, considering the cell size, affinity with the living body, and safety, it is important that the particle size is 20 μm or less and that it does not exhibit cytotoxicity. Conceivable.

ところで、先に述べた、本発明者らの特許文献2に記載のロッド状粒子においては、個々の粒子の形態は明確であり、吸着剤、触媒坦体等の用途には適用可能であるが、粒度分布ピーク値が約20μmの大きな凝集体として得られ易く、生体埋入材料や薬剤として利用する際には、さらなる分散化を可能とする新製造方法の開発あるいは解砕等の2次的処理が必要となる。しかも、個々の粒子の長さは0.5〜5μmの範囲にあり、アスペクト比が1.1〜15で特長づけられる細長い粒子で、粒子形態の上からも生体埋入材料として適切とは言えない。
また、特許文献5の薄板状多孔質シリカ粒子はロッドの長さ(粒子の厚さ)約0.2μmで、アスペクト比は0.2以下のプレート状粒子であり、形態上問題はないが、シリカ骨格のSiをZr等の他金属で交換することが不可欠で生体材料とするには安全面から大きな問題が生じる。
By the way, in the rod-like particles described in the above-mentioned Patent Document 2 of the present inventors, the form of each particle is clear and can be applied to uses such as an adsorbent and a catalyst carrier. It is easy to obtain as a large aggregate having a particle size distribution peak value of about 20 μm, and when used as a bio-implant material or a drug, secondary production such as development of a new production method or disintegration that enables further dispersion Processing is required. Moreover, the length of each particle is in the range of 0.5 to 5 μm, and it is an elongated particle characterized by an aspect ratio of 1.1 to 15, and it can be said that it is suitable as a bio-implant material from the viewpoint of the particle form. Absent.
Moreover, the thin plate-like porous silica particles of Patent Document 5 are plate-like particles having a rod length (particle thickness) of about 0.2 μm and an aspect ratio of 0.2 or less. It is indispensable to exchange Si of the silica skeleton with other metals such as Zr, so that a big problem arises from the viewpoint of safety in order to obtain a biomaterial.

このように、安価なアルカリ珪酸塩をシリカ源として、細胞毒性を持たない小さな多孔質シリカ材料を合成可能とすることは、生体組織内埋入材料や珪素徐放性薬剤として、多孔質材料の利用分野を図るために克服すべき重要な課題であるが、その報告例は高価なアルコキシシラン等の有機シリコンを原料としたものに比べ極めて少なく、更に、非イオン性界面活性剤と組み合わせたマクロ形態制御に関する報告は極めて限られている。   As described above, it is possible to synthesize a small porous silica material having no cytotoxicity using an inexpensive alkali silicate as a silica source. Although it is an important issue to be overcome in order to develop the field of use, there are very few reported examples compared to those using organic silicon such as expensive alkoxysilane as a raw material, and a macro combined with a nonionic surfactant. Reports on morphological control are very limited.

しかも、添加物として有機化合物を使用しない単純な反応系では、長さ0.5μm以下、アスペクト比が1未満で、且つ高いメソ構造の規則性を有し、水分散系における粒度分布ピーク(体積基準)の最大値が10μm以下に認められるシリカ純成分から成るロッド状多孔質シリカ粒子並びにその製造方法はこれまで全く報告されていない。
さらに、使用する非イオン性界面活性剤の持つ高温での脱水和挙動に起因してロッド状多孔質シリカ粒子は7nm以上のメソ細孔と同時にマイクロ孔が存在し、熟成温度が150℃未満の場合、600℃の加熱処理後もマイクロ孔容積の全細孔容積(メソ孔とマイクロ孔の両細孔に起因する細孔容積)に占める割合は10%以上である。他方、熟成温度150℃以上ではマイクロ孔を有しないメソ孔だけが存在するロッド状粒子が得られるだけである。
In addition, a simple reaction system that does not use an organic compound as an additive has a length of 0.5 μm or less, an aspect ratio of less than 1, and a high mesostructured regularity. So far, no rod-shaped porous silica particles composed of a pure silica component whose maximum value is 10 μm or less and a production method thereof have not been reported.
Furthermore, due to the high-temperature dehydration behavior of the nonionic surfactant used, the rod-shaped porous silica particles have micropores simultaneously with mesopores of 7 nm or more, and the aging temperature is less than 150 ° C. In this case, the ratio of the micropore volume to the total pore volume (pore volume resulting from both mesopores and micropores) after heat treatment at 600 ° C. is 10% or more. On the other hand, when the aging temperature is 150 ° C. or higher, only rod-like particles having only mesopores having no micropores are obtained.

特開2001−261326号公報JP 2001-261326 A 特許第4099811号明細書Japanese Patent No. 40998811 特開2004−182492号公報JP 2004-182492 A 特開2004−143026号公報JP 2004-143026 A 特開2006−151799号公報JP 2006-151799 A

Bagshaw, S.A.; Prouzet, E.; Pinnavaia, T.J.Science 1995, 269, 1242.Bagshaw, S.A .; Prouzet, E .; Pinnavaia, T.J.Science 1995, 269, 1242. 1) Ciesla, U.; Schuth,F. Microporous Mesoporous Mater. 1999, 27, 131. 2) Stein, A.Adv. Mater. 2003, 15, 763.1) Ciesla, U .; Schuth, F. Microporous Mesoporous Mater. 1999, 27, 131. 2) Stein, A. Adv. Mater. 2003, 15, 763. 3) Kosuge, K. Kubo, S. Kikukawa, N. Takemori, M. Langmuir, 2007, 23, 3095.3) Kosuge, K. Kubo, S. Kikukawa, N. Takemori, M. Langmuir, 2007, 23, 3095. Fan, J. Lei, J. Wang, L. Yu, C. Tu, B. Zhao, D. Chem. Comm., 2003, 2140.Fan, J. Lei, J. Wang, L. Yu, C. Tu, B. Zhao, D. Chem. Comm., 2003, 2140. 1) Sierra, L.; Guth, J-L. Microporous Mesoporous Mater. 1999, 28, 243. 2) Kim, S.S.; Pauly, T.R.; PinnavaiaT.J. Chem. Commun.2000, 835. 3) Kim, S.S.; Pauly, T.R.; Pinnavaia T.J. Chem. Commun.2000, 1661.1) Sierra, L .; Guth, JL. Microporous Mesoporous Mater. 1999, 28, 243. 2) Kim, SS; Pauly, TR; Pinnavaia T.J. Chem. Commun. 2000, 835. 3) Kim, SS; Pauly , TR; Pinnavaia TJ Chem. Commun. 2000, 1661. Boissiere, C.; Larbot, A.; van der Lee, A.; Kooyman, P.J.; Prouzet,E. Chem. Mater. 2000, 12, 2902.Boissiere, C .; Larbot, A .; van der Lee, A .; Kooyman, P.J .; Prouzet, E. Chem. Mater. 2000, 12, 2902. Sun, Q.; Kooyman, P.J.; Grossmann, J.G.; Bomans, P.H.H.;Frederik, P.M.; Magusin,P.C.M.M.; Beelen, T.P.M.;van Santen, R.A.; Sommerdijk, N.A.J.M.Adv. Mater. 2003, 15, 1097.Sun, Q .; Kooyman, P.J .; Grossmann, J.G .; Bomans, P.H.H .; Frederik, P.M .; Magusin, P.C.M.M .; Beelen, T.P.M .; van Santen, R.A .; Sommerdijk, N.A.J.M.Adv. 97. Sayari, A; Han,B-H.; Yang, Y. J.Am. Chem. Soc., 2004, 126, 14348.Sayari, A; Han, B-H .; Yang, Y. J. Am. Chem. Soc., 2004, 126, 14348. Sun, J. M.; Zhang, H.; Tian, R. J.; Ma, D.; Bao, X. H.; Su, D. S.; Zou, H.F. Chem. Commun. 2006, 1322.Sun, J. M .; Zhang, H .; Tian, R. J .; Ma, D .; Bao, X. H .; Su, D. S .; Zou, H.F. Chem. Commun. 2006, 1322. Chen,S-Y.; Tang, C-Y.; Chuang, W-T.; Lee, J-J.; Tsai, Y-L.; Chan, J.C.C.; Lin, C-Y.; Liu, Y-C.; Cheng, S., Chem. Mater. 2008, 20, 3906.Chen, SY .; Tang, CY .; Chuang, WT .; Lee, JJ .; Tsai, YL .; Chan, JCC; Lin, CY .; Liu, YC .; Cheng, S., Chem. Mater. 2008, 20, 3906. Vallhov, H.; Gabrielsson, S.; Stromme, M.; Scheynius, A.; Garcia-Bennett,A.E; Nano Letters 2007, 7, 3576.Vallhov, H .; Gabrielsson, S .; Stromme, M .; Scheynius, A .; Garcia-Bennett, A.E; Nano Letters 2007, 7, 3576. Blumen, S.R.; Cheng, K.; Ramos-Nino, M.E.; Taatjes, D.J.; Weiss, D.J.; Landry, C.C.; Mossman, R.T.; Am J Respir Cell Mol Biol 2007, 36, 333.Blumen, S.R .; Cheng, K .; Ramos-Nino, M.E .; Taatjes, D.J .; Weiss, D.J .; Landry, C.C .; Mossman, R.T .; Am J Respir Cell Mol Biol 2007, 36, 333. Radu, D. R.; Lai, C.-Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S.-Y.; J. Am. Chem. Soc. 2004, 126, 13216.Radu, D. R .; Lai, C.-Y .; Jeftinija, K .; Rowe, E. W .; Jeftinija, S .; Lin, V. S.-Y .; J. Am. Chem. Soc. 2004, 126, 13216. Mercuri, L.P.;Carvalho, L. V.; Lima, F.A.; Quayle C et al., Small 2006, 2, 254.Mercuri, L.P .; Carvalho, L. V .; Lima, F.A .; Quayle C et al., Small 2006, 2, 254. Di Pasqua, A.J.; Sharma, K.K.; Shi, Y-L.; Toms, B.B.; Ouellette, W.; Dabrowiak, J.C.; Asefa, T.; J. Inorganic Biochem. 2008, 102, 14416.Di Pasqua, A.J .; Sharma, K.K .; Shi, Y-L .; Toms, B.B .; Ouellette, W .; Dabrowiak, J.C .; Asefa, T .; J. Inorganic Biochem. 2008, 102, 14416. Hudson,S.P.; Padera, R.F.; Langer, R.; Kohane, D.S.; Biomaterials 2008, 29, 4045.Hudson, S.P .; Padera, R.F .; Langer, R .; Kohane, D.S .; Biomaterials 2008, 29, 4045.

上述したように、本発明者らによる特許文献2のロッド状多孔質シリカ粒子の製造方法においては、比較的低温で生成させるため、ロッド状形態を保持したまま、単分散性を向上させ且つ細孔径の拡張を図るには限界があった。そして、上記特許文献5の薄板状多孔質シリカ粒子の製造方法においては、ロッド状粒子の長さは約0.2μmで、アスペクト比も0.2以下であるが、シリケート骨格中のSiをZr等の金属元素による置換を必要とし、純粋なロッド状多孔質シリカ粒子を製造することはできない等の課題があった。
本発明は、これら従来の問題点を解消し、安価なアルカリ珪酸塩をシリカ源とし、無毒性あるいは低毒性の非イオン性界面活性剤をテンプレートとするとの本発明者によりこれまでに開発された技術知識を踏まえ、アスペクト比を0.1〜1未満に制御したロッド状多孔質シリカ粒子の工業的な製造技術を提供すると共に、シリカ純成分からなる単分散性に優れた新規なロッド状多孔質シリカ粒子を提供し、それを用いた生体に安全な生体内埋入材料や珪素徐放性薬剤を提供することを目的としている。
As described above, in the method for producing rod-shaped porous silica particles of Patent Document 2 by the present inventors, the monodispersibility is improved and the fine dispersion is maintained while maintaining the rod-shaped form in order to produce the rod-shaped porous silica particles at a relatively low temperature. There was a limit to the expansion of the hole diameter. And in the manufacturing method of the thin plate-like porous silica particle of the above-mentioned patent document 5, the length of the rod-like particle is about 0.2 μm and the aspect ratio is 0.2 or less, but Si in the silicate skeleton is changed to Zr. There is a problem that pure rod-like porous silica particles cannot be produced because substitution with a metal element such as is required.
The present invention has been developed by the present inventor so far to solve these conventional problems and use an inexpensive alkali silicate as a silica source and a non-toxic or low-toxic nonionic surfactant as a template. Based on our technical knowledge, we provide industrial production technology for rod-shaped porous silica particles whose aspect ratio is controlled to less than 0.1 to 1, and a new rod-shaped porous material with excellent monodispersity consisting of pure silica components. It is an object of the present invention to provide a bio-implanting material and a sustained-release drug for silicon that are safe for a living body using the silica particles.

本発明者は、上記の課題を解決すべく鋭意検討を進め、アルカリ珪酸塩溶液とトリブロック共重合体との酸性水溶液反応系で、酸の混合割合と、攪拌と熟成工程の2段階の反応温度を同時に制御すること、あるいは予め金属塩を添加後水熱条件下において熟成を行うことで分散化の程度をより高められ、アスペクト比1未満で、長さ0.5μm以下に制御したシリカ純成分から成る単分散性に優れたロッド状形態を有するシリカ多孔質粒子が得られること見出し、更には、10μm以下に粒度分布ピークを有する小粒子にも係わらず、メソポーラスシリカを生体埋入材料や薬剤として利用する際の問題点となる細胞毒性がほとんどなく、生体に安全な生体内埋入材料や珪素徐放性薬剤として利用できることを知見した。本発明は、このような知見を踏まえて完成されたものである。   The present inventor has intensively studied to solve the above problems, and is an acidic aqueous solution reaction system of an alkali silicate solution and a triblock copolymer. By controlling the temperature at the same time, or preliminarily adding a metal salt and aging under hydrothermal conditions, the degree of dispersion can be further enhanced, and the silica purity is controlled to a length of 0.5 μm or less with an aspect ratio of less than 1. It has been found that porous silica particles having a rod-like form with excellent monodispersibility composed of components can be obtained, and, further, mesoporous silica can be used as a bio-implanting material, in spite of small particles having a particle size distribution peak of 10 μm or less. It has been found that there is almost no cytotoxicity, which is a problem when used as a drug, and it can be used as an in-vivo implant material that is safe for the living body or a silicon sustained-release drug. The present invention has been completed based on such knowledge.

すなわち、この出願は以下の発明を提供するものである。
〈1〉透過型及び走査型顕微鏡観察により、ハニカム状に規則配列したメソ孔径3nm以上の一次元チャンネル状細孔が貫通する方向の粒子の長さが0.5μm以下で、この粒子伸張方向に垂直な粒子断面の長さとの比をアスペクト比(=前記細孔が貫通する方向の粒子の長さ/前記粒子伸張方向に垂直な粒子断面の長さ)とする時、アスペクト比が0.1〜1未満のロッド状の形態を有する粒子であって、水分散系における粒度分布ピーク(体積基準)の最大値が10μm以下の範囲に認められる緩い集合体を形成している、シリカ骨格中のSi元素が他金属で置換されていないことを特とするロッド状シリカ多孔質粒子。
〈2〉回折角0.5乃至5度(CuKα)に細孔の規則配列構造を示す複数のX線回折ピークを有することを特徴とする〈1〉に記載のロッド状シリカ多孔質粒子。
〈3〉〈1〉又は〈2〉に記載のロッド状シリカ多孔質粒子を2〜300μg/mL含有することを特徴とする懸濁液または分散液。
〈4〉酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を45℃から60℃未満の温度条件下で攪拌しながら混合し、反応溶液に白濁が認められない反応時間内に撹拌を停止した後、50℃から200℃の範囲の温度で熟成して得られる固体生成物を、分離・洗浄、乾燥後、非イオン性界面活性剤を除去することを特徴とする〈1〉又は〈2〉に記載のロッド状シリカ多孔質粒子の製造方法。
〈5〉酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を45℃から60℃未満の温度条件下で攪拌しながら混合し、反応溶液に白濁が認められない反応時間内に撹拌を停止し、10分から120分間熟成後、分離・洗浄して得られた固体生成物を、湿潤状態のまま、あるいは乾燥してから、水溶液中で50℃から200℃の範囲の温度で熟成した後に、固体生成物を分離・洗浄、乾燥後、非イオン性界面活性剤を除去することを特徴とする〈1〉又は〈2〉に記載のロッド状シリカ多孔質粒子の製造方法。
〈6〉酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を45℃から60℃未満の温度条件下で攪拌しながら混合し、反応溶液に白濁が認められない反応時間内に撹拌を停止し、10分から120分間熟成後、分離・洗浄して得られた固体生成物を、湿潤状態のまま、あるいは乾燥してから、金属塩を溶解した水溶液中で50℃から200℃の範囲の温度で熟成した後に、固体生成物を分離・洗浄、乾燥後、非イオン性界面活性剤を除去することを特徴とする〈1〉又は〈2〉に記載のロッド状シリカ多孔質粒子の製造方法。
〈7〉非イオン性界面活性剤をアルカリ珪酸塩中のSiO21モル当たり0.01乃至0.10モルの量で用いること特徴とする〈4〉乃至〈6〉の何れかに記載の製造方法。
〈8〉酸をアルカリ珪酸塩中のSiO21モル当たり5乃至20モルの量で用いることを特徴とする〈4〉乃至〈7〉の何れかに記載の製造方法。
〈9〉水をアルカリ珪酸塩中のSiO21モル当たり100乃至400モルの量で用いることを特徴とする〈4〉乃至〈8〉の何れかに記載の製造方法。
〈10〉金属塩をアルカリ珪酸塩中のSiO21モル当たり0.01乃至1モルの量で用いることを特徴とする〈〉乃至〈9〉の何れかに記載の製造方法。
〈11〉〈1〉又は〈2〉に記載のロッド状多孔質シリカ粒子を含有する生体内埋入材料。
〈12〉〈1〉又は〈2〉に記載のロッド状多孔質シリカ粒子を含有する珪素徐放性薬剤。
〈13〉〈3〉に記載の懸濁液又は溶媒液を含有する生体内埋入材料。
〈14〉〈3〉に記載の懸濁液または粒子溶媒混合系を含有する珪素徐放性薬剤。
That is, this application provides the following inventions.
<1> According to transmission and scanning microscope observations, the particle length in the direction through which the one-dimensional channel-shaped pores with a mesopore diameter of 3 nm or more arranged in a honeycomb shape penetrate is 0.5 μm or less. When the ratio with the length of the vertical particle cross section is the aspect ratio (= the length of the particle in the direction through which the pores penetrate / the length of the particle cross section perpendicular to the particle extension direction) , the aspect ratio is 0.1. Particles having a rod-like morphology of less than ˜1, and forming a loose aggregate in which the maximum value of the particle size distribution peak (volume basis) in an aqueous dispersion is 10 μm or less. rod porous silica particles to feature that Si element has not been substituted by other metals.
<2> The rod-shaped silica porous particle according to <1>, which has a plurality of X-ray diffraction peaks indicating a regular arrangement structure of pores at a diffraction angle of 0.5 to 5 degrees (CuKα).
<3> A suspension or dispersion containing 2 to 300 μg / mL of the rod-like silica porous particles according to <1> or <2>.
<4> A mixture of an acidic aqueous solution and a nonionic surfactant is mixed with an aqueous alkali silicate solution while stirring under a temperature condition of 45 ° C. to less than 60 ° C., and within a reaction time in which no cloudiness is observed in the reaction solution. After the stirring is stopped, the solid product obtained by aging at a temperature in the range of 50 ° C. to 200 ° C. is separated, washed and dried, and then the nonionic surfactant is removed <1 > Or <2> The method for producing rod-like silica porous particles according to <2>.
<5> A mixture of an acidic aqueous solution and a nonionic surfactant is mixed with an aqueous alkali silicate solution with stirring under a temperature condition of 45 ° C. to less than 60 ° C., and within a reaction time in which no cloudiness is observed in the reaction solution. The solid product obtained after aging for 10 to 120 minutes, followed by separation and washing is kept in a wet state or after drying in an aqueous solution at a temperature in the range of 50 ° C to 200 ° C. The method for producing rod-like silica porous particles according to <1> or <2>, wherein after solidification, the solid product is separated, washed and dried, and then the nonionic surfactant is removed.
<6> A mixture of an acidic aqueous solution and a nonionic surfactant is mixed with an aqueous alkali silicate solution while stirring under a temperature condition of 45 ° C. to less than 60 ° C., and within the reaction time in which no cloudiness is observed in the reaction solution. The solid product obtained by aging for 10 to 120 minutes and then separating and washing is left in a wet state or dried and then dissolved in an aqueous solution in which the metal salt is dissolved. The rod-like silica porous particles according to <1> or <2>, wherein the solid product is separated, washed and dried after aging at a temperature in the range of <1> or <2> Manufacturing method.
<7> according to any one of which comprises using an amount of SiO 2 1 mole per 0.01 to 0.10 moles of non-ionic surfactant in an alkaline silicate <4> to <6> Production method.
<8> The method according to any one of <4> to <7>, wherein the acid is used in an amount of 5 to 20 moles per mole of SiO 2 in the alkali silicate.
<9> The method according to any one of <4> to <8>, wherein water is used in an amount of 100 to 400 mol per mol of SiO 2 in the alkali silicate.
<10> The production method according to any one of < 6 > to <9>, wherein the metal salt is used in an amount of 0.01 to 1 mol per 1 mol of SiO 2 in the alkali silicate.
<11> A living material containing the rod-shaped porous silica particles according to <1> or <2>.
<12> A sustained-release silicon drug containing the rod-shaped porous silica particles according to <1> or <2>.
<13> An in-vivo embedding material containing the suspension or solvent liquid according to <3>.
<14> A silicon sustained-release drug containing the suspension or particle solvent mixed system according to <3>.

本発明に係るロッド状多孔質シリカ粒子は、高比表面積、細孔径の均一性、単分散性等の特徴を併せ持つことから、生体埋入材料や珪素を徐放させるための珪素徐放性薬剤として利用する際の問題点となる細胞毒性がほとんどないため、これらの用途に利用できる。
また、本発明方法によれば、細孔構造の制御剤として非イオン性界面活性剤を使用し、アルカリ珪酸塩水溶液と酸性水溶液を混合する極めて単純な反応系において、その他の有機化合物を添加することなく、反応物質の混合割合、攪拌並びに熟成反応温度、さらには攪拌並びに熟成反応時間を変化させることにより、ロッド状多孔体の前駆体となる界面活性剤を含んだロッド状有機無機メソ構造体を作製し、最終的に有機物を取除くことにより、長さ0.5μm以下、アスペクト比0.1〜1未満で、シリカ純成分の単分散性に優れたロッド状多孔質シリカ粒子を得ることができる。
しかも、本発明の製造方法によれば、ロッド状多孔質シリカ粒子の前駆体である界面活性剤を含んだロッド状有機無機メソ構造体を10分から数時間という極めて短時間で作製でき、酸性溶液中で生成した上記界面活性剤を含んだロッド状有機無機メソ構造体を、酸性溶液中でそのまま熟成したり、あるいは酸性溶液から分離・洗浄後熟成を行うことができる。
また、本発明の製造方法によれば、ロッド状のマクロ形態ばかりでなく、ハニカム状規則構造を有する7nm以上の開口径の1次元メソチャンネルだけでなく、メソチャンネルとマイクロ孔が共存するシリカ純成分のロッド状多孔質シリカ粒子を得ることができる。
更に、本発明の製造方法は、安価な原料を使用し、ほとんどの反応時間が静置もしくは攪拌条件による熟成工程であることから工業規模への応用も容易である。
Since the rod-shaped porous silica particles according to the present invention have characteristics such as a high specific surface area, uniform pore diameter, and monodispersity, a sustained-release silicon drug for sustained release of bioimplantable materials and silicon Since there is almost no cytotoxicity that becomes a problem when used as, it can be used in these applications.
In addition, according to the method of the present invention, a nonionic surfactant is used as a pore structure control agent, and other organic compounds are added in a very simple reaction system in which an alkali silicate aqueous solution and an acidic aqueous solution are mixed. Without changing the mixing ratio of the reactants, stirring and aging reaction temperature, and further stirring and aging reaction time, the rod-shaped organic inorganic mesostructure containing the surfactant that becomes the precursor of the rod-shaped porous body To obtain rod-shaped porous silica particles having a length of 0.5 μm or less, an aspect ratio of less than 0.1 to 1, and excellent silica monocomponent monodispersibility by finally removing organic matter. Can do.
Moreover, according to the production method of the present invention, it is possible to produce a rod-shaped organic inorganic mesostructure containing a surfactant that is a precursor of rod-shaped porous silica particles in an extremely short time of 10 minutes to several hours. The rod-shaped organic-inorganic mesostructure containing the surfactant produced therein can be aged in an acidic solution as it is, or can be aged after being separated and washed from the acidic solution.
In addition, according to the manufacturing method of the present invention, not only a rod-like macro form but also a one-dimensional mesochannel having an aperture diameter of 7 nm or more having a honeycomb-like regular structure, as well as pure silica in which a mesochannel and a micropore coexist. The component rod-like porous silica particles can be obtained.
Furthermore, since the production method of the present invention uses an inexpensive raw material and most of the reaction time is a aging step by standing or stirring conditions, it can be easily applied to an industrial scale.

本発明のロッド状多孔質シリカ粒子1個の概念図。The conceptual diagram of one rod-shaped porous silica particle of this invention. 本発明のロッド状多孔質シリカ粒子のTEM像。The TEM image of the rod-shaped porous silica particle of this invention. 比較例1のロッド状多孔質シリカ粒子のSEM像。3 is an SEM image of rod-shaped porous silica particles of Comparative Example 1. FIG. (a)比較例2−1のロッド状多孔質シリカ粒子のSEM像。(b)比較例2−2のロッド状多孔質シリカ粒子のSEM像。(A) SEM image of rod-shaped porous silica particles of Comparative Example 2-1. (B) SEM image of rod-shaped porous silica particles of Comparative Example 2-2. 実施例1−1のロッド状多孔質シリカ粒子のFE−SEM像。The FE-SEM image of the rod-shaped porous silica particle of Example 1-1. 実施例2−1のロッド状多孔質シリカ粒子のFE−SEM像。The FE-SEM image of the rod-shaped porous silica particle of Example 2-1. 実施例3−4のロッド状多孔質シリカ粒子のFE−SEM像。The FE-SEM image of the rod-shaped porous silica particle of Example 3-4. 実施例2−1及び比較例3のロッド状多孔質シリカ粒子の粒度分布曲線。The particle size distribution curve of the rod-shaped porous silica particle of Example 2-1 and Comparative Example 3. 実施例2−1、実施例3−1、実施例3−4及び実施例3−5のロッド状多孔質シリカ粒子の粒度分布曲線。The particle size distribution curve of the rod-shaped porous silica particle of Example 2-1, Example 3-1, Example 3-4, and Example 3-5. (a)、(b):実施例3−5のロッド状多孔質シリカ粒子のTEM像。(A), (b): TEM image of rod-shaped porous silica particles of Example 3-5. 実施例2−1、実施例3−1、及び実施例3−5のロッド状多孔質シリカ粒子のX線回折パターン。The X-ray-diffraction pattern of the rod-shaped porous silica particle of Example 2-1, Example 3-1, and Example 3-5. 実施例2−1、実施例3−1、及び実施例3−5のロッド状多孔質シリカ粒子の窒素吸着等温線。The nitrogen adsorption isotherm of the rod-shaped porous silica particle of Example 2-1, Example 3-1, and Example 3-5. 実施例2−1、実施例3−1、及び実施例3−5のロッド状多孔質シリカ粒子のBJH細孔分布曲線。The BJH pore distribution curve of the rod-shaped porous silica particle of Example 2-1, Example 3-1, and Example 3-5. 実施例2−1、実施例3−1、及び実施例3−5のロッド状多孔質シリカ粒子の窒素吸着等温線から得られるt−プロット。The t-plot obtained from the nitrogen adsorption isotherm of the rod-shaped porous silica particle of Example 2-1, Example 3-1, and Example 3-5. 実施例3−4のロッド状多孔質シリカ粒子を含有する細胞培養液中でNIH3T3細胞を72時間培養した後の細胞数の変化を表すグラフ。The graph showing the change of the number of cells after culture | cultivating NIH3T3 cell for 72 hours in the cell culture solution containing the rod-shaped porous silica particle of Example 3-4. 実施例3−5のロッド状多孔質シリカ粒子を含有する細胞培養液中でNIH3T3細胞を72時間培養した後の細胞数の変化を表すグラフ。The graph showing the change of the number of cells after culture | cultivating NIH3T3 cell for 72 hours in the cell culture solution containing the rod-shaped porous silica particle of Example 3-5. 実施例3−4及び実施例3−5のロッド状多孔質シリカ粒子を含有する細胞培養液中でNIH3T3細胞を72時間培養した後の細胞培養液の珪素濃度の変化を表すグラフ。The graph showing the change of the silicon concentration of a cell culture solution after culturing NIH3T3 cell for 72 hours in the cell culture solution containing the rod-shaped porous silica particle of Example 3-4 and Example 3-5.

本発明のロッド状シリカ多孔質粒子は、透過型及び走査型顕微鏡観察により、ハニカム状に規則配列したメソ孔径3nm以上の一次元チャンネル状細孔が貫通する方向の粒子の長さが0.5μm以下で、この粒子伸張方向に垂直な粒子断面の長さとの比をアスペクト比とする時、アスペクト比が0.1〜1未満のロッド状の形態を有する粒子であって、水分散系における粒度分布ピーク(体積基準)の最大値が10μm以下の範囲に認められる緩い集合体を形成している、シリカ骨格中のSi元素が他金属で置換されていないことを特徴とする。   The rod-like silica porous particle of the present invention has a particle length of 0.5 μm in a direction through which a one-dimensional channel-like pore having a mesopore diameter of 3 nm or more regularly arranged in a honeycomb shape penetrates through transmission and scanning microscope observations. In the following, when the aspect ratio is the ratio to the length of the particle cross section perpendicular to the particle extension direction, the particles have a rod-like form with an aspect ratio of less than 0.1 to 1, and the particle size in an aqueous dispersion system It is characterized in that the Si element in the silica skeleton forming a loose aggregate whose maximum distribution peak (volume basis) is 10 μm or less is not substituted with another metal.

本発明のロッド状シリカ多孔質粒子は、模式的には図1に示される。図1において、Lは、ハニカム状に規則配列したメソ孔径3nm以上の一次元チャンネル状細孔が貫通する方向の粒子の長さ(ロッド状粒子の長さ)であり、Wは粒子伸張方向に垂直な粒子断面の長さ(ロッド状粒子の幅)であり、アスペクト比はL/Wで表される。
したがって、本発明のロッド状シリカ多孔質粒子は、図1でいう、メソ孔径が3nm以上、好ましくは4〜20nm、Lが0.5μm以下、好ましくは0.15〜0.45μmであり、アスペクト比(L/W)が0.1〜1未満、好ましくは0.15〜0.5の粒子を意味する。
Lが0.5μmを超えると、一次元メソチャンネルが長く細孔内における物質移動が抑制されることが予想され、アスペクト比が0.1未満であると、極端に薄い異形の粒子となり単分散化が難しくなり、1以上であると、合成条件の調整が難しく長短混合の不均質な粒子群が形成され易くなるので好ましくない。
The rod-like silica porous particles of the present invention are schematically shown in FIG. In FIG. 1, L is the length of a particle (the length of a rod-shaped particle) in a direction through which a one-dimensional channel-shaped pore having a mesopore diameter of 3 nm or more arranged regularly in a honeycomb shape passes, and W is in the particle stretching direction. It is the length of the vertical particle cross section (the width of the rod-like particle), and the aspect ratio is expressed by L / W.
Therefore, the rod-like silica porous particles of the present invention have a mesopore diameter of 3 nm or more, preferably 4 to 20 nm, L of 0.5 μm or less, preferably 0.15 to 0.45 μm, as shown in FIG. It means particles having a ratio (L / W) of less than 0.1 to 1, preferably 0.15 to 0.5.
If L exceeds 0.5 μm, it is expected that the one-dimensional mesochannel will be long and mass transfer in the pores will be suppressed, and if the aspect ratio is less than 0.1, the particles will be extremely thin and monodispersed. If it is 1 or more, it is difficult to adjust the synthesis conditions, and long and short mixed heterogeneous particle groups are likely to be formed.

また、本発明のロッド状シリカ多孔質粒子は、水分散系における粒度分布ピーク(体積基準)の最大値が10μm以下の範囲に認められる緩い集合体を形成していることを特徴としている。また、シリカ骨格中のSi元素が他金属で置換されていないことを特徴とする。
ここで、水分散系における粒度分布ピーク(体積基準)の最大値とは、レーザー回折散乱原理に基づく粒子計測法により測定された値を意味し、本発明においては、この値が10μm以下の範囲に認められるので、単分散性に優れたロッド状多孔質シリカ粒子が得られる。
Further, the rod-like silica porous particles of the present invention are characterized in that they form a loose aggregate in which the maximum value of the particle size distribution peak (volume basis) in the aqueous dispersion is within a range of 10 μm or less. Further, the Si element in the silica skeleton is not substituted with another metal.
Here, the maximum value of the particle size distribution peak (volume basis) in the water dispersion means a value measured by a particle measurement method based on the laser diffraction scattering principle, and in the present invention, this value is in a range of 10 μm or less. Therefore, rod-shaped porous silica particles having excellent monodispersibility can be obtained.

ここで単分散性に優れた粒子とは、図2のTEM像に示すように、独立に存在する図1の模式図に示すような個々の粒子とその緩い凝集体から構成されている。なお、「緩い集合体」とは、個々の粒子中にはチャンネル状の1次元メソ細孔がハニカム状に規則配列しており、例えば外界から分子あるいはイオン等が、それぞれの粒子の細孔に等しい確率で接触可能な状態にある粒子群のことを意味する。   Here, as shown in the TEM image of FIG. 2, the particles having excellent monodispersity are composed of individual particles and loose aggregates as shown in the schematic diagram of FIG. The “loose aggregate” means that one-dimensional mesopores in a channel form are regularly arranged in a honeycomb shape in each particle, and for example, molecules or ions from the outside world enter the pores of each particle. It means a group of particles that can be contacted with equal probability.

更に、本発明のロッド状シリカ多孔質粒子は、シリカ骨格中のSi元素が他金属で置換されていないことが重要である。その骨格が他の金属で置換されると、金属の種類によっては不測の細胞毒性の発現といった問題を生じるからである。   Furthermore, in the rod-like silica porous particles of the present invention, it is important that the Si element in the silica skeleton is not substituted with another metal. This is because if the skeleton is replaced with another metal, problems such as unexpected cytotoxicity may occur depending on the type of metal.

以下、本発明のロッド状シリカ多孔質粒子を更に具体的に説明する。
本発明のロッド状多孔質シリカ粒子は、図5(実施例1−1、図6(実施例2−1)および図7(実施例3−4)の電界放射型走査電子顕微鏡(FE-SEM)写真に示す通り、ミクロンサイズのロッド状形態を有し、アスペクト比が揃っていることがわかる。
図8は本発明の実施例2−1と比較例(特許文献2)のロッド状多孔質シリカ粒子の粒度分布を比較したものである。本発明では熟成工程をより高温で行うことが先願(特許文献2)との大きな差異であり、攪拌温度が同じでも粒度分布は熟成温度によって著しく異なり、凝集の程度が顕著に緩和されていることがわかる。
Hereinafter, the rod-like silica porous particles of the present invention will be described more specifically.
The rod-shaped porous silica particles of the present invention are obtained from the field emission scanning electron microscope (FE-SEM) shown in FIG. 5 (Example 1-1, FIG. 6 (Example 2-1), and FIG. 7 (Example 3-4). ) As shown in the photograph, it has a micron-sized rod-like shape and an aspect ratio is uniform.
FIG. 8 compares the particle size distribution of the rod-shaped porous silica particles of Example 2-1 of the present invention and Comparative Example (Patent Document 2). In the present invention, the aging process is performed at a higher temperature, which is a major difference from the prior application (Patent Document 2), and even when the stirring temperature is the same, the particle size distribution varies significantly depending on the aging temperature, and the degree of aggregation is remarkably reduced. I understand that.

図9は本発明の実施例2−1、3−1、3−4及び3−5のロッド状多孔質シリカ粒子の粒度分布の特徴を示している。図8より、特許文献2の粒度分布のピーク値(体積基準)20μmに対し、本願のロッド状多孔質シリカ粒子は10μm以下に粒度分布の最大ピークが存在していることが分かる。高温での熟成により凝集の程度が顕著に改善され、金属塩の添加によってさらに単分散化が促進されることが明瞭である。   FIG. 9 shows the characteristics of the particle size distribution of the rod-like porous silica particles of Examples 2-1, 3-1, 3-4 and 3-5 of the present invention. From FIG. 8, it can be seen that the maximum peak of the particle size distribution is present in the rod-shaped porous silica particles of the present application at 10 μm or less with respect to the peak value (volume basis) of 20 μm in the particle size distribution of Patent Document 2. It is clear that aging at high temperatures significantly improves the degree of aggregation and that monodispersion is further promoted by the addition of metal salts.

図10は、本発明の実施例3−5のロッド状多孔質シリカ粒子について、伸張方向並びにその断面の構造を示す高分解能電子顕微鏡(TEM)写真である。本発明のロッド状多孔質シリカ粒子には、ロッド状粒子中を貫通して延びる均一径の1次元メソチャンネル(図10a)が、ハニカム状に規則配列していることを示している(図10b)。   FIG. 10 is a high-resolution electron microscope (TEM) photograph showing the extension direction and the cross-sectional structure of the rod-shaped porous silica particles of Example 3-5 of the present invention. In the rod-shaped porous silica particles of the present invention, it is shown that the one-dimensional mesochannels (FIG. 10a) having a uniform diameter extending through the rod-shaped particles are regularly arranged in a honeycomb shape (FIG. 10b). ).

さらに、本発明の実施例2−1、実施例3−1、及び実施例3−5のロッド状多孔質シリカ粒子は、図11のXRD回折パターンに示すように、回折角2θ=0.5乃至5.0度にメソ孔の規則配列を示す複数のピークを有し、図10のTEM像に認められるメソチャンネルがハニカム状に積層していることに対応している。   Furthermore, the rod-shaped porous silica particles of Example 2-1, Example 3-1, and Example 3-5 of the present invention have a diffraction angle 2θ = 0.5 as shown in the XRD diffraction pattern of FIG. This corresponds to the fact that mesochannels having a plurality of peaks indicating a regular arrangement of mesopores at ˜5.0 degrees and being observed in the TEM image of FIG. 10 are stacked in a honeycomb shape.

また、図12は、本発明の実施例2−1、実施例3−1、及び実施例3−5のロッド状多孔質シリカ粒子の吸着等温線であり、メソ構造の高い規則性に基づく典型的なIV型の吸着等温線と、シリンダー状細孔の特長であるHI型のヒステリシスが認められ、その細孔径分布は図13に示すようにシャープで、メソ孔の均一性を裏付けている。また、図14はt−plotであり、直線Mと縦軸との切片が正値であることからマイクロ孔の存在が明らかで、その切片の値からマイクロ孔容量を算出した。なお、150℃で熟成したロッド状粒子では、直線M’は極めて原点に近い点を通過することからマイクロ孔がほとんど存在しないことが分かる。また、本願の全細孔容量はメソ孔とマイクロ孔との総和であり、t−プロットの直線N(N’)と縦軸との切片に対応する吸着量から求められる。   FIG. 12 is an adsorption isotherm of the rod-shaped porous silica particles of Example 2-1, Example 3-1, and Example 3-5 of the present invention, and is typical based on the high regularity of the mesostructure. A typical IV-type adsorption isotherm and HI-type hysteresis, which is a feature of cylindrical pores, are observed, and the pore size distribution is sharp as shown in FIG. 13, confirming the uniformity of mesopores. Moreover, FIG. 14 is t-plot, and since the intercept between the straight line M and the vertical axis is a positive value, the presence of micropores is clear, and the micropore volume was calculated from the value of the intercept. In the case of rod-shaped particles aged at 150 ° C., the straight line M ′ passes through a point very close to the origin, indicating that there are almost no micropores. The total pore volume of the present application is the sum of mesopores and micropores, and is determined from the amount of adsorption corresponding to the intercept between the straight line N (N ′) of the t-plot and the vertical axis.

つぎに、本発明のロッド状多孔質シリカ粒子の製造方法について説明する。
本発明のロッド状多孔質シリカ粒子の製造方法では、まず、酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を45℃から60℃未満、好ましくは45℃〜55℃の温度条件下で攪拌しながら混合し、一定時間経過しても反応溶液からの粒子の析出による白濁が認められない間に、攪拌を停止する。この撹拌工程に続く熟成工程には2通りの方法がある。
Below, the manufacturing method of the rod-shaped porous silica particle of this invention is demonstrated.
In the method for producing rod-shaped porous silica particles of the present invention, first, an alkali silicate aqueous solution is mixed at 45 ° C. to less than 60 ° C., preferably 45 ° C. to 55 ° C., in a mixed solution of an acidic aqueous solution and a nonionic surfactant. Mixing is performed under stirring under temperature conditions, and stirring is stopped while no turbidity due to precipitation of particles from the reaction solution is observed after a certain period of time. There are two methods for the aging step following this stirring step.

第一の方法は、撹拌を停止した後、反応容器をそのまま昇温したり、一定温度に保った恒温反応装置に移し、静置あるいは攪拌しながら、50℃から200℃の一定温度、好ましくは60℃から150℃で一定時間熟成することを特徴とするものである。   In the first method, after the stirring is stopped, the reaction vessel is heated as it is or transferred to a constant temperature reactor maintained at a constant temperature, and is kept at a constant temperature of 50 to 200 ° C. Aging is performed at a temperature of 60 ° C. to 150 ° C. for a predetermined time.

第二の方法は、撹拌を停止した後、そのままあるいはゆっくりと撹拌した状態で10分から120分間、好ましくは20分から90分間熟成し、生成したロッド状有機無機ナノ複合体を一旦酸溶液から分離・洗浄した後、一定温度に保った恒温反応装置で静置あるいは攪拌しながら、さらに50℃から200℃、好ましくは60℃から150℃の一定温度で一定時間熟成することに特徴がある。   In the second method, after the stirring is stopped, the rod-shaped organic-inorganic nanocomposite is once separated from the acid solution by aging for 10 minutes to 120 minutes, preferably 20 minutes to 90 minutes, with stirring as it is or slowly. After washing, it is characterized by aging at a constant temperature of 50 ° C. to 200 ° C., preferably 60 ° C. to 150 ° C. for a predetermined time while standing or stirring in a constant temperature reactor maintained at a constant temperature.

もっとも両方法とも熟成工程が終了したら、生成固体を分離・洗浄し、乾燥後、非イオン性界面活性剤を除去する点では共通している。   However, both methods are common in that after the ripening step is completed, the produced solid is separated and washed, and after drying, the nonionic surfactant is removed.

前記方法において、攪拌温度を45℃から60℃未満とするのは、45℃以下では最終生成物中にはアスペクト比が1以上のロッド状粒子が形成され易く、60℃以上では非イオン性系面活性剤中の親水基部分の脱水和が起こりやすくなる為、均質な形態を持つロッド状粒子の生成が阻害され、さらにはメソ構造の高い規則性が損なわれてしまうためである。   In the above method, the stirring temperature is set to 45 ° C. to less than 60 ° C. When the temperature is 45 ° C. or less, rod-like particles having an aspect ratio of 1 or more are easily formed in the final product. This is because dehydration of the hydrophilic group portion in the surfactant is likely to occur, so that the formation of rod-like particles having a homogeneous shape is hindered, and the high regularity of the mesostructure is impaired.

また、熟成温度を、50℃から200℃の範囲とするのは、50℃以下では長時間熟成してもその効果が得られず、200℃以上では150℃と比較してメソ構造の規則性並びに単分散性に顕著な差異が見出せないためである。さらに、60℃から150℃の範囲での熟成時間は、熟成温度が高い程短くて良く、150℃の場合には1時間でも充分であり、低い場合には数十時間熟成を行っても良い。
また、上記の攪拌工程後の熟成工程で、熟成時間を10分から120分とするのは、熟成時間が10分以下ではロッド状粒子の生成量が過少となり反応効率が低くなり、120分以上では生成量に著しい差異が認められないためである。
The aging temperature is in the range of 50 ° C. to 200 ° C. The effect is not obtained even when aging is performed for a long time at 50 ° C. or less, and the regularity of the meso structure is compared with 150 ° C. at 200 ° C. or more. Moreover, it is because a remarkable difference cannot be found in monodispersity. Further, the aging time in the range of 60 ° C. to 150 ° C. may be shorter as the aging temperature is higher, and when it is 150 ° C., 1 hour is sufficient, and when it is lower, aging may be performed for several tens of hours. .
In the ripening step after the stirring step, the ripening time is set to 10 minutes to 120 minutes. When the ripening time is 10 minutes or less, the amount of rod-shaped particles generated is too low and the reaction efficiency is lowered. This is because no significant difference is found in the amount produced.

さらに、攪拌と熟成工程の2段階での本製造方法において、単分散性に優れ、アスペクト比が0.1〜1未満のロッド状有機無機メソ構造体が形成される重要な条件として、熟成温度の制御に加え塩の共存効果について説明する。   Furthermore, in this production method in two stages of stirring and aging process, the aging temperature is an important condition for forming a rod-like organic inorganic mesostructure having excellent monodispersibility and an aspect ratio of less than 0.1 to 1. The coexistence effect of the salt in addition to the control of the above will be described.

塩類が全く共存しない反応条件として、シリカ源として珪酸アルカリの代わりにテトラエチルオルトシリケート(TEOS)を使用した場合、本発明に基づく短時間での反応では、長さを0.5μm以下に制御し、しかも均質な形態を有するロッド状粒子を作製する条件を見いだすことは難しい。
攪拌反応を30℃から60℃未満で行った場合、熟成温度によらず本法の特長を有するロッド状多孔質シリカの作製は困難で、例えば、45℃で攪拌し、熟成を100℃で行った場合、NaCl無添加の場合にはアスペクト比1以上の長いロッド状粒子が生成するが(図4a)、NaClを添加すると、形態は著しく変化し、長いロッド状粒子の他に小粒子の凝集体が認められる(図4b)。
As a reaction condition in which salts do not coexist at all, when tetraethylorthosilicate (TEOS) is used as a silica source instead of alkali silicate, the length is controlled to 0.5 μm or less in a short reaction according to the present invention, Moreover, it is difficult to find conditions for producing rod-shaped particles having a homogeneous shape.
When the stirring reaction is carried out at 30 ° C to less than 60 ° C, it is difficult to produce rod-shaped porous silica having the features of this method regardless of the aging temperature. For example, stirring is carried out at 45 ° C and aging is carried out at 100 ° C. In the case of no addition of NaCl, long rod-shaped particles having an aspect ratio of 1 or more are formed (FIG. 4a), but when NaCl is added, the morphology changes significantly, and in addition to the long rod-shaped particles, small particles are aggregated. Aggregation is observed (Figure 4b).

一方、珪酸ソーダをシリカ源とする場合、本願実施例に示す通り、45℃以上で撹拌した場合、熟成温度を高くしてもアスペクト比1以上のロッド状粒子は形成されない。TEOS等の有機シリコン系シリカ源は珪酸アルカリ等の水溶性シリカ源と比較すると、加水分解速度が遅く、その結晶化速度の制御が難しく、さらに反応溶液を均質化するためにアルコール類等他物質の添加、あるいは長時間の攪拌反応を必要とし、粒子の凝集が起こり易いといった課題がある。   On the other hand, when sodium silicate is used as the silica source, as shown in the examples of the present application, when stirring is performed at 45 ° C. or higher, rod-shaped particles having an aspect ratio of 1 or more are not formed even when the aging temperature is increased. Organic silicon-based silica sources such as TEOS have a slower hydrolysis rate than water-soluble silica sources such as alkali silicates, and it is difficult to control the crystallization rate. In addition, other substances such as alcohols are used to homogenize the reaction solution. Or a long stirring reaction is required, and there is a problem that particles are likely to aggregate.

このことは、短いロッド状粒子の形成を誘導するには、塩類の共存下において、攪拌をある一定温度以上で行うことが重要であることを示している。塩類が共存しない場合、メソ孔径の大きなロッド状粒子を作製するため、熟成を高温で行うと、アスペクト比は1以上の細長い粒子が形成し易くなる。特に、塩類中の陽イオンの存在が形態制御に重要な効果を発揮することが示唆され、珪酸アルカリ溶液は原料中にアルカリ金属イオンを含むことから、短いロッド状粒子を製造するために最適なシリカ原料と言える。共存する陽イオンは界面活性剤の臨界ミセル濃度を下げ、また水溶液を均質化する効果とイオン強度の増大によるシリカ縮合を促進することなどから、短いロッド状有機無機メソ構造体の形成に有用な役割を果たすものと考えられる。   This indicates that in order to induce the formation of short rod-shaped particles, it is important to perform stirring at a certain temperature or higher in the presence of salts. In the case where salts do not coexist, rod-shaped particles having a large mesopore diameter are produced. Therefore, when aging is performed at a high temperature, elongated particles having an aspect ratio of 1 or more are easily formed. In particular, it is suggested that the presence of cations in the salt exerts an important effect on morphology control, and the alkali silicate solution contains alkali metal ions in the raw material, which is optimal for producing short rod-like particles. It can be said that it is a silica raw material. The coexisting cation lowers the critical micelle concentration of the surfactant, promotes the silica condensation by increasing the ionic strength and the effect of homogenizing the aqueous solution, and is useful for the formation of short rod-like organic inorganic mesostructures. It is considered to play a role.

これらの実験事実は、ロッド状形態を形成し易い反応(原料物質混合)条件において有機無機メソ構造体を形成させる際に、ロッド状ミセルを取り囲むシリカ成分の縮合速度を速め、個々のロッド状有機無機メソ構造体内のシリカ骨格構造の形成を著しく促進することで、構造体間の凝集を抑制することが、単分散性の良好なロッド状粒子を作製するための重要なポイントであることを示している。   These experimental facts indicate that when forming an organic-inorganic mesostructure under reaction (mixture of raw material) conditions that easily form a rod-like form, the condensation rate of the silica component surrounding the rod-like micelle is increased, and individual rod-like organic substances are formed. Inhibiting the aggregation between the structures by significantly promoting the formation of the silica skeleton structure in the inorganic mesostructure is an important point for producing rod-shaped particles with good monodispersity. ing.

このような本発明の製造方法で0.5μm以下のロッド状の形状を呈すると同時に、メソ細孔がハニカム状に規則配列したロッド状多孔質粒子の生成機構は以下のように推定される。
アルカリ珪酸塩は強酸性水溶液下でシリカ溶存種がプラスに帯電し[I+]、一方、強酸に溶解した非イオン性界面活性剤[N0]においても、界面活性剤表面の親水基部分がプロトン[H+]に覆われることでプラスの電荷を帯び、プラスに帯電したシリカ、界面活性剤の両表面間に陰イオン[X-]が介在することで、電気的に安定な有機無機メソ構造体[N0+][X-+]を形成すると推定される。
The production mechanism of rod-like porous particles in which mesopores are regularly arranged in a honeycomb shape while exhibiting a rod-like shape of 0.5 μm or less by the production method of the present invention is estimated as follows.
Alkali silicates have positively charged silica dissolved species in a strongly acidic aqueous solution [I + ], while nonionic surfactants [N 0 ] dissolved in strong acids also have hydrophilic groups on the surface of the surfactant. It is positively charged by being covered with proton [H + ], and an anion [X ] is interposed between both surfaces of the positively charged silica and the surfactant, so that an electrically stable organic-inorganic meso It is presumed to form the structure [N 0 H + ] [X I + ].

更に、溶液中にはアルカリ珪酸塩と酸との反応により発生したアルカリイオン(M+)が存在し、このイオンにより表面が帯電したシリカ間同士の電荷は相殺されるため、徐々にゲル化が進行しシリカ骨格中に非イオン性界面活性剤を包含した有機無機メソ構造体が生成する。
すなわち、この有機無機メソ構造体がロッド状構造体を形成し易い反応条件となるよう、特に非イオン性界面活性剤[N0]を選択することで、ミクロンオーダーのロッド状形態を有する粒子に成長すると推定され、この時有機無機メソ構造体[N0+][X-+]の構造を維持したまま、ロッド長を短くするためには、形成される温度をできるだけ高くすることが効果的と推定される。さらに、この構造体が集合して1個のロッド状粒子として生成した段階で、より高温で熟成し、1個の粒子内におけるシリカの縮合が速やかに進行し、その結果目的とする単分散性に優れたロッド状粒子が得られる易くなると考えられる。
Furthermore, the solution contains alkali ions (M + ) generated by the reaction between the alkali silicate and the acid, and the charges between the silicas whose surfaces are charged are offset by these ions. It proceeds to produce an organic-inorganic mesostructure containing a nonionic surfactant in the silica skeleton.
That is, by selecting a nonionic surfactant [N 0 ] so that the organic-inorganic mesostructure can easily form a rod-like structure, particles having a micron-order rod-like morphology can be obtained. In order to shorten the rod length while maintaining the structure of the organic-inorganic mesostructure [N 0 H + ] [X I + ] at this time, it is necessary to increase the temperature to be formed as high as possible. It is estimated to be effective. Further, at the stage where this structure is aggregated and formed as one rod-like particle, it is aged at a higher temperature, and the condensation of silica in one particle proceeds rapidly, resulting in the desired monodispersity. It is considered that rod-like particles excellent in the above can be easily obtained.

すなわち、ロッド状有機無機メソ構造体相互の凝集と、メソチャンネル方向への成長を抑制しながら、メソ構造の規則性を向上させることで、ロッド状多孔質シリカ粒子前駆体が形成され、有機成分を焼成或は溶媒抽出等の処理により除去することで得られる最終生成物は、図1に示すようにアスペクト比0.1〜1未満のロッド状を呈すると同時に、1次元チャンネルが六方晶系に規則配列したメソ孔を併せ持ち、2つの異なるスケールで秩序構造を有していることになる。   That is, the rod-shaped porous silica particle precursor is formed by improving the regularity of the mesostructure while suppressing the aggregation between the rod-shaped organic inorganic mesostructures and the growth in the mesochannel direction, and the organic component The final product obtained by removing by baking or solvent extraction or the like exhibits a rod shape with an aspect ratio of less than 0.1 to 1 as shown in FIG. Together with regularly arranged mesopores, it has an ordered structure at two different scales.

また、熟成温度が高い程、非イオン性の界面活性剤の疎水部が大きくなると共に、ロッド状多孔質シリカ粒子の前駆体であるロッド状有機無機メソ構造体を形成するシリカ相の脱水縮合がより迅速に進行し、シリカ相が収縮すると、内部のミセル相はより広い空間を誘起することになり、大きなメソ孔を持ったロッド状シリカが得られることになる。なお、ロッド状有機無機メソ構造体を構成する界面活性剤の親水基はシリカ骨格内に侵入しており、その除去に伴いマイクロ孔が形成され、生成多孔体のメソ孔はマイクロ孔で連結されていることになる。この時、熟成温度を高くすると親水基が疎水性を帯びる傾向があり、150℃で熟成するとマイクロ孔がほとんど存在しないロッド状多孔質シリカ粒子が得られる。   In addition, the higher the aging temperature, the larger the hydrophobic portion of the nonionic surfactant, and the dehydration condensation of the silica phase forming the rod-shaped organic inorganic mesostructure that is the precursor of the rod-shaped porous silica particles. When the silica phase progresses more rapidly and the silica phase contracts, the internal micelle phase induces a wider space, and rod-like silica having large mesopores is obtained. In addition, the hydrophilic group of the surfactant constituting the rod-shaped organic-inorganic mesostructure has penetrated into the silica skeleton, and micropores are formed along with the removal, and the mesopores of the resulting porous body are connected by the micropores. Will be. At this time, when the aging temperature is increased, the hydrophilic group tends to be hydrophobic, and when aging is performed at 150 ° C., rod-shaped porous silica particles having almost no micropores are obtained.

上記の通り大きな細孔径を有するロッド状粒子を作製するには、反応温度、特に熟成温度が高い程効果的である。一方、反応溶液は強い酸性溶液であり、高温での熟成をより容易に実施することも重要である。このためにはロッド状形態を損なうことなく、中性領域で高温での熟成を行うことができればより製造条件が緩和されることになる。これらの諸課題を解決し当該多孔質粒子を作製するためには、60℃以下の低温で生成する短いロッド状有機無機メソ構造体を、酸性溶液中から、例えば濾過、遠心分離等により分離・洗浄後、水溶液中において水熱条件下で熟成を施すことによって可能である。さらに、熟成工程において、シリカと同型置換しない無機塩あるいは有機化合物等を添加することも極めて効果的である。この熟成工程には、洗浄して得られる生成物を湿潤状態のまま供しても、あるいは乾燥してからでも使用することができる。
特に、水溶液中での水熱処理において無機塩等を添加することは、粒子の単分散性の向上に著しい効果を発揮することが明らかで、メソ孔径や細孔容量等の細孔特性の制御にも有効である。
As described above, the higher the reaction temperature, particularly the aging temperature, is more effective for producing rod-shaped particles having a large pore diameter. On the other hand, the reaction solution is a strong acidic solution, and it is also important to carry out aging at a high temperature more easily. For this purpose, if the aging at a high temperature can be carried out in a neutral region without impairing the rod-like form, the production conditions are further relaxed. In order to solve these problems and produce the porous particles, a short rod-like organic inorganic mesostructure formed at a low temperature of 60 ° C. or lower is separated from an acidic solution by, for example, filtration, centrifugation, etc. After washing, this is possible by aging in an aqueous solution under hydrothermal conditions. Furthermore, it is also very effective to add an inorganic salt or an organic compound that is not isomorphously substituted with silica in the aging step. In this aging step, the product obtained by washing can be used in a wet state or after being dried.
In particular, it is clear that the addition of an inorganic salt or the like during hydrothermal treatment in an aqueous solution has a significant effect on improving the monodispersibility of the particles, and is effective in controlling pore characteristics such as mesopore diameter and pore volume. Is also effective.

さらに、後述の実施例について示した表1から明らかなように、本製造方法は、特に酸濃度と熟成温度を制御することにより、アスペクト比及び細孔特性を効果的に制御できることも大きな特徴である。
そして、既に指摘した通り、本発明の製造方法は、広い範囲の均一細孔径を有し、且つ0.5μm以下のロッド状を呈する多孔質シリカ粒子を作製するための効率的な方法である。すなわち、有機化合物等の細孔拡張剤を用いることなく単純な反応系で、アスペクト比0.1〜1未満のロッド状多孔質シリカ粒子が合成でき、3.5nm以上の均一細孔径を持ったロッド状多孔質シリカ粒子が提供できることが顕著な特徴である。
Further, as is apparent from Table 1 shown for the examples described later, this production method is also characterized in that the aspect ratio and pore characteristics can be effectively controlled, particularly by controlling the acid concentration and the aging temperature. is there.
And as already pointed out, the production method of the present invention is an efficient method for producing porous silica particles having a uniform pore diameter in a wide range and exhibiting a rod shape of 0.5 μm or less. That is, rod-shaped porous silica particles having an aspect ratio of less than 0.1 to 1 can be synthesized with a simple reaction system without using a pore expanding agent such as an organic compound, and have a uniform pore diameter of 3.5 nm or more. It is a remarkable feature that rod-like porous silica particles can be provided.

また、本発明の製造法においては、熟成時間は生成物のマクロ形態並びにメソ孔の大きさやメソ構造の規則性等の細孔特性に影響し、熟成時間が長いほどメソ構造の規則性は高くなると推定されるが、本願のロッド状粒子の形態が保持される条件であれば、特に熟成時間に制約はない。   In the production method of the present invention, the aging time affects the macro form of the product and the pore characteristics such as the size of the mesopores and the regularity of the mesostructure. The longer the aging time, the higher the regularity of the mesostructure. As long as the condition of the rod-shaped particles of the present application is maintained, the aging time is not particularly limited.

本発明の製造法における反応温度については前記の通り、攪拌工程においては45℃乃至60℃未満の範囲、好ましくは45℃以上55℃以下の範囲である。また、熟成温度は、50℃から200℃の範囲、好ましくは60℃から150℃の範囲である。   As described above, the reaction temperature in the production method of the present invention is in the range of 45 ° C. to less than 60 ° C., preferably in the range of 45 ° C. to 55 ° C. in the stirring step. The aging temperature is in the range of 50 ° C to 200 ° C, preferably in the range of 60 ° C to 150 ° C.

本発明の製造法においては、初期段階における撹拌反応でロッド状多孔質シリカ粒子前駆体が生成する条件を満たすように、界面活性剤、酸、シリカ等の反応物質の混合割合、さらには撹拌温度と時間、および熟成温度と時間を制御することによってロッド状粒子の長さ、アスペクト比等の形態並びに細孔特性の制御が可能である。特に、高温状態において非イオン性界面活性剤の親水部が疎水的になることを利用して、100℃以上で熟成すると8nm以上の細孔径を有し、規則性の高いメソ構造を有するロッド状多孔質シリカ粒子が作製できる。   In the production method of the present invention, in order to satisfy the condition that the rod-shaped porous silica particle precursor is generated by the stirring reaction in the initial stage, the mixing ratio of the reactants such as surfactant, acid, silica and the like, and further the stirring temperature It is possible to control the shape of the rod-like particles, the aspect such as the aspect ratio, and the pore characteristics by controlling the aging time and the aging temperature and time. In particular, by utilizing the fact that the hydrophilic part of the nonionic surfactant becomes hydrophobic in a high temperature state, when it is aged at 100 ° C. or higher, it has a pore size of 8 nm or more and a rod shape having a highly ordered mesostructure. Porous silica particles can be produced.

本発明においては、上記原料の添加順序は極めて重要であり、ロッド状形態を形成させるためには、アルカリ珪酸塩水溶液を、酸に溶解した非イオン性界面活性剤溶液に添加しなければならない。また、本発明の製造方法では、界面活性剤の除去方法としては加熱処理ばかりでなくエタノール、エタノール・塩酸系による抽出法も適用できる。   In the present invention, the order of addition of the raw materials is extremely important. In order to form a rod-like form, an aqueous alkali silicate solution must be added to a nonionic surfactant solution dissolved in an acid. In the production method of the present invention, not only the heat treatment but also an extraction method using ethanol, ethanol / hydrochloric acid system can be applied as a method for removing the surfactant.

[原料]
本発明で使用される、シリカ原料、非イオン性界面活性剤、及び酸について更に説明する。
本発明で使用されるシリカ原料としては、アルカリ珪酸塩を使用することが可能で、比較的廉価であるナトリウム珪酸塩が好ましい。ナトリウム珪酸塩としてはNa2O・mSiO2式中、mは1乃至5の数、特に1.5乃至4.5の数である組成を有するナトリウム珪酸塩水溶液を使用することが好ましい。
[material]
The silica raw material, nonionic surfactant, and acid used in the present invention will be further described.
As the silica raw material used in the present invention, alkali silicate can be used, and sodium silicate which is relatively inexpensive is preferable. As the sodium silicate, a sodium silicate aqueous solution having a composition in which m is a number of 1 to 5, particularly 1.5 to 4.5 in the Na 2 O · mSiO 2 formula is preferably used.

非イオン性界面活性剤としては、ポリエチレンオキシド(PEO)を含む高分子界面活性剤が使用でき、特にPEOを含むトリブロック共重合体が好ましく、さらにはポリエチレンオキシド−ポリプロピレンオキシド−ポリエチレンオキシド(PEO−PPO−PEO)の使用が最適である。本発明で使用される、トリブロック共重合体の重合比、平均分子量並びに疎水基の重量割合が重要であり、その平均分子量は約4800以上で、疎水基の重量割合が、重量60%以上であることが望ましい。   As the nonionic surfactant, a polymer surfactant containing polyethylene oxide (PEO) can be used, and in particular, a triblock copolymer containing PEO is preferable, and further, polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-). The use of PPO-PEO) is optimal. The polymerization ratio, average molecular weight and hydrophobic group weight ratio of the triblock copolymer used in the present invention are important. The average molecular weight is about 4800 or more, and the hydrophobic group weight ratio is 60% or more by weight. It is desirable to be.

酸としては、塩酸、硝酸、硫酸、酢酸等いずれも使用することができ、特にロッド状粒子の生成において最も効果的である塩酸が好ましい。また、酸類として種々の廃酸を利用できる可能性もありコスト低減に有用と考えられる。
本発明のロッド状多孔質シリカ粒子の製造方法では、出発原料の混合モル比は、SiO2:非イオン性界面活性剤:Na2O:酸:水=1:0.01〜0.1:0.25〜1:5〜20:100〜400であるのが好ましい。
As the acid, any of hydrochloric acid, nitric acid, sulfuric acid, acetic acid and the like can be used, and hydrochloric acid which is most effective in producing rod-shaped particles is particularly preferable. Moreover, there is a possibility that various waste acids can be used as acids, which is considered useful for cost reduction.
In the method for producing rod-shaped porous silica particles of the present invention, the mixing molar ratio of the starting materials is SiO 2 : nonionic surfactant: Na 2 O: acid: water = 1: 0.01 to 0.1: It is preferable that it is 0.25-5: 5-20: 100-400.

金属塩としては、均質な透明水溶液が形成され、シリカ骨格中のSiと置換することのない金属元素を含むものであれば制約はなく、例えば、NaCl、KCl、及びMgCl、AlCl、NiCl等の無水塩やその水和物等を使用できる。金属塩の添加は特に単分散性の向上を目的とするもので、その添加量はSiO 1モルに対し、金属元素0.01モル以上であって、単分散性の向上が認められれば上限を規定する必要はないが、1モル以下で充分である。なお、ロッド状粒子の単分散化に、熟成工程における金属塩等の添加が極めて効果的であることを明らかにしたことは、本発明において極めて特徴的なことである。 The metal salt is not limited as long as a homogeneous transparent aqueous solution is formed and contains a metal element that does not substitute for Si in the silica skeleton. For example, NaCl, KCl, MgCl 2 , AlCl 3 , NiCl An anhydrous salt such as 2 or a hydrate thereof can be used. The addition of the metal salt is intended to improve the monodispersibility, and the addition amount is 0.01 mol or more of the metal element with respect to 1 mol of SiO 2 , and if the improvement of the monodispersity is recognized, the upper limit However, 1 mol or less is sufficient. The fact that the addition of a metal salt or the like in the ripening step is extremely effective for monodispersing rod-like particles is very characteristic in the present invention.

更に、出発原料の混合方式を詳細に記述すると、本願ロッド状粒子合成においては、予め45℃から60℃未満の温度範囲に調整した2種類の水溶液、(1)所定の濃度の酸に溶解した非イオン性界面活性剤溶液に、(2)水に希釈したアルカリ珪酸塩水溶液を、攪拌下で添加する。この混合溶液の撹拌を、反応溶液に固体生成物による白濁が認められない数秒から10分間以内に攪拌を停止し、攪拌温度以上で静置あるいは攪拌下で熟成を行う。熟成の方法として、(A)攪拌混合溶液をそのまま30分以上好ましくは1時間以上、さらに好ましくは3時間以上から24時間熟成するか、あるいは(B)前記(A)同様白濁が認められない数秒から10分間以内に攪拌を停止し、そのまま10分から120分間、好ましくは20分から90分間熟成し、析出した生成物を酸性反応溶液から分離・洗浄して得られる湿潤状態の固体生成物、あるいはその乾燥物を水溶液中で攪拌温度以上において上記と同様に熟成を行う。さらに、(C)(A)、(B)とも熟成時に金属塩を添加する場合、(A)では攪拌停止後攪拌混合溶液に直接添加し、(B)では湿潤状態の固体生成物、あるいはその乾燥物の熟成時に金属塩を添加する。   Furthermore, the mixing method of the starting materials will be described in detail. In the rod-like particle synthesis of the present application, two kinds of aqueous solutions adjusted in advance to a temperature range of 45 ° C. to less than 60 ° C., (1) dissolved in an acid of a predetermined concentration (2) An aqueous alkali silicate solution diluted in water is added to the nonionic surfactant solution with stirring. Stirring of the mixed solution is stopped within a few seconds to 10 minutes in which no white turbidity due to the solid product is observed in the reaction solution, and the mixture is allowed to stand at a temperature higher than the stirring temperature or aged under stirring. As the aging method, (A) the stirred mixed solution is aged for 30 minutes or longer, preferably 1 hour or longer, more preferably 3 hours or longer to 24 hours, or (B) several seconds in which no cloudiness is observed as in (A) above. Stirring for 10 minutes to 10 minutes, and then aging for 10 minutes to 120 minutes, preferably 20 minutes to 90 minutes, and then separating and washing the precipitated product from the acidic reaction solution, or a wet solid product thereof, or The dried product is aged in the aqueous solution at the stirring temperature or higher as described above. Further, when (C) (A) and (B) both add a metal salt at the time of aging, in (A), after stirring is stopped, it is added directly to the stirred mixed solution, and in (B) a wet solid product, or its Metal salts are added when the dried product is aged.

いずれの場合も、多孔質粒子とするためには、最後に有機成分を除去してロッド状多孔質シリカ粒子を作製するため、熟成反応後懸濁液から固体生成物を分離し、室温〜70℃で乾燥させる。乾燥後界面活性剤を除去し多孔化する方法として、加熱処理により除去する場合には、最終的には400℃以上で2時間以上、好ましくは500℃以上で30分以上加熱処理する。なお、界面活性剤を溶媒抽出で取り除くことも可能であり、エタノール単独の場合にはソックスレー抽出、あるいはエタノールと酸との混合水溶液による溶解法等が適用できる。   In any case, in order to obtain porous particles, the organic component is finally removed to produce rod-shaped porous silica particles. Dry at ℃. As a method of removing the surfactant after drying and making it porous, when removing by heat treatment, the heat treatment is finally carried out at 400 ° C. or higher for 2 hours or longer, preferably 500 ° C. or higher for 30 minutes or longer. The surfactant can also be removed by solvent extraction. In the case of ethanol alone, Soxhlet extraction or a dissolution method using a mixed aqueous solution of ethanol and acid can be applied.

[用途]
本発明の生体内埋入材料の例としては、ドラッグデリバリー担体、遺伝子導入剤、免疫賦活剤、生体吸収性高分子への添加剤をあげることができるがこれらに限定されるものでもない。これらの用途では、例えばロッド状多孔質シリカ粒子は薬剤、遺伝子、免疫賦活分子を体内に送達するためのキャリアーや吸収性高分子の強度補強の用途に使用できる。
[Usage]
Examples of the implantable material of the present invention include, but are not limited to, drug delivery carriers, gene introduction agents, immunostimulants, and additives to bioabsorbable polymers. In these applications, for example, the rod-shaped porous silica particles can be used for the purpose of reinforcing the strength of carriers or absorbent polymers for delivering drugs, genes, and immunostimulatory molecules into the body.

本発明の珪素徐放性薬剤の例としては、免疫賦活剤、骨ペースト及びその添加剤、骨セメント及びその添加剤、金属製生体材料のコーティング層への添加剤、経口投与剤、注射剤をあげることができるがこれらに限定されるものでもない。これらの用途では、ロッド状多孔質シリカ粒子は珪素を長期間徐放することで、細胞増殖を促したり、免疫反応等の生体反応を誘起させる目的に使用できる。   Examples of the sustained-release silicon drug of the present invention include an immunostimulant, bone paste and its additive, bone cement and its additive, an additive to a coating layer of a metallic biomaterial, an oral administration agent and an injection. However, it is not limited to these. In these applications, the rod-like porous silica particles can be used for the purpose of promoting cell growth or inducing a biological reaction such as an immune reaction by gradually releasing silicon.

本発明のロッド状多孔質シリカ粒子は液体媒体中に分散懸濁させることにより、懸濁液または分散液(粒子溶媒混合系)を得ることができる。液体媒体中に分散させることにより、液体媒体中に含まれるロッド状多孔質シリカ粒子を、効果的に人や動物に投与できるようにすることができる。このようにしてロッド状多孔質シリカ粒子を液体媒体中で分散状態に保つ結果、本発明の懸濁液または分散液(粒子溶媒混合系)は、経口投与剤、非経口投与剤、添付剤、軟膏、坐剤等として用いて生体に直接投与することが可能となり、又、用いた結果、高い生体適合性を得ることができるようになる。   The rod-shaped porous silica particles of the present invention can be dispersed or suspended in a liquid medium to obtain a suspension or dispersion (particle solvent mixed system). By dispersing in the liquid medium, the rod-shaped porous silica particles contained in the liquid medium can be effectively administered to humans and animals. As a result of maintaining the rod-like porous silica particles in a dispersed state in the liquid medium in this manner, the suspension or dispersion liquid (particle solvent mixed system) of the present invention is an oral administration agent, parenteral administration agent, attachment agent, It can be used as an ointment, suppository, etc., and can be directly administered to a living body, and as a result, high biocompatibility can be obtained.

液体媒体中に、ロッド状多孔質シリカ粒子を分散懸濁させるために添加する前記ロッド状多孔質シリカ粒子の添加量は、必要とされるロッド状多孔質シリカ粒子の全体量を算出し、算出結果を投与量とすることとなる。
この計算された投与量に基づいて、液体の粘度を考慮して定められる微粒子沈降速度を、意図する範囲のものになるように、液体媒体量を適宜定めればよい。
The amount of rod-shaped porous silica particles added to disperse and suspend rod-shaped porous silica particles in a liquid medium is calculated by calculating the total amount of rod-shaped porous silica particles required. The result will be the dose.
Based on the calculated dose, the amount of the liquid medium may be appropriately determined so that the fine particle sedimentation rate determined in consideration of the viscosity of the liquid is within the intended range.

懸濁液または分散液中の粒子と液体溶媒の混合比は、投与等の治療行為を可能にさせるロッド状多孔質シリカ粒子を含有させた懸濁液または分散液(粒子溶媒混合系)の粘性の観点から規定される。すなわち、懸濁液または粒子溶媒混合系の全体の粘度は、室温で、2秒間以上、好ましくは10秒以上にわたり、3000Pa s以下、好ましくは300Pa s以下に保つことができるようにする。これ以下の場合には格別問題はない。懸濁液の粘性は限りなく水に近い場合であっても特に問題無く使用可能であるため、粘性の下限の値は、20℃の水の粘性値に相当する1.00mPa sである。   The mixing ratio of the particles and the liquid solvent in the suspension or dispersion is the viscosity of the suspension or dispersion (particle solvent mixed system) containing rod-shaped porous silica particles that enables therapeutic action such as administration. It is defined from the viewpoint of That is, the entire viscosity of the suspension or the particle solvent mixed system can be kept at 3000 Pa s or less, preferably 300 Pa s or less for 2 seconds or more, preferably 10 seconds or more at room temperature. If it is less than this, there is no particular problem. Since the viscosity of the suspension can be used without any problem even when it is close to water, the lower limit of the viscosity is 1.00 mPa s corresponding to the viscosity value of water at 20 ° C.

粘度の上限を3000Pasとしたことは以下の事柄を考慮したことによる。すなわち粘度3000Pasは分子量4万のポリアミドMXD6-Gの260℃における溶融粘度に相当し、仮に、これ以上粘度が高い状態の液体とは、事実上流動性を失い、加圧しても注射器やカテーテルを通過することができなくなる状態、または軟膏のように手で変形することができなくなる状態である。このことから明らかなように、懸濁液または粒子溶媒混合系の粘度が3000Pasを超えるような場合には、注射器やカテーテルを使用して体内に投与したり、添付剤、軟膏として使用することのできない状態を意味する。   The upper limit of the viscosity was set to 3000 Pas because the following matters were taken into consideration. In other words, the viscosity of 3000 Pas corresponds to the melt viscosity at 260 ° C. of polyamide MXD6-G having a molecular weight of 40,000. If the viscosity is higher than this, the liquid will actually lose its fluidity, and even if it is pressurized, the syringe or catheter must be It is a state where it cannot pass through, or a state where it cannot be deformed by hand like an ointment. As is clear from this, when the viscosity of the suspension or particle solvent mixture system exceeds 3000 Pas, it can be administered into the body using a syringe or catheter, or used as an attachment or ointment. It means a state that cannot be done.

このようにして得られる、ロッド状多孔質シリカ粒子が分散懸濁状態にある、本発明の懸濁液または分散液(粒子溶媒混合系)では、ロッド状多孔質シリカ粒子は、少なくとも、2秒間以上、好ましくは10秒以上の時間にわたり、懸濁状態が保たれることが必要である。
このためには、懸濁液または分散液中に、ロッド状シリカ多孔質粒子を2〜300μg/mL含有させておくことが好ましい。
人や動物等に投与する場合には、分散懸濁状態で投与することが必要であり、投与する際に、特定の時間、懸濁状態が保たれることにより、ロッド状多孔質シリカ粒子を前記のように人や動物に投与することが可能となる。
例えば、ロッド状多孔質シリカ粒子の分散懸濁液組成物は、内服用容器(コップ)や注射器などの容器に注入したり、充填することにより利用される。これらの容器又は注射器では最大でも8cm程度の深さ又は高さを有するものである。ロッド状多孔質シリカ粒子は、粒子沈降速度が4cm/s以下、好ましくは0.8 cm/s以下となるように、調節される。その結果、前記容器内では2秒以上、好ましくは10秒以上の時間にわたって、分散懸濁状態が保持される。この程度の時間が確保されると、人や動物に投与するために必要な時間が保持される。
In the suspension or dispersion liquid (particle solvent mixed system) of the present invention in which the rod-like porous silica particles thus obtained are in a dispersion suspension state, the rod-like porous silica particles are at least 2 seconds. As described above, it is necessary that the suspended state be maintained for a time of 10 seconds or more.
For this purpose, it is preferable to contain 2 to 300 μg / mL of rod-like silica porous particles in the suspension or dispersion.
When administered to humans or animals, it is necessary to administer in a dispersed suspension state. When administered, the suspension state is maintained for a specific time, so that the rod-shaped porous silica particles are formed. As described above, it can be administered to humans and animals.
For example, the dispersion suspension composition of rod-shaped porous silica particles is used by being injected into or filling a container such as a container for internal use (cup) or a syringe. These containers or syringes have a depth or height of about 8 cm at the maximum. The rod-like porous silica particles are adjusted so that the particle sedimentation rate is 4 cm / s or less, preferably 0.8 cm / s or less. As a result, the dispersion suspension state is maintained in the container for a time of 2 seconds or longer, preferably 10 seconds or longer. When this amount of time is secured, the time necessary for administration to humans and animals is maintained.

懸濁液または分散液(粒子溶媒混合系)をつくるための溶媒としては、水、生理食塩水、食塩濃度2.5重量%以下の食塩水、リンゲル液、精製水、注射用水、蒸留水、生理的塩類溶液、プロピレングリコール、エタノール、これらの水を含有するプロピレングリコール、又はこれらの水を含有するエタノールから選ばれた水溶性溶媒、乃至はトリグリセロイド、サフラワー油、大豆油,ごま油,菜種油,落花生油から選ばれた非水溶性溶媒又はポリエチレングリコール(マクロゴール)を挙げることができる。   Solvents for making a suspension or dispersion (particle solvent mixed system) include water, physiological saline, saline with a salt concentration of 2.5% by weight or less, Ringer's solution, purified water, water for injection, distilled water, physiological salts Water-soluble solvent selected from solution, propylene glycol, ethanol, propylene glycol containing these waters, or ethanol containing these waters, or triglyceroid, safflower oil, soybean oil, sesame oil, rapeseed oil, peanut A water-insoluble solvent selected from oils or polyethylene glycol (macrogol) can be mentioned.

ロッド状多孔質シリカ粒子が細胞毒性を示さずに生体内埋入材料として使用できることは、ロッド状多孔質シリカ粒子含有及び非含有の細胞培養液中で例えばマウス由来線維芽細胞様細胞NIH3T3を3日間培養し、ロッド状多孔質シリカ粒子含有培養液中の細胞数が、ロッド状多孔質シリカ粒子非含有細胞培養液中の細胞数を統計的有意に下回らないことで確認することができる。   The fact that rod-shaped porous silica particles can be used as an in vivo material without showing cytotoxicity is that, for example, mouse-derived fibroblast-like cells NIH3T3 are contained in cell culture medium containing and not containing rod-shaped porous silica particles. It can be confirmed that the number of cells in the culture medium containing rod-shaped porous silica particles is not statistically significantly lower than the number of cells in the cell culture liquid not containing rod-shaped porous silica particles.

ロッド状多孔質シリカ粒子が細胞毒性を示さずに珪素徐放性薬剤として使用できることは、ロッド状多孔質シリカ粒子含有及び非含有の細胞培養液中で例えばマウス由来線維芽細胞様細胞NIH3T3を3日間培養し、ロッド状多孔質シリカ粒子含有培養液を遠心分離した後の上澄みを誘導結合プラズマ発光分析法(ICP)などで化学分析して珪素含有量が増加すること、及びロッド状多孔質シリカ粒子含有培養液中の細胞数が、ロッド状多孔質シリカ粒子非含有細胞培養液中の細胞数を統計的有意に上回ることによって確認することができる。   The fact that rod-shaped porous silica particles can be used as a sustained-release silicon drug without showing cytotoxicity is that, for example, mouse-derived fibroblast-like cells NIH3T3 are 3 in cell culture medium containing and not containing rod-shaped porous silica particles. The supernatant after culturing for a day and centrifuging the medium containing rod-shaped porous silica particles is chemically analyzed by inductively coupled plasma optical emission spectrometry (ICP) to increase the silicon content, and rod-shaped porous silica The number of cells in the particle-containing culture medium can be confirmed by statistically significantly exceeding the number of cells in the rod-shaped porous silica particle-free cell culture medium.

次に、本発明を実施例によって更に具体的に説明するが、本発明はこの実施例によって限定されない。
尚、実施例で行った各試験方法は次の方法により行った。
(測定法)
(1)形態と粒子サイズ:日本電子株式会社製走査型電子顕微鏡JSM5300を使用し、加速電圧10kV、WD10mmで観察した。さらに、日立製電界放射型走査電子顕微鏡S−4700Fを使用して形態観察を行い、画像データからアスペクト比を求めた。
(2)比表面積・細孔容積・細孔径分布:日本ベル製BELSORP MINIを使用し、液体窒素温度で測定した窒素吸着等温線からBET比表面積を求め、細孔容積はt-プロットより全細孔容積(メソ孔容量とマイクロ孔容量との和)とマイクロ孔容積を分離して算出し、細孔径分布はBJH法により解析した。
(3)X線回折:リガク製ロータフレックスRU−300を使用し、CuKα線源、加速電圧40kV、80mAで測定した。
(4)透過電子顕微鏡観察(TEM):HITACHI製高分解能電子顕微鏡HF−2000を使用し、加速電圧200kVで観察した。
(5)粒度分布:ベックマンコールター社製LS 13 320を使用し、水に懸濁したサンプルを超音波洗浄機で1時間分散させ測定し、体積基準の粒度分布曲線を求めた。
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited by this Example.
In addition, each test method performed in the Example was performed by the following method.
(Measurement method)
(1) Morphology and particle size: Using a scanning electron microscope JSM5300 manufactured by JEOL Ltd., observation was performed at an acceleration voltage of 10 kV and a WD of 10 mm. Furthermore, form observation was performed using Hitachi field emission scanning electron microscope S-4700F, and the aspect ratio was determined from the image data.
(2) Specific surface area, pore volume, pore diameter distribution: BEL specific surface area was determined from the nitrogen adsorption isotherm measured at liquid nitrogen temperature using BELSORP MINI manufactured by Bell Japan, and the pore volume was finer than the t-plot. The pore volume (sum of mesopore volume and micropore volume) and the micropore volume were calculated separately, and the pore size distribution was analyzed by the BJH method.
(3) X-ray diffraction: Rigaku Rotorflex RU-300 was used and measured with a CuKα radiation source, an acceleration voltage of 40 kV, and 80 mA.
(4) Transmission electron microscope observation (TEM): A high-resolution electron microscope HF-2000 manufactured by HITACHI was used and observed at an acceleration voltage of 200 kV.
(5) Particle size distribution: LS 13 320 manufactured by Beckman Coulter, Inc. was used, and a sample suspended in water was dispersed and measured with an ultrasonic cleaner for 1 hour to obtain a volume-based particle size distribution curve.

(実施例1)
塩酸に溶解したトリブロック共重合体Pluronic P123 (PEO20PPO70PEO20)溶液を35℃以上の所定温度で攪拌し完全に溶解した後、この酸性溶液に、予め水を加えて希釈し前記45℃以上の所定温度に保持した別容器の市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を撹拌しながら添加する。本実施例では熟成前に白色析出物の晶出が全く認められないことが重要であり、撹拌時間はいずれも30秒であり、攪拌を停止後、テフロン(登録商標)容器に移した後密閉式ステンレス製圧力容器に封じて予め所定温度に制御した乾燥器中で6時間熟成を行った。
本実施例の混合溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5−12:190−202である。HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させる。最終的に600℃の電気炉中で1時間焼成を行うことで有機成分を除去しロッド状多孔質シリカ粒子を得る。
表1に、本実施例の合成条件と、得られたロッド状多孔質シリカ粒子のアスペクト比等の形状に関するパラメータ並びにBET比表面積、全細孔容積、マイクロ孔容積、及びメソ孔径等の細孔特性を示す。熟成温度が高くなるに従い細孔径は大きくなり、100℃以上では8nm以上の細孔径を有するロッド状多孔質シリカ粒子が得られる。なお、攪拌温度を50℃とし、熟成も同一温度で行うと、比較例1(図3)で示すように、ロッド状粒子は作製し難いが、熟成をより高温で行うことにより、本実施例に記載の通り、本願のロッド状多孔質シリカ粒子を作製することができる。図5は実施例1−1のロッド状多孔質シリカ粒子であり、ミクロンサイズのロッド状形態を有し、個々の粒子の形態は明瞭であり、アスペクト比1以下のロッド状粒子が緩く凝集して10μm程度の集合体として存在することを示している。
Example 1
The triblock copolymer Pluronic P123 (PEO 20 PPO 70 PEO 20 ) solution dissolved in hydrochloric acid is stirred at a predetermined temperature of 35 ° C. or higher to completely dissolve the solution, and then the acid solution is diluted with water in advance. Commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) in a separate container kept at a predetermined temperature of at least ° C. is added with stirring. In this example, it is important that crystallization of white precipitates is not observed at all before aging, and the stirring time is 30 seconds for all. After stirring is stopped, the mixture is transferred to a Teflon (registered trademark) container and sealed. Aging was carried out for 6 hours in a dryer sealed in a pressure vessel made of stainless steel and previously controlled at a predetermined temperature.
The molar ratio of the mixed solution of this example is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5-12: 190-202. H 2 O contains water derived from all raw materials. After the reaction, the solid product is filtered off, washed and sufficiently dried at 65 ° C. Finally, the organic component is removed by baking in an electric furnace at 600 ° C. for 1 hour to obtain rod-shaped porous silica particles.
Table 1 shows the synthesis conditions of this example, the parameters relating to the shape such as the aspect ratio of the obtained rod-shaped porous silica particles, and the pores such as the BET specific surface area, the total pore volume, the micropore volume, and the mesopore diameter. Show the characteristics. As the aging temperature increases, the pore diameter increases, and rod-shaped porous silica particles having a pore diameter of 8 nm or more are obtained at 100 ° C. or higher. When the stirring temperature is 50 ° C. and ripening is performed at the same temperature, as shown in Comparative Example 1 (FIG. 3), rod-shaped particles are difficult to produce, but the ripening is performed at a higher temperature. The rod-shaped porous silica particles of the present application can be produced as described in. FIG. 5 shows the rod-shaped porous silica particles of Example 1-1, which has a micron-sized rod-like form, the form of individual particles is clear, and the rod-like particles having an aspect ratio of 1 or less loosely aggregate. In other words, it exists as an aggregate of about 10 μm.

(実施例2)
塩酸に溶解したトリブロック共重合体Pluronic P123 (PEO20PPO70PEO20)溶液を35℃以上の所定温度で攪拌し完全に溶解した後、この酸性溶液に、予め水を加えて希釈し前記35℃以上の所定温度に保持した別容器の市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を撹拌しながら添加する。本実施例では熟成前に白色析出物の晶出が全く認められないことが重要であり、撹拌時間はいずれも30秒であり、攪拌を停止後、攪拌時と同一温度で1時間熟成して得られたロッド状多孔質シリカ粒子前駆体をろ過・洗浄後、湿潤状態のまま実施例1と同様密閉式反応容器に移し、水を添加して、恒温槽中100℃あるいは150℃で6時間水熱処理を行った。水熱処理に際し、水の添加量は、乾燥状態の前駆体1gに換算して約24gである。反応溶液の混合モル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:8−11:190−200である。尚、HOには全ての原料由来の水が含まれている。水熱処理後、固体生成物を濾別し、洗浄後、65℃で乾燥させる。最終的に600℃の電気炉中で1時間焼成を行うことで有機成分を除去しロッド状多孔質シリカ粒子を得る。
表1に、本実施例の合成条件と、得られたロッド状多孔質シリカ粒子のアスペクト比等の形状に関するパラメータ並びにBET比表面積、全細孔容積、マイクロ孔容積、及びメソ孔径等の細孔特性を示す。
図6は実施例2−1のFE−SEM像であり、個々の粒子の形態は明瞭であり、アスペクト比1以下のロッド状粒子が緩く凝集しているが、図8(図9)の粒度分布から凝集の程度が弱まり、粒径約5μmに粒度分布のピークが認められる。図8の比較例3の粒度分布から、本願の水熱条件下の熟成工程が単分散性の向上に有効であることが明瞭である。
(Example 2)
The triblock copolymer Pluronic P123 (PEO 20 PPO 70 PEO 20 ) solution dissolved in hydrochloric acid is stirred at a predetermined temperature of 35 ° C. or more to completely dissolve the solution, and then the acid solution is diluted with water in advance. Commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) in a separate container kept at a predetermined temperature of at least ° C. is added with stirring. In this example, it is important that no crystallization of a white precipitate is observed before aging, and the stirring time is 30 seconds for all. After stopping stirring, aging is performed for 1 hour at the same temperature as stirring. The obtained rod-shaped porous silica particle precursor was filtered and washed, then transferred to a sealed reaction vessel in the same manner as in Example 1 in a wet state, added with water, and kept in a thermostatic bath at 100 ° C. or 150 ° C. for 6 hours. Hydrothermal treatment was performed. In the hydrothermal treatment, the amount of water added is about 24 g in terms of 1 g of the dried precursor. The mixing molar ratio of the reaction solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 8-11: 190-200. H 2 O contains water derived from all raw materials. After hydrothermal treatment, the solid product is filtered off, washed and dried at 65 ° C. Finally, the organic component is removed by baking in an electric furnace at 600 ° C. for 1 hour to obtain rod-shaped porous silica particles.
Table 1 shows the synthesis conditions of this example, the parameters relating to the shape such as the aspect ratio of the obtained rod-shaped porous silica particles, and the pores such as the BET specific surface area, the total pore volume, the micropore volume, and the mesopore diameter. Show the characteristics.
FIG. 6 is an FE-SEM image of Example 2-1. The morphology of individual particles is clear, and rod-shaped particles having an aspect ratio of 1 or less are loosely aggregated, but the particle size of FIG. 8 (FIG. 9). The degree of aggregation is weakened from the distribution, and a particle size distribution peak is observed at a particle size of about 5 μm. From the particle size distribution of Comparative Example 3 in FIG. 8, it is clear that the aging step under hydrothermal conditions of the present application is effective for improving the monodispersibility.

(実施例3)
塩酸に溶解したトリブロック共重合体Pluronic P123 (PEO20PPO70PEO20)溶液を35℃以上の所定温度で攪拌し完全に溶解した後、この酸性溶液に、予め水を加えて希釈し前記35℃以上の所定温度に保持した別容器の市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を撹拌しながら添加する。本実施例では熟成前に白色析出物の晶出が全く認められないことが重要であり、撹拌時間はいずれも30秒であり、攪拌を停止後、攪拌時と同一温度で1時間熟成して得られたロッド状多孔質シリカ粒子前駆体をろ過・洗浄後、湿潤状態のまま実施例1と同様密閉式反応容器に移し、金属塩を溶解した水溶液を添加して、恒温槽中100℃あるいは150℃で6時間水熱処理を行った。水熱処理に際し、水の添加量は、乾燥状態の前駆体1gに換算して約24gである。本実施例では、金属塩として、NaCl、MgCl・6HO、AlCl・6HO及びNiCl・6HOを使用し、その添加量はSiO 1モルに対し、NaClは0.17モル、他は0.085モルで、反応溶液の混合モル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:8−11:190−200である。尚、HOには全ての原料由来の水が含まれている。水熱処理後、固体生成物を濾別し、洗浄後、65℃で乾燥させる。最終的に600℃の電気炉中で1時間焼成を行うことで有機成分を除去しロッド状多孔質シリカ粒子を得る。
表1に、本実施例の合成条件と、得られたロッド状多孔質シリカ粒子のアスペクト比等の形状に関するパラメータ並びにBET比表面積、全細孔容積、マイクロ孔容積、及びメソ孔径等の細孔特性を示す。
図7は実施例3−4のFE−SEM像であり、個々の粒子の形態は明瞭であり、アスペクト比1以下のロッド状粒子が緩く凝集しているが、図9の粒度分布から凝集の程度が弱まり、粒径約5μmに粒度分布のピークが認められる。図8の比較例3、また実施例2−1の粒度分布から、本願の金属塩を添加した水熱条件下の熟成工程が単分散性の向上に極めて有効であることが明瞭である。
(Example 3)
The triblock copolymer Pluronic P123 (PEO 20 PPO 70 PEO 20 ) solution dissolved in hydrochloric acid is stirred at a predetermined temperature of 35 ° C. or more to completely dissolve the solution, and then the acid solution is diluted with water in advance. Commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) in a separate container kept at a predetermined temperature of at least ° C. is added with stirring. In this example, it is important that no crystallization of a white precipitate is observed before aging, and the stirring time is 30 seconds for all. After stopping stirring, aging is performed for 1 hour at the same temperature as stirring. After the obtained rod-shaped porous silica particle precursor was filtered and washed, it was transferred to a sealed reaction vessel in the same manner as in Example 1 in a wet state, and an aqueous solution in which a metal salt was dissolved was added. Hydrothermal treatment was performed at 150 ° C. for 6 hours. In the hydrothermal treatment, the amount of water added is about 24 g in terms of 1 g of the dried precursor. In this embodiment, NaCl, MgCl 2 .6H 2 O, AlCl 3 .6H 2 O, and NiCl 2 .6H 2 O are used as metal salts, and the addition amount is 0.1 mol of NaCl with respect to 1 mol of SiO 2 . 17 mol, others are 0.085 mol, and the mixing molar ratio of the reaction solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 8-11: 190- 200. H 2 O contains water derived from all raw materials. After hydrothermal treatment, the solid product is filtered off, washed and dried at 65 ° C. Finally, the organic component is removed by baking in an electric furnace at 600 ° C. for 1 hour to obtain rod-shaped porous silica particles.
Table 1 shows the synthesis conditions of this example, the parameters relating to the shape such as the aspect ratio of the obtained rod-shaped porous silica particles, and the pores such as the BET specific surface area, the total pore volume, the micropore volume, and the mesopore diameter. Show the characteristics.
FIG. 7 is an FE-SEM image of Example 3-4. The morphology of individual particles is clear, and rod-like particles having an aspect ratio of 1 or less are loosely aggregated. From the particle size distribution of FIG. The degree is weakened, and a particle size distribution peak is observed at a particle size of about 5 μm. From the particle size distribution of Comparative Example 3 in FIG. 8 and Example 2-1, it is clear that the aging step under hydrothermal conditions with the addition of the metal salt of the present application is extremely effective in improving monodispersity.

(実施例5)
線維芽細胞様細胞NIH3T3を1×104個含む細胞培養液1mLを24ウェルプレートの各ウェルに注ぎ、6時間予備培養を行った。細胞培養液はDMEM培地にL-グルタミン(0.3 mg・mL-1)と牛血清10%を添加して作製した。予備培養後、同細胞培養液をロッド状多孔質シリカ粒子0, 5, 20, 50, 100 and 300 μg/ml含有の細胞培養液と交換した。なお、使用したロッド状多孔質シリカ粒子は実施例3−4、実施例3−5である。その後NIH3T3細胞を5%炭酸ガス雰囲気下で72時間培養し、CCK-8 キット(同人化学, Japan)を用いたWST-8法で細胞数を測定した。WST-8は細胞内脱水素酵素により還元され、水溶性のホルマザンを生成する。このホルマザンの450 nmの吸光度を測定すれば、その吸光度が細胞数の指標になる。
また72時間後の細胞培養液(1ml)を回収して遠心分離して、ロッド状多孔質シリカ粒子を沈降させた後、上澄み0.5mLを回収して超純水で5mL に希釈し、誘導結合プラズマ発光分析法(ICP)で珪素含有量を測定した。各ロッド状多孔質シリカ粒子に対して細胞数は1元配置分散分析で検定し、有意差が検出された場合は、Tukey's のpost hoc 多重比較テストで群間の有意差を検定した。実験はN=8で実施し、すべての統計分析は有意水準5%で行った。
(Example 5)
1 mL of a cell culture solution containing 1 × 10 4 fibroblast-like cells NIH3T3 was poured into each well of a 24-well plate and precultured for 6 hours. The cell culture medium was prepared by adding L-glutamine (0.3 mg · mL −1 ) and 10% bovine serum to DMEM medium. After the preculture, the same cell culture medium was replaced with a cell culture medium containing rod-shaped porous silica particles 0, 5, 20, 50, 100 and 300 μg / ml. The rod-shaped porous silica particles used are Examples 3-4 and 3-5. Thereafter, NIH3T3 cells were cultured in a 5% carbon dioxide atmosphere for 72 hours, and the number of cells was measured by the WST-8 method using a CCK-8 kit (Dojin Kagaku, Japan). WST-8 is reduced by intracellular dehydrogenase to produce water-soluble formazan. If the absorbance of this formazan is measured at 450 nm, the absorbance becomes an indicator of the number of cells.
In addition, the cell culture solution (1 ml) after 72 hours was collected and centrifuged to settle the rod-shaped porous silica particles, and then 0.5 mL of the supernatant was recovered and diluted to 5 mL with ultrapure water to induce induction binding. The silicon content was measured by plasma emission spectrometry (ICP). For each rod-like porous silica particle, the number of cells was tested by one-way analysis of variance. If a significant difference was detected, the significant difference between groups was tested by Tukey's post hoc multiple comparison test. Experiments were performed at N = 8 and all statistical analyzes were performed at a significance level of 5%.

15、16に実施例3−4、実施例3−5のロッド状多孔質シリカ粒子とともにNIH3T3細胞72時間培養後の細胞数評価結果を示す。すべてのロッド状多孔質シリカ粒子とも、細胞培養液中の含有量が300μg/mlのときに、0μg/mlと比較して細胞数が統計的有意に少なかったが、5,20,50,100μg/mlの濃度では0μg/mlと比較して統計的に有意差が無いかあるいは、統計的有意に細胞数が多かった。また、細胞培養液中に溶出した珪素をICPで検出することができ、溶出珪素量はロッド状多孔質シリカ粒子濃度の増加とともに増加した(図17)。 15 and 16 show the cell number evaluation results after 72 hours of culture of NIH3T3 cells together with the rod-shaped porous silica particles of Examples 3-4 and 3-5. All the rod-like porous silica particles had a statistically significantly smaller number of cells compared to 0 μg / ml when the content in the cell culture medium was 300 μg / ml, but 5,20,50,100 μg / ml There was no statistically significant difference in the concentration of ml compared to 0 μg / ml, or the number of cells was statistically significant. Moreover, silicon eluted in the cell culture medium could be detected by ICP, and the amount of eluted silicon increased with increasing rod-shaped porous silica particle concentration (FIG. 17).

ロッド状多孔質シリカ粒子の含有量が5, 20, 50, 100μg/mlの濃度では0 μg/mlと比較して細胞数が統計的有意に下回らないということは、この範囲でロッド状多孔質シリカ粒子の細胞毒性が無いことを意味しており、ロッド状多孔質シリカ粒子を生体内埋入物として使用できることが示された。また、実施例3−4の場合は含有量5, 20, 50, 100μg/mlで、実施例3−5の場合は含有量100μg/mlで、細胞数が含有量0 μg/mlに比較して有意に高かったということは、この範囲でロッド状多孔質シリカ粒子から徐放された珪素が、細胞増殖を促進させたことを意味しており、ロッド状多孔質シリカ粒子が細胞毒性を示さずに珪素徐放剤として使用できることが示された。   The concentration of rod-shaped porous silica particles at 5, 20, 50, and 100 μg / ml does not show a statistically lower number of cells compared to 0 μg / ml. This means that there is no cytotoxicity of silica particles, and it has been shown that rod-like porous silica particles can be used as in vivo implants. Further, in the case of Example 3-4, the content was 5, 20, 50, 100 μg / ml, and in the case of Example 3-5, the content was 100 μg / ml, and the number of cells was compared with the content of 0 μg / ml. This means that the silicon released from the rod-shaped porous silica particles within this range promoted cell growth, and the rod-shaped porous silica particles showed cytotoxicity. It was shown that it can be used as a silicon sustained release agent.

(比較例1)
2Nの塩酸に溶解したトリブロック共重合体Pluronic P123 (PEO20PPO70PEO20)溶液を50℃で攪拌し完全に溶解した後、この酸性溶液に、予め水を加えて希釈し50℃に保持した別容器の市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を添加して混合し、30秒後に攪拌を停止した。この混合溶液をそのまま恒温水槽に静置し、50℃で300分間熟成を行った。反応溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.88:202である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させる。最終的に600℃の電気炉中で1時間焼成を行うことで有機成分を除去しロッド状多孔質シリカ粒子を得る。
SEM像(図3)から、本比較例で得られた生成物は、小粒子が強く凝集し、目的の単分散ロッド状粒子を得ることができないことが分かる。さらに、表2に示す通り、本比較例の吸着等温線にはメソ構造に起因する明瞭なステップは認められず、細孔特性パラメータはいずれもかなり小さく、特に、合成温度が50℃であるにも係わらずメソ孔径が小さく極めて構造規則性が低いことが明瞭である。
(Comparative Example 1)
The triblock copolymer Pluronic P123 (PEO 20 PPO 70 PEO 20 ) solution dissolved in 2N hydrochloric acid is completely dissolved by stirring at 50 ° C., and then diluted with water in advance and kept at 50 ° C. In another container, commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) was added and mixed, and stirring was stopped after 30 seconds. This mixed solution was left as it was in a constant temperature water bath and aged at 50 ° C. for 300 minutes. The molar ratio of the reaction solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 202. H 2 O contains water derived from all raw materials. After the reaction, the solid product is filtered off, washed and sufficiently dried at 65 ° C. Finally, the organic component is removed by baking in an electric furnace at 600 ° C. for 1 hour to obtain rod-shaped porous silica particles.
From the SEM image (FIG. 3), it can be seen that in the product obtained in this comparative example, the small particles strongly aggregate and the desired monodispersed rod-like particles cannot be obtained. Furthermore, as shown in Table 2, no clear steps due to the mesostructure were observed in the adsorption isotherm of this comparative example, and the pore characteristic parameters were all very small, especially when the synthesis temperature was 50 ° C. Nevertheless, it is clear that the mesopore diameter is small and the structural regularity is very low.

(比較例2)
2Nの塩酸に溶解したトリブロック共重合体Pluronic P123 (PEO20PPO70PEO20)溶液を45℃で攪拌し完全に溶解した後、この酸性溶液に、予め水を加えて希釈し45℃に保持した別容器のテトラエチルオルトシリケート(TEOS)を添加して混合し、30秒後に攪拌を停止した。攪拌を停止後、密閉型容器を用いて100℃で6時間熟成を行った。この反応溶液のモル比はTEOS:Pluronic P123:HCl:HO=1:0.017:5.85:201である。
また、2Nの塩酸に溶解したトリブロック共重合体Pluronic P123溶液を45℃で攪拌し完全に溶解してから、食塩NaClを添加して、上記と同様な合成を行い、NaClの添加効果を検討した。この反応溶液のモル比はTEOS:Pluronic P123:HCl:HO:NaCl=1:0.017:5.85:201:1.49である。
なお、いずれの場合も、反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させ、最終的に600℃の電気炉中で1時間焼成を行うことで有機成分を除去し粉末粒子を得る。
図4(a)と(b)は、表2中それぞれ比較例2−1及び比較例2−2のSEM像である。TEOSの場合、攪拌と熟成反応を一定温度で行い、45℃では粒子形態は不均質であり目的とする粒子は形成されない。さらに、45℃で攪拌し、熟成を100℃で行うと、NaCl無添加の場合にはアスペクト比1以上の長いロッド状粒子が生成するが(図4a)、NaClを添加すると、形態は著しく変化し、長いロッド状粒子の他に小粒子の凝集体が認められる(図4b)。塩の添加はロッド状粒子の形態に大きく影響し、特に珪酸ソーダはアスペクト比の小さいロッド状粒子の合成に適したシリカ原料であることを示唆している。
本比較例の吸着等温線にメソ構造に起因する明瞭なステップは認められず、表1の実施例1、2及び3と比較すると、表2に示した細孔特性パラメータはいずれも小さいことが分かる。
(Comparative Example 2)
A triblock copolymer Pluronic P123 (PEO 20 PPO 70 PEO 20 ) solution dissolved in 2N hydrochloric acid was completely dissolved by stirring at 45 ° C., then diluted with water in advance and kept at 45 ° C. In another container, tetraethylorthosilicate (TEOS) was added and mixed, and stirring was stopped after 30 seconds. After stopping the stirring, the mixture was aged at 100 ° C. for 6 hours using a sealed container. The molar ratio of this reaction solution is TEOS: Pluronic P123: HCl: H 2 O = 1: 0.017: 5.85: 201.
Also, the triblock copolymer Pluronic P123 solution dissolved in 2N hydrochloric acid is completely dissolved by stirring at 45 ° C., and then NaCl is added to perform synthesis similar to the above to examine the effect of adding NaCl. did. The molar ratio of this reaction solution is TEOS: Pluronic P123: HCl: H 2 O: NaCl = 1: 0.017: 5.85: 201: 1.49.
In either case, the solid product after the reaction is filtered off, washed, sufficiently dried at 65 ° C., and finally baked in an electric furnace at 600 ° C. for 1 hour to remove organic components and powder Get particles.
4A and 4B are SEM images of Comparative Example 2-1 and Comparative Example 2-2 in Table 2, respectively. In the case of TEOS, stirring and ripening reaction are performed at a constant temperature. At 45 ° C., the particle morphology is inhomogeneous and the desired particles are not formed. Further, when the mixture is stirred at 45 ° C. and ripened at 100 ° C., when no NaCl is added, long rod-shaped particles having an aspect ratio of 1 or more are formed (FIG. 4 a). In addition to the long rod-like particles, aggregates of small particles are observed (FIG. 4b). The addition of salt greatly affects the morphology of the rod-shaped particles, suggesting that sodium silicate is a silica raw material suitable for the synthesis of rod-shaped particles having a small aspect ratio.
There is no clear step due to the mesostructure in the adsorption isotherm of this comparative example. Compared with Examples 1, 2 and 3 in Table 1, all the pore characteristic parameters shown in Table 2 are small. I understand.

(比較例3)
2Nの塩酸に溶解したトリブロック共重合体Pluronic P123 (PEO20PPO70PEO20)溶液を38℃あるいは45℃で攪拌し完全に溶解した後、この酸性溶液に、予め水を加えて希釈しそれぞれの温度に保持した別容器の市販のJIS3号珪酸ナトリウム(SiO:23.6%、NaO:7.59%)を添加して混合し、30秒後に攪拌を停止した。この混合溶液をそのまま恒温水槽に静置し6時間熟成を行った。反応溶液のモル比はSiO:Pluronic P123:NaO:HCl:HO=1:0.017:0.312:5.88:202である。尚、HOには全ての原料由来の水が含まれている。反応後固体生成物を濾別し、洗浄後、65℃で十分乾燥させる。最終的に600℃の電気炉中で1時間焼成を行うことで有機成分を除去しロッド状多孔質シリカ粒子を得る。
本比較例は、特許文献2のロッド状粒子に相当するもので、図8に示した粒度分布から、本願のロッド状粒子と比較して、より強く凝集し目的の単分散ロッド状粒子を得ることができないことが分かる。
(Comparative Example 3)
A triblock copolymer Pluronic P123 (PEO 20 PPO 70 PEO 20 ) solution dissolved in 2N hydrochloric acid was completely dissolved by stirring at 38 ° C. or 45 ° C. Then, water was added to the acidic solution in advance for dilution. Commercially available JIS No. 3 sodium silicate (SiO 2 : 23.6%, Na 2 O: 7.59%) in a separate container kept at a temperature of 5 ° C. was added and mixed, and stirring was stopped after 30 seconds. The mixed solution was left as it was in a constant temperature water bath and aged for 6 hours. The molar ratio of the reaction solution is SiO 2 : Pluronic P123: Na 2 O: HCl: H 2 O = 1: 0.017: 0.312: 5.88: 202. H 2 O contains water derived from all raw materials. After the reaction, the solid product is filtered off, washed and sufficiently dried at 65 ° C. Finally, the organic component is removed by baking in an electric furnace at 600 ° C. for 1 hour to obtain rod-shaped porous silica particles.
This comparative example corresponds to the rod-shaped particles of Patent Document 2, and the target monodispersed rod-shaped particles are obtained by aggregation more strongly than the rod-shaped particles of the present application from the particle size distribution shown in FIG. I can't understand.

Claims (14)

透過型及び走査型顕微鏡観察により、ハニカム状に規則配列したメソ孔径3nm以上の一次元チャンネル状細孔が貫通する方向の粒子の長さが0.5μm以下で、この粒子伸張方向に垂直な粒子断面の長さとの比をアスペクト比(=前記細孔が貫通する方向の粒子の長さ/前記粒子伸張方向に垂直な粒子断面の長さ)とする時、アスペクト比が0.1〜1未満のロッド状の形態を有する粒子であって、水分散系における粒度分布ピーク(体積基準)の最大値が10μm以下の範囲に認められる緩い集合体を形成している、シリカ骨格中のSi元素が他金属で置換されていないことを特とするロッド状シリカ多孔質粒子。 Through transmission and scanning microscope observation, the particle length in the direction through which the one-dimensional channel-shaped pores with a mesopore diameter of 3 nm or more arranged in a honeycomb shape penetrate is 0.5 μm or less, and the particles are perpendicular to the particle stretching direction. When the ratio to the length of the cross section is the aspect ratio (= the length of the particle in the direction through which the pore penetrates / the length of the cross section of the particle perpendicular to the particle extension direction) , the aspect ratio is less than 0.1 to 1 The Si element in the silica skeleton forms a loose aggregate with a maximum particle size distribution peak (volume basis) of 10 μm or less in a water dispersion system. rod porous silica particles to feature that it is not substituted by other metals. 回折角0.5乃至5度(CuKα)に細孔の規則配列構造を示す複数のX線回折ピークを有することを特徴とする請求項1に記載のロッド状シリカ多孔質粒子。   2. The rod-shaped silica porous particle according to claim 1, which has a plurality of X-ray diffraction peaks showing a regular arrangement structure of pores at a diffraction angle of 0.5 to 5 degrees (CuKα). 請求項1又は請求項2に記載のロッド状シリカ多孔質粒子を2〜300μg/mL含有することを特徴とする懸濁液または分散液。   A suspension or dispersion containing 2 to 300 µg / mL of the rod-like silica porous particles according to claim 1 or 2. 酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を45℃から60℃未満の温度条件下で攪拌しながら混合し、反応溶液に白濁が認められない反応時間内に撹拌を停止した後、50℃から200℃の範囲の温度で熟成して得られる固体生成物を、分離・洗浄、乾燥後、非イオン性界面活性剤を除去することを特徴とする請求項1又は請求項2に記載のロッド状シリカ多孔質粒子の製造方法。   An alkaline silicate aqueous solution is mixed with a mixed solution of an acidic aqueous solution and a nonionic surfactant while stirring under a temperature condition of 45 ° C. to less than 60 ° C., and the reaction solution is stirred within a reaction time in which no cloudiness is observed. The nonionic surfactant is removed from the solid product obtained by aging at a temperature in the range of 50 ° C to 200 ° C after stopping, after separating, washing and drying. Item 3. A method for producing rod-like silica porous particles according to Item 2. 酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を45℃から60℃未満の温度条件下で攪拌しながら混合し、反応溶液に白濁が認められない反応時間内に撹拌を停止し、10分から120分間熟成後、分離・洗浄して得られた固体生成物を、湿潤状態のまま、あるいは乾燥してから、水溶液中で50℃から200℃の範囲の温度で熟成した後に、固体生成物を分離・洗浄、乾燥後、非イオン性界面活性剤を除去することを特徴とする請求項1又は請求項2に記載のロッド状シリカ多孔質粒子の製造方法。   An alkaline silicate aqueous solution is mixed with a mixed solution of an acidic aqueous solution and a nonionic surfactant while stirring under a temperature condition of 45 ° C. to less than 60 ° C., and the reaction solution is stirred within a reaction time in which no cloudiness is observed. After stopping and aging for 10 to 120 minutes, the solid product obtained by separation and washing is either wet or dried and then aged in an aqueous solution at a temperature in the range of 50 ° C to 200 ° C. 3. The method for producing rod-shaped silica porous particles according to claim 1, wherein the solid product is separated, washed, and dried, and then the nonionic surfactant is removed. 酸性水溶液及び非イオン性界面活性剤の混合液に、アルカリ珪酸塩水溶液を45℃から60℃未満の温度条件下で攪拌しながら混合し、反応溶液に白濁が認められない反応時間内に撹拌を停止し、10分から120分間熟成後、分離・洗浄して得られた固体生成物を、湿潤状態のまま、あるいは乾燥してから、金属塩を溶解した水溶液中で50℃から200℃の範囲の温度で熟成した後に、固体生成物を分離・洗浄、乾燥後、非イオン性界面活性剤を除去することを特徴とする請求項1又は請求項2に記載のロッド状シリカ多孔質粒子の製造方法。   An alkaline silicate aqueous solution is mixed with a mixed solution of an acidic aqueous solution and a nonionic surfactant while stirring under a temperature condition of 45 ° C. to less than 60 ° C., and the reaction solution is stirred within a reaction time in which no cloudiness is observed. The solid product obtained by stopping, aging for 10 to 120 minutes, and separating and washing is left in a wet state or dried and then in an aqueous solution in which the metal salt is dissolved. The method for producing rod-shaped silica porous particles according to claim 1 or 2, wherein the solid product is separated, washed and dried after aging at a temperature, and then the nonionic surfactant is removed. . 非イオン性界面活性剤をアルカリ珪酸塩中のSiO21モル当たり0.01乃至0.10モルの量で用いること特徴とする請求項4乃至請求項6の何れかに記載の製造方法。 The method according to any one of claims 4 to 6 non-ionic surfactant is characterized by using an amount of SiO 2 1 mole per 0.01 to 0.10 mole of the alkaline silicate. 酸をアルカリ珪酸塩中のSiO21モル当たり5乃至20モルの量で用いることを特徴とする請求項4乃至請求項7の何れかに記載の製造方法。 The method according to any one of claims 4 to 7, wherein the acid is used in an amount of 5 to 20 moles per mole of SiO 2 in the alkali silicate. 水をアルカリ珪酸塩中のSiO21モル当たり100乃至400モルの量で用いることを特徴とする請求項4乃至請求項8の何れかに記載の製造方法。 The method according to any one of claims 4 to 8, wherein water is used in an amount of 100 to 400 mol per mol of SiO 2 in the alkali silicate. 金属塩をアルカリ珪酸塩中のSiO21モル当たり0.01乃至1モルの量で用いることを特徴とする請求項乃至請求項9の何れかに記載の製造方法。 The production method according to any one of claims 6 to 9, wherein the metal salt is used in an amount of 0.01 to 1 mol per mol of SiO 2 in the alkali silicate. 請求項1又は2に記載のロッド状多孔質シリカ粒子を含有する生体内埋入材料。   An in-vivo embedding material containing the rod-shaped porous silica particles according to claim 1 or 2. 請求項1又は2に記載のロッド状多孔質シリカ粒子を含有する珪素徐放性薬剤。   A silicon sustained-release drug comprising the rod-shaped porous silica particles according to claim 1 or 2. 請求項3に記載の懸濁液又は分散液を含有する生体内埋入材料。   An in vivo embedding material containing the suspension or dispersion according to claim 3. 請求項3に記載の懸濁液または分散液を含有する珪素徐放性薬剤。   A silicon sustained-release drug comprising the suspension or dispersion according to claim 3.
JP2009079589A 2009-03-27 2009-03-27 Rod-shaped porous silica particles Expired - Fee Related JP5382700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079589A JP5382700B2 (en) 2009-03-27 2009-03-27 Rod-shaped porous silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079589A JP5382700B2 (en) 2009-03-27 2009-03-27 Rod-shaped porous silica particles

Publications (2)

Publication Number Publication Date
JP2010228986A JP2010228986A (en) 2010-10-14
JP5382700B2 true JP5382700B2 (en) 2014-01-08

Family

ID=43045158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079589A Expired - Fee Related JP5382700B2 (en) 2009-03-27 2009-03-27 Rod-shaped porous silica particles

Country Status (1)

Country Link
JP (1) JP5382700B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9808052D0 (en) 1998-04-17 1998-06-17 Secr Defence Implants for administering substances and methods of producing implants
CN102405042A (en) 2009-05-04 2012-04-04 普西维达公司 Porous silicon drug-eluting particles
RU2640918C2 (en) 2010-11-01 2018-01-12 Псивида Юэс, Инк. Biodegradable devices based on silicon for therapeutic agents delivery
JP2012240919A (en) * 2011-05-16 2012-12-10 Daito Kasei Kogyo Kk Aqueous dispersion and cosmetic containing the same
US9890047B2 (en) 2011-11-23 2018-02-13 Dow Global Technologies Llc High porosity mesoporous siliceous structures
RU2705986C2 (en) 2013-03-15 2019-11-13 Айпоинт Фармасьютикалз Юэс, Инк. Biodegradable silicone-based compositions for delivering therapeutic agents
JP2018174929A (en) * 2017-04-11 2018-11-15 国立研究開発法人産業技術総合研究所 Culture solution additives for culturing mammalian cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261326A (en) * 2000-03-17 2001-09-26 Asahi Kasei Corp Method of producing mesoporous silica
JP4099811B2 (en) * 2002-03-18 2008-06-11 独立行政法人産業技術総合研究所 Shaped porous silica or silica metal composite particles and method for producing the same
JP4478766B2 (en) * 2002-08-26 2010-06-09 独立行政法人産業技術総合研究所 Spherical silica porous particles and method for producing the same
JP4484193B2 (en) * 2002-11-29 2010-06-16 独立行政法人産業技術総合研究所 Spherical micropore silica porous particles and method for producing the same
JP4831663B2 (en) * 2004-10-27 2011-12-07 独立行政法人産業技術総合研究所 Thin plate-like porous silica metal composite particles and production method thereof
JP4925086B2 (en) * 2005-10-21 2012-04-25 独立行政法人産業技術総合研究所 Thin or fibrous organic / inorganic porous silica particles and method for producing the same
JP5051512B2 (en) * 2007-02-15 2012-10-17 独立行政法人産業技術総合研究所 Method for producing fibrous porous silica particles

Also Published As

Publication number Publication date
JP2010228986A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5382700B2 (en) Rod-shaped porous silica particles
Kumar et al. Synthesis methods of mesoporous silica materials
Wu et al. Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: Surfactant‐free sonochemical synthesis and drug‐delivery system with ultrahigh drug‐loading capacity
Kim et al. Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers
JP4478766B2 (en) Spherical silica porous particles and method for producing the same
AU2009214118B2 (en) Method for manufacturing mesoporous materials, materials so produced and use of mesoporous materials
Okesola et al. De novo design of functional coassembling organic–inorganic hydrogels for hierarchical mineralization and neovascularization
JP4925086B2 (en) Thin or fibrous organic / inorganic porous silica particles and method for producing the same
Khamsehashari et al. Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol-gel method
KR101906792B1 (en) Process for producing inorganic particulate material
KR100814730B1 (en) Hierarchically nanoporous-macroporous bioactive glass and method for preparing thereof
Garcia et al. Incorporation of phosphorus into mesostructured silicas: a novel approach to reduce the SiO2 leaching in water
JP6188185B2 (en) TiO2 composite porous silica photocatalyst particle production method and TiO2 composite porous silica photocatalyst particle
Farid et al. Silica nanotubes with widely adjustable inner diameter and ordered silicas with ultralarge cylindrical mesopores templated by swollen micelles of mixed pluronic triblock copolymers
CN1308235C (en) Method for preparing a mesostructured material from particles with nanometric dimensions
de Oliveira et al. Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: Engineering the morphology and size of sonogels via a poly (ethylene glycol) dispersing agent
Ijaz et al. Formation of mesoporous silica particles with hierarchical morphology
Li et al. Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites
JP4099811B2 (en) Shaped porous silica or silica metal composite particles and method for producing the same
Li et al. Effects of incorporated vanadium and its chemical states on morphology and mesostructure of mesoporous bioactive glass particles
Tang et al. Facile synthesis of mesoporous bioactive glass nanospheres with large mesopore via biphase delamination method
JP4221498B2 (en) Porous alumina crystalline particles and method for producing the same
Xie et al. Facile synthesis and in vitro bioactivity of radial mesoporous bioactive glass with high phosphorus and calcium content
Charmforoushan et al. Synthesis and controlled drug release behavior of micro-mesoporous wollastonite nanoparticles. Effect of calcination temperature on the structural and biodegradability properties
Houssein et al. Mesoporous silica templated by polyion complex micelles: A versatile approach for controlling the mesostructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5382700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees