JP2006326497A - Semi-permeable membrane for water treatment and its production method - Google Patents

Semi-permeable membrane for water treatment and its production method Download PDF

Info

Publication number
JP2006326497A
JP2006326497A JP2005154005A JP2005154005A JP2006326497A JP 2006326497 A JP2006326497 A JP 2006326497A JP 2005154005 A JP2005154005 A JP 2005154005A JP 2005154005 A JP2005154005 A JP 2005154005A JP 2006326497 A JP2006326497 A JP 2006326497A
Authority
JP
Japan
Prior art keywords
mass
membrane
polyvinylidene fluoride
film
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005154005A
Other languages
Japanese (ja)
Inventor
Toyozo Hamada
豊三 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2005154005A priority Critical patent/JP2006326497A/en
Publication of JP2006326497A publication Critical patent/JP2006326497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semi-permeable membrane for water treatment, high in water permeable rate and good in mechanical strength and chemical resistance. <P>SOLUTION: The semi-permeable membrane for water treatment has cellulose acetate and poly(vinylidene fluoride), wherein the content of poly(vinylidene fluoride) in a total polymer component is 5-60 mass%. The semi-permeable membrane for water treatment can be formed into a flat membrane, a hollow fiber membrane and a tubular membrane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水処理用半透膜及びその製造方法に関する。   The present invention relates to a semipermeable membrane for water treatment and a method for producing the same.

従来より、酢酸セルロース半透膜に関する技術が公開されている。酢酸セルロース半透膜は、高い透水性を示し、ファウリングが低いことを特徴とするが、自然界に存在するパルプやコットンを原料としているため、他の合成高分子ポリマーに比べて、耐薬品性や生分解性に劣るという課題があった。   Conventionally, techniques related to a cellulose acetate semipermeable membrane have been disclosed. Cellulose acetate semi-permeable membrane is characterized by high water permeability and low fouling, but it is made from natural pulp and cotton, so it is more resistant to chemicals than other synthetic polymer polymers. There was a problem that it was inferior in biodegradability.

耐薬品性や耐生分解性に優れた合成高分子ポリマーとして、ポリフッ化ビニリデンがある。ポリフッ化ビニリデンは、相転換法による多孔質化が可能である。耐薬品性に優れたポリフッ化ビニリデン半透膜に関しては、いくつかの技術が公開されている(特許文献1〜4)。   Polyvinylidene fluoride is a synthetic polymer having excellent chemical resistance and biodegradability. Polyvinylidene fluoride can be made porous by a phase change method. Regarding the polyvinylidene fluoride semipermeable membrane having excellent chemical resistance, several techniques have been disclosed (Patent Documents 1 to 4).

特許文献1には、中空糸膜の内、外表面に平均0.05〜5μmの細孔を有し、該中空糸膜の断面方向においては、実質的に孔径20μm以上のマクロボイドを含まず、かつ25℃における純水の透過速度が0.001〜2g/cm2・sec・atmの範囲であるポリフッ化ビニリデン中空糸膜及びその製造方法について明記されている。 Patent Document 1 has average pores of 0.05 to 5 μm on the outer surface of the hollow fiber membrane, and does not substantially contain macrovoids having a pore diameter of 20 μm or more in the cross-sectional direction of the hollow fiber membrane. And a polyvinylidene fluoride hollow fiber membrane having a permeation rate of pure water at 25 ° C. in the range of 0.001 to 2 g / cm 2 · sec · atm and a method for producing the same.

特許文献4には、微多孔を有する透過層を少なくとも3層と、該透過層の間に巨大ボイドを有する支持層が介在された、少なくとも5層構造からなるポリフッ化ビニリデン系樹脂多孔性膜について開示されている。   Patent Document 4 discloses a polyvinylidene fluoride resin porous membrane having at least a five-layer structure in which at least three permeation layers having micropores and a support layer having giant voids are interposed between the permeation layers. It is disclosed.

特許文献2には、ポリフッ化ビニリデンを主体として、親水性ポリビニルピロリドンを1〜20wt%含有するブレンドされたポリマーの多孔中空糸膜が開示されている。しかしながら、ポリビニルピロリドンは水溶性ポリマーであるために、製膜直後には膜内にポリビニルピロリドンが保持されていても、膜使用時にポリビニルピロリドンが流出して親水性が徐々に失われるだけでなく、膜構造も変化する恐れがある。   Patent Document 2 discloses a blended polymer porous hollow fiber membrane mainly containing polyvinylidene fluoride and containing 1 to 20 wt% of hydrophilic polyvinylpyrrolidone. However, since polyvinylpyrrolidone is a water-soluble polymer, even if polyvinylpyrrolidone is retained in the membrane immediately after film formation, not only does polyvinylpyrrolidone flow out when the membrane is used, but the hydrophilicity is gradually lost. The film structure may also change.

一方で、ポリビニルピロリドンに不溶性の親水性ポリマー、特に酢酸セルロースをブレンドした半透膜が開示されている(特許文献5、6)。   On the other hand, a semipermeable membrane obtained by blending a polyvinylpyrrolidone insoluble hydrophilic polymer, particularly cellulose acetate, is disclosed (Patent Documents 5 and 6).

特許文献5には、ポリフッ化ビニリデン樹脂と水酸化度が80%以上かつ100%未満であるセルロース誘導体とのブレンドポリマーで構成されているポリフッ化ビニリデン樹脂膜について開示されている。しかしながら、製膜後、ポリフッ化ビニリデン樹脂膜に対して水酸化処理を行わなければならず、この処理を施すことにより、膜構造が緻密化し、期待するような高い透水速度や分画が得られない可能性がある。   Patent Document 5 discloses a polyvinylidene fluoride resin film composed of a blend polymer of a polyvinylidene fluoride resin and a cellulose derivative having a degree of hydroxylation of 80% or more and less than 100%. However, after film formation, the polyvinylidene fluoride resin film must be subjected to a hydroxylation treatment. By performing this treatment, the membrane structure is densified, and a high water transmission rate and fraction as expected can be obtained. There is no possibility.

特許文献6には、重量基準で70%より多いポリフッ化ビニリデンと30%未満の親水性重合体とを含有する親水性半透膜について開示されているが、この明細書に明記されたポリフッ化ビニリデン多孔膜は、ポリフッ化ビニリデンが元来、疎水性ポリマーであるために極めて親水性が乏しく、ファウリングしやすいため、十分な透水速度が得られない。
特開昭59−16503号公報 特開昭60−216804号公報 特開平4−100522号公報 特公平7−8548号公報 特許3093811号公報 特開平2−78425号公報
Patent Document 6 discloses a hydrophilic semipermeable membrane containing more than 70% polyvinylidene fluoride and less than 30% hydrophilic polymer on a weight basis. Since the polyvinylidene fluoride membrane is originally a hydrophobic polymer, it is very poor in hydrophilicity and easily fouled, so that a sufficient water transmission rate cannot be obtained.
JP 59-16503 A JP 60-216804 A Japanese Patent Laid-Open No. 4-100522 Japanese Patent Publication No. 7-8548 Japanese Patent No. 3093911 JP-A-2-78425

本発明は、親水性ポリマーであり、かつ非水溶性ポリマーである酢酸セルロースをポリフッ化ビニリデンとブレンドすることで、酢酸セルロースの特徴とポリフッ化ビニリデンの特徴を生かした、安定に高い透水速度と耐薬品性と耐生分解性を有する半透膜及びその製造方法を提供することを課題とする。   The present invention blends cellulose acetate, which is a hydrophilic polymer and a water-insoluble polymer, with polyvinylidene fluoride so that the characteristics of cellulose acetate and the characteristics of polyvinylidene fluoride can be utilized to achieve a stable and high water transmission rate and resistance. It is an object to provide a semipermeable membrane having chemical properties and biodegradability and a method for producing the same.

本発明者は、酢酸セルロースにポリフッ化ビニリデンをブレンドすることにより上記課題を解決できることを見出した。   The present inventor has found that the above problems can be solved by blending polyvinylidene fluoride with cellulose acetate.

本発明は、課題の解決手段として、酢酸セルロースとポリフッ化ビニリデンを含有し、全ポリマー成分中のポリフッ化ビニリデンの含有割合が5〜60質量%であることを特徴とする水処理用半透膜を提供する。   The present invention provides a semipermeable membrane for water treatment comprising cellulose acetate and polyvinylidene fluoride as a means for solving the problem, wherein the content of polyvinylidene fluoride in all polymer components is 5 to 60% by mass. I will provide a.

本発明は、他の課題の解決手段として、酢酸セルロースとポリフッ化ビニリデンを含有するポリマー混合物、良溶媒、貧溶媒、並びに無機塩及び親水性ポリマーから選ばれる1つ以上を含む溶液を凝固浴に導いて凝固させ、その後、溶媒を除去することを特徴とする水処理用半透膜の製造方法を提供する。   In another aspect of the present invention, a solution containing at least one selected from a polymer mixture containing cellulose acetate and polyvinylidene fluoride, a good solvent, a poor solvent, and an inorganic salt and a hydrophilic polymer is used as a coagulation bath. Provided is a method for producing a semipermeable membrane for water treatment, characterized by guiding and solidifying, and then removing the solvent.

本発明の水処理用半透膜は、高い透水速度を維持したまま、耐塩素性及び耐生分解性も優れている。   The semipermeable membrane for water treatment of the present invention is excellent in chlorine resistance and biodegradability while maintaining a high water transmission rate.

<水処理用半透膜>
水処理用半透膜は、平膜、中空糸膜、チューブラー膜等のいずれの形態であってもよい。
<Semipermeable membrane for water treatment>
The semipermeable membrane for water treatment may be in any form such as a flat membrane, a hollow fiber membrane, and a tubular membrane.

本発明で用いる酢酸セルロースは、酢化度が55〜65%が好ましく、58〜64%がより好ましく、60〜64%が更に好ましい。酢化度が55%以上であると良好な製膜原液が得られ、65%以下であると親水性が良くなる。   The cellulose acetate used in the present invention preferably has an acetylation degree of 55 to 65%, more preferably 58 to 64%, and still more preferably 60 to 64%. When the acetylation degree is 55% or more, a good film-forming stock solution is obtained, and when it is 65% or less, the hydrophilicity is improved.

酢酸セルロースの重量平均分子量は、100〜1,000が好ましく、200〜900がより好ましく、300〜800が更に好ましい。重量平均分子量が100以上であれば、機械的強度が良く、1,000以下であると多孔化が容易である。   The weight average molecular weight of cellulose acetate is preferably 100 to 1,000, more preferably 200 to 900, and still more preferably 300 to 800. When the weight average molecular weight is 100 or more, the mechanical strength is good, and when the weight average molecular weight is 1,000 or less, porosity is easy.

本発明で用いるポリフッ化ビニリデンは、単独重合体であっても共重合体であってもよいが、フッ化ビニリデン単位が50%以上であるものが好ましく、70%以上であるものがより好ましく、80%以上であるものが更に好ましい。   The polyvinylidene fluoride used in the present invention may be a homopolymer or a copolymer, but preferably has a vinylidene fluoride unit of 50% or more, more preferably 70% or more, What is 80% or more is still more preferable.

共重合体にする場合の他のモノマーとしては、酢酸ビニル系モノマー、アクリル酸系モノマー、メタクリル酸系モノマー、エチレンモノマー、アセチレンモノマー等を挙げることができる。   Examples of other monomers in the case of making a copolymer include vinyl acetate monomers, acrylic acid monomers, methacrylic acid monomers, ethylene monomers, and acetylene monomers.

ポリフッ化ビニリデンの重量平均分子量は、10万〜100万が好ましく、20万〜90万がより好ましく、30万〜80万が更に好ましい。重量平均分子量が10万以上であれば、機械的強度が良く、100万以下であると多孔化が容易である。   The weight average molecular weight of polyvinylidene fluoride is preferably 100,000 to 1,000,000, more preferably 200,000 to 900,000, and still more preferably 300,000 to 800,000. If the weight average molecular weight is 100,000 or more, the mechanical strength is good, and if it is 1,000,000 or less, porosity is easy.

本発明で用いるポリマー成分は、酢酸セルロースとポリフッ化ビニリデンの混合物のみからなるものでもよいし、更に他の膜形成成分となるポリマーを含有していてもよい。   The polymer component used in the present invention may be composed only of a mixture of cellulose acetate and polyvinylidene fluoride, or may further contain a polymer that becomes another film forming component.

本発明で用いるポリマー成分中の酢酸セルロースとポリフッ化ビニリデンの含有割合は、酢酸セルロースが40〜95質量%、好ましくは45〜90質量%、より好ましくは50〜80質量%であり、ポリフッ化ビニリデンが5〜60質量%、好ましくは10〜55質量%、より好ましくは20〜50質量%である。   The content ratio of cellulose acetate and polyvinylidene fluoride in the polymer component used in the present invention is 40 to 95% by mass of cellulose acetate, preferably 45 to 90% by mass, more preferably 50 to 80% by mass, and polyvinylidene fluoride. Is 5 to 60% by mass, preferably 10 to 55% by mass, and more preferably 20 to 50% by mass.

本発明で用いるポリマー成分を酢酸セルロース、ポリフッ化ビニリデン及び他の膜形成成分となるポリマーの混合物にする場合は、全ポリマー成分中の酢酸セルロース及びポリフッ化ビニリデンの合計含有量は80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることが更に好ましいが、ポリフッ化ビニリデンは前記した含有割合になるようにする。   When the polymer component used in the present invention is a mixture of cellulose acetate, polyvinylidene fluoride, and other film forming polymer, the total content of cellulose acetate and polyvinylidene fluoride in all polymer components is 80% by mass or more. Preferably, it is 85% by mass or more, more preferably 90% by mass or more, but the polyvinylidene fluoride is made to have the aforementioned content ratio.

<水処理用半透膜の製造方法>
本発明の製造方法では、製膜原液として、酢酸セルロース及びポリフッ化ビニリデン、更に必要に応じて他の膜形成成分となるポリマーを含有するポリマー混合物、良溶媒と、必要に応じて貧溶媒からなる溶媒及び必要に応じて無機塩を含む溶液を用いる。
<Method for producing semipermeable membrane for water treatment>
In the production method of the present invention, as a film-forming stock solution, cellulose acetate and polyvinylidene fluoride, and further, if necessary, a polymer mixture containing a polymer that becomes another film-forming component, a good solvent, and if necessary, a poor solvent A solution containing a solvent and, if necessary, an inorganic salt is used.

製膜原液に用いる良溶媒としては、酢酸セルロース及びポリフッ化ビニリデンにとって良溶媒であれば特に限定されないが、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、N−メチル−2−ピロリドンが好ましく、特にジメチルスルホキシドが好ましい。   The good solvent used for the film-forming stock solution is not particularly limited as long as it is a good solvent for cellulose acetate and polyvinylidene fluoride, but dimethyl sulfoxide, dimethylacetamide, dimethylformamide, and N-methyl-2-pyrrolidone are preferred, and dimethyl sulfoxide is particularly preferred. preferable.

製膜原液に用いる貧溶媒としては、酢酸セルロース及びポリフッ化ビニリデンにとって貧溶媒であれば特に限定されないが、グリセリン、エチレングリコール、トリエチレングリコール、メタノール、エタノール等の水溶性溶媒が好ましく、特にグリセリンが好ましい。   The poor solvent used for the film-forming stock solution is not particularly limited as long as it is a poor solvent for cellulose acetate and polyvinylidene fluoride, but a water-soluble solvent such as glycerin, ethylene glycol, triethylene glycol, methanol, ethanol is preferable, and glycerin is particularly preferable. preferable.

製膜原液には、半透膜の膜孔径を増大させて透水性能を高めるために親水性ポリマー又は水溶性ポリマーを配合することができる。このような親水性ポリマー又は水溶性ポリマーとしては、ポリビニルピロリドン、ポリエチレングリコール、ポリフェニレンオキシド、ポリビニルアルコール、ポリアクリル酸が好ましく、特にポリビニルピロリドンが好ましい。   In the membrane-forming stock solution, a hydrophilic polymer or a water-soluble polymer can be blended in order to increase the membrane pore size of the semipermeable membrane and improve the water permeability. As such a hydrophilic polymer or water-soluble polymer, polyvinyl pyrrolidone, polyethylene glycol, polyphenylene oxide, polyvinyl alcohol, and polyacrylic acid are preferable, and polyvinyl pyrrolidone is particularly preferable.

親水性ポリマー又は水溶性ポリマーの含有量は、製膜原液中1〜15質量%が好ましく、特に2〜10質量%が好ましい。親水性ポリマーの製膜原液中に占める割合が、1質量%以上であると膜孔径の増大効果が大きく、15質量%以下であると膜孔径を適度に維持でき、機械的強度も高くなる。   The content of the hydrophilic polymer or the water-soluble polymer is preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass in the film-forming stock solution. When the proportion of the hydrophilic polymer in the membrane-forming stock solution is 1% by mass or more, the effect of increasing the membrane pore size is large, and when it is 15% by mass or less, the membrane pore size can be appropriately maintained and the mechanical strength is also increased.

また、製膜原液は、無機塩を含有することができる。無機塩としては、例えば、塩化ナトリウム、塩化カルシウム、塩化リチウムを挙げることができる。無機塩を含むことにより、膜の孔径が大きくなり、透水性能が高められるという効果がある。   Moreover, the film-forming stock solution can contain an inorganic salt. Examples of inorganic salts include sodium chloride, calcium chloride, and lithium chloride. By including the inorganic salt, there is an effect that the pore diameter of the membrane is increased and the water permeability is enhanced.

無機塩の含有量は、製膜原液中0.1質量%以上が好ましく、より好ましくは0.5質量%以上である。無機塩の製膜原液中に占める割合が、0.1質量%以上であると膜孔径の増大効果が大きく、0.5質量%以上であると前記効果をより高めることができる。   The content of the inorganic salt is preferably 0.1% by mass or more, more preferably 0.5% by mass or more in the film-forming stock solution. When the proportion of the inorganic salt in the film-forming stock solution is 0.1% by mass or more, the effect of increasing the membrane pore diameter is large, and when it is 0.5% by mass or more, the effect can be further enhanced.

製膜原液中の膜形成成分となるポリマー混合物(上記した半透膜の膜孔径を増大させるための親水性ポリマー又は水溶性ポリマーは含まれない)の割合は、10〜30質量%が好ましく、特に15〜25質量%が好ましい。10質量%以上であると機械的強度が良く、30質量%以下であると製膜が容易である。   The ratio of the polymer mixture (not including the hydrophilic polymer or the water-soluble polymer for increasing the membrane pore diameter of the semipermeable membrane) described above as a film-forming component in the membrane-forming stock solution is preferably 10 to 30% by mass, 15-25 mass% is especially preferable. When it is 10% by mass or more, the mechanical strength is good, and when it is 30% by mass or less, film formation is easy.

製膜原液は、良溶媒、及び必要により貧溶媒からなる溶媒にポリマー混合物を所定濃度になるように溶解させて得ることができる。製膜原液の粘度は、25℃換算で、5,000〜100万mPa・sが好ましく、1万〜50万mPa・sがより好ましい。   The film-forming stock solution can be obtained by dissolving the polymer mixture in a good solvent and, if necessary, a solvent consisting of a poor solvent so as to have a predetermined concentration. The viscosity of the film-forming stock solution is preferably 5,000 to 1,000,000 mPa · s, more preferably 10,000 to 500,000 mPa · s in terms of 25 ° C.

本発明の製造方法では、製膜原液を凝固浴に導いて凝固させ、製膜する。凝固時における製膜原液の温度は20〜150℃が好ましく、特に40〜120℃が好ましい。製膜原液の温度が20℃以上であると多孔化が容易で、150℃以下であるとポリマー成分の変性の恐れがない。   In the production method of the present invention, the film-forming stock solution is introduced into a coagulation bath to be coagulated to form a film. 20-150 degreeC is preferable and the temperature of the film-forming stock solution at the time of coagulation has especially preferable 40-120 degreeC. When the temperature of the film-forming stock solution is 20 ° C. or higher, porosity is easy, and when it is 150 ° C. or lower, there is no fear of modification of the polymer component.

凝固浴として用いる凝固液としては、水又は上記した良溶媒10質量%以下の水溶液が好ましく、特に水が好ましい。また、凝固液温度は20〜80℃が好ましく、特に30〜60℃が好ましい。凝固液温度が20℃以上であると多孔化が容易で、80℃以下であると膜形状が損なわれることがない。   As the coagulation liquid used as the coagulation bath, water or an aqueous solution of 10% by mass or less of the good solvent described above is preferable, and water is particularly preferable. Further, the coagulation liquid temperature is preferably 20 to 80 ° C, particularly preferably 30 to 60 ° C. When the coagulation liquid temperature is 20 ° C. or higher, porosity is easy, and when it is 80 ° C. or lower, the film shape is not impaired.

本発明の製造方法では、凝固浴にて製膜後、常温乃至は加温雰囲気にて乾燥し、溶媒を除去する。   In the production method of the present invention, after forming a film in a coagulation bath, the solvent is removed by drying in a normal temperature or a heated atmosphere.

本発明の水処理用半透膜は、一般的な水処理に適用され、例えば、各種施設の排水及び家庭排水の処理、更には河川、湖沼等の浄化処理等に適用することができる。   The semipermeable membrane for water treatment of the present invention is applied to general water treatment, and can be applied to, for example, treatment of wastewater from various facilities and household wastewater, and purification treatment of rivers, lakes, and the like.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited by these.

[純水透水速度測定]
得られた中空糸膜を長さ1mに切断し、中空糸の片側を閉じた状態で、もう片側から圧力0.1MPaにて、中空糸内部に純水を透過させ、外表面から得られる透過液量から純水透水速度を算出した。
[Measurement of pure water permeability]
The obtained hollow fiber membrane is cut into a length of 1 m, and with one side of the hollow fiber closed, pure water is allowed to permeate inside the hollow fiber at a pressure of 0.1 MPa from the other side, and the permeation obtained from the outer surface. The pure water permeation rate was calculated from the liquid volume.

[耐塩素性試験]
得られた中空糸膜を有効塩素濃度1,000mg/Lの次亜塩素酸ナトリウム水溶液中に10日間浸漬し、引張り強度試験機(EZTest、島津製作所製)により、破断点強度を測定し、浸漬前の強度に対する低下率を算出した。
[Chlorine resistance test]
The obtained hollow fiber membrane was immersed in an aqueous solution of sodium hypochlorite having an effective chlorine concentration of 1,000 mg / L for 10 days, and the strength at break was measured with a tensile strength tester (EZTest, manufactured by Shimadzu Corporation). The rate of decrease relative to the previous strength was calculated.

[耐生分解性試験]
得られた中空糸膜を河川に100日間浸漬し、引張り強度試験機により、破断点強度を測定し、浸漬前の強度に対する低下率(%)を算出した。
[Biodegradation resistance test]
The obtained hollow fiber membrane was immersed in a river for 100 days, the strength at break was measured with a tensile strength tester, and the rate of decrease (%) with respect to the strength before immersion was calculated.

実施例1
酢酸セルロース(FRK、ダイセル化学工業(株)製、酢化度60.9、重量平均分子量300)14.4質量部、ポリフッ化ビニリデン(KF#850、呉羽化学工業(株)製、重量平均分子量2.8×10)3.6質量部(全ポリマー中の含有割合20質量%)、ジメチルスルホキシド81質量部、塩化リチウム1質量部からなる製膜原液を得た。80℃に保温した製膜原液を二重管ノズルを通過させ、50℃の水からなる凝固槽で凝固させた。得られた中空糸膜の外径は1.3mm、内径は0.8mmであった。破断点強度は410kg/f、破断点伸度は22%であった。純水透水速度は570LMHKであった。また、耐塩素性試験と耐生分解性試験の結果を表1に示す。
Example 1
Cellulose acetate (FRK, manufactured by Daicel Chemical Industries, Ltd., degree of acetylation 60.9, weight average molecular weight 300) 14.4 parts by mass, polyvinylidene fluoride (KF # 850, manufactured by Kureha Chemical Industries, Ltd., weight average molecular weight) 2.8 × 10 5 ) 3.6 parts by mass (content ratio of 20% by mass in all polymers), 81 parts by mass of dimethyl sulfoxide, and 1 part by mass of lithium chloride were obtained. The film-forming stock solution kept at 80 ° C. was passed through a double tube nozzle and coagulated in a coagulation tank composed of water at 50 ° C. The obtained hollow fiber membrane had an outer diameter of 1.3 mm and an inner diameter of 0.8 mm. The strength at break was 410 kg / f, and the elongation at break was 22%. The pure water permeation rate was 570 LMHK. Table 1 shows the results of the chlorine resistance test and the biodegradation resistance test.

実施例2
実施例1で用いた酢酸セルロース12質量部、実施例1で用いたポリフッ化ビニリデン3質量部(全ポリマー中の含有割合20質量%)、ジメチルスルホキシド77質量部、グリセリン8質量部からなる製膜原液を得た。80℃に保温した製膜原液を二重管ノズルを通過させ、50℃の水からなる凝固槽で凝固させた。得られた中空糸膜の外径は1.3mm、内径は0.8mmであった。破断点強度は190kg/f、破断点伸度は15%であった。純水透水速度は640LMHKであった。また、耐塩素性試験と耐生分解性試験の結果を表1に示す。
Example 2
Film formation consisting of 12 parts by mass of cellulose acetate used in Example 1, 3 parts by mass of polyvinylidene fluoride used in Example 1 (content ratio of 20% by mass in all polymers), 77 parts by mass of dimethyl sulfoxide, and 8 parts by mass of glycerin A stock solution was obtained. The film-forming stock solution kept at 80 ° C. was passed through a double tube nozzle and coagulated in a coagulation tank composed of water at 50 ° C. The obtained hollow fiber membrane had an outer diameter of 1.3 mm and an inner diameter of 0.8 mm. The strength at break was 190 kg / f, and the elongation at break was 15%. The pure water permeation rate was 640 LMHK. Table 1 shows the results of the chlorine resistance test and the biodegradation resistance test.

実施例3
実施例1で用いた酢酸セルロース10質量部、実施例1で用いたポリフッ化ビニリデン5質量部(全ポリマー中の含有割合33質量%)、ジメチルスルホキシド84質量部、塩化リチウム1質量部からなる製膜原液を得た。80℃に保温した製膜原液を二重管ノズルを通過させ、50℃の水からなる凝固槽で凝固させた。得られた中空糸膜の外径は1.3mm、内径は0.8mmであった。破断点強度は190kg/f、破断点伸度は15%であった。純水透水速度は1040LMHKであった。また、耐塩素性試験と耐生分解性試験の結果を表1に示す。
Example 3
Product made of 10 parts by mass of cellulose acetate used in Example 1, 5 parts by mass of polyvinylidene fluoride used in Example 1 (content ratio of 33% by mass in all polymers), 84 parts by mass of dimethyl sulfoxide, and 1 part by mass of lithium chloride A membrane stock solution was obtained. The film-forming stock solution kept at 80 ° C. was passed through a double tube nozzle and coagulated in a coagulation tank composed of water at 50 ° C. The obtained hollow fiber membrane had an outer diameter of 1.3 mm and an inner diameter of 0.8 mm. The strength at break was 190 kg / f, and the elongation at break was 15%. The pure water permeation rate was 1040 LMHK. Table 1 shows the results of the chlorine resistance test and the biodegradation resistance test.

実施例4
実施例1で用いた酢酸セルロース9.5質量部、実施例1で用いたポリフッ化ビニリデン9.5質量部(全ポリマー中の含有割合50質量%)、ジメチルスルホキシド80質量部、塩化リチウム1質量部からなる製膜原液を得た。80℃に保温した製膜原液を二重管ノズルを通過させ、50℃の水からなる凝固槽で凝固させた。得られた中空糸膜の外径は1.3mm、内径は0.8mmであった。破断点強度は60kg/f、破断点伸度は10%であった。純水透水速度は1200LMHKであった。また、耐塩素性試験と耐生分解性試験の結果を表1に示す。
Example 4
9.5 parts by mass of cellulose acetate used in Example 1, 9.5 parts by mass of polyvinylidene fluoride used in Example 1 (content of 50% by mass in all polymers), 80 parts by mass of dimethyl sulfoxide, 1 mass of lithium chloride A film-forming stock solution consisting of parts was obtained. The film-forming stock solution kept at 80 ° C. was passed through a double tube nozzle and coagulated in a coagulation tank composed of water at 50 ° C. The obtained hollow fiber membrane had an outer diameter of 1.3 mm and an inner diameter of 0.8 mm. The strength at break was 60 kg / f, and the elongation at break was 10%. The pure water permeation rate was 1200 LMHK. Table 1 shows the results of the chlorine resistance test and the biodegradation resistance test.

実施例5
実施例1で用いた酢酸セルロース9質量部、実施例1で用いたポリフッ化ビニリデン9質量部(全ポリマー中の含有割合50質量%)、ジメチルスルホキシド71質量部、グリセリン7質量部、ポリビニルピロリドン(分子量55,000)4質量部からなる製膜原液を得た。80℃に保温した製膜原液を二重管ノズルを通過させ、50℃の水からなる凝固槽で凝固させた。得られた中空糸膜の外径は1.3mm、内径は0.8mmであった。破断点強度は80kg/f、破断点伸度は12%であった。純水透水速度は1300LMHKであった。また、耐塩素性試験と耐生分解性試験の結果を表1に示す。
Example 5
9 parts by mass of cellulose acetate used in Example 1, 9 parts by mass of polyvinylidene fluoride used in Example 1 (content ratio of 50% by mass in all polymers), 71 parts by mass of dimethyl sulfoxide, 7 parts by mass of glycerin, polyvinylpyrrolidone ( A film-forming stock solution consisting of 4 parts by mass of molecular weight 55,000) was obtained. The film-forming stock solution kept at 80 ° C. was passed through a double tube nozzle and coagulated in a coagulation tank composed of water at 50 ° C. The obtained hollow fiber membrane had an outer diameter of 1.3 mm and an inner diameter of 0.8 mm. The strength at break was 80 kg / f, and the elongation at break was 12%. The pure water permeation rate was 1300 LMHK. Table 1 shows the results of the chlorine resistance test and the biodegradation resistance test.

比較例1
実施例1で用いた酢酸セルロース1質量部、実施例1で用いたポリフッ化ビニリデン14質量部(全ポリマー中の含有割合93質量%)、ジメチルスルホキシド74質量部、グリセリン7質量部、実施例5で用いたポリビニルピロリドン4質量部からなる製膜原液を得た。80℃に保温した製膜原液を二重管ノズルを通過させ、50℃の水からなる凝固槽で凝固させた。得られた中空糸膜の外径は1.3mm、内径は0.8mmであった。破断点強度は230kg/f、破断点伸度は63%であった。純水透水速度は399LMHKであった。
Comparative Example 1
1 part by mass of cellulose acetate used in Example 1, 14 parts by mass of polyvinylidene fluoride used in Example 1 (content ratio of 93% by mass in all polymers), 74 parts by mass of dimethyl sulfoxide, 7 parts by mass of glycerin, Example 5 A film-forming stock solution comprising 4 parts by mass of polyvinylpyrrolidone used in 1 was obtained. The film-forming stock solution kept at 80 ° C. was passed through a double tube nozzle and coagulated in a coagulation tank composed of water at 50 ° C. The obtained hollow fiber membrane had an outer diameter of 1.3 mm and an inner diameter of 0.8 mm. The strength at break was 230 kg / f, and the elongation at break was 63%. The pure water permeation rate was 399LMHK.

Figure 2006326497
Figure 2006326497

実施例1〜5と比較例1との比較から、実施例の組成は、比較例に対して純水透水速度が高いことが分かる。   From comparison between Examples 1 to 5 and Comparative Example 1, it can be seen that the composition of the Example has a higher pure water permeation rate than the Comparative Example.

Claims (2)

酢酸セルロースとポリフッ化ビニリデンを含有し、全ポリマー成分中のポリフッ化ビニリデンの含有割合が5〜60質量%であることを特徴とする水処理用半透膜。   A semipermeable membrane for water treatment, comprising cellulose acetate and polyvinylidene fluoride, wherein the content of polyvinylidene fluoride in all polymer components is 5 to 60% by mass. 酢酸セルロースとポリフッ化ビニリデンを含有するポリマー混合物、良溶媒、並びに貧溶媒、無機塩及び親水性ポリマーから選ばれる1つ以上を含む溶液を凝固浴に導いて凝固させ、その後、溶媒を除去することを特徴とする水処理用半透膜の製造方法。
Introducing a polymer mixture containing cellulose acetate and polyvinylidene fluoride, a good solvent, and a solution containing at least one selected from a poor solvent, an inorganic salt and a hydrophilic polymer into a coagulation bath to coagulate, and then removing the solvent; The manufacturing method of the semipermeable membrane for water treatment characterized by these.
JP2005154005A 2005-05-26 2005-05-26 Semi-permeable membrane for water treatment and its production method Pending JP2006326497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154005A JP2006326497A (en) 2005-05-26 2005-05-26 Semi-permeable membrane for water treatment and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154005A JP2006326497A (en) 2005-05-26 2005-05-26 Semi-permeable membrane for water treatment and its production method

Publications (1)

Publication Number Publication Date
JP2006326497A true JP2006326497A (en) 2006-12-07

Family

ID=37548782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154005A Pending JP2006326497A (en) 2005-05-26 2005-05-26 Semi-permeable membrane for water treatment and its production method

Country Status (1)

Country Link
JP (1) JP2006326497A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001360A (en) * 2012-05-25 2014-01-09 Olympus Corp Elastomer composition and molded product
CN104548962A (en) * 2015-01-09 2015-04-29 王进 Polyvinylidene fluoride hollow fiber ultra-filtration membrane and preparation method thereof
JP2015512784A (en) * 2012-03-30 2015-04-30 コーロン インダストリーズ インク Porous membrane and method for producing the same
JP2017144358A (en) * 2016-02-15 2017-08-24 株式会社ダイセル Hollow fiber membrane
CN108043240A (en) * 2017-12-29 2018-05-18 北京清大国华环境股份有限公司 A kind of resistant to pollution PVDF Modified Membranes of high throughput and preparation method thereof
WO2020262490A1 (en) * 2019-06-27 2020-12-30 東レ株式会社 Porous membrane and composite porous membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536335A (en) * 1978-09-01 1980-03-13 Nippon Zeon Co Ltd Production of hollow fiber
JPS58205503A (en) * 1982-05-22 1983-11-30 Kanebo Ltd Oil-water separating film and its production
JPH02647A (en) * 1987-11-27 1990-01-05 Nok Corp Production of porous membrane
JP2000288364A (en) * 1999-04-05 2000-10-17 Nok Corp Hollow fiber membrane of saponified cellulose acetate and manufacture thereof
JP2002301342A (en) * 2001-04-09 2002-10-15 Nitto Denko Corp Polyvinylidene fluoride porous separation membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536335A (en) * 1978-09-01 1980-03-13 Nippon Zeon Co Ltd Production of hollow fiber
JPS58205503A (en) * 1982-05-22 1983-11-30 Kanebo Ltd Oil-water separating film and its production
JPH02647A (en) * 1987-11-27 1990-01-05 Nok Corp Production of porous membrane
JP2000288364A (en) * 1999-04-05 2000-10-17 Nok Corp Hollow fiber membrane of saponified cellulose acetate and manufacture thereof
JP2002301342A (en) * 2001-04-09 2002-10-15 Nitto Denko Corp Polyvinylidene fluoride porous separation membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512784A (en) * 2012-03-30 2015-04-30 コーロン インダストリーズ インク Porous membrane and method for producing the same
US9314745B2 (en) 2012-03-30 2016-04-19 Kolon Industries, Inc. Porous membrane and method for manufacturing the same
JP2014001360A (en) * 2012-05-25 2014-01-09 Olympus Corp Elastomer composition and molded product
CN104548962A (en) * 2015-01-09 2015-04-29 王进 Polyvinylidene fluoride hollow fiber ultra-filtration membrane and preparation method thereof
JP2017144358A (en) * 2016-02-15 2017-08-24 株式会社ダイセル Hollow fiber membrane
CN108043240A (en) * 2017-12-29 2018-05-18 北京清大国华环境股份有限公司 A kind of resistant to pollution PVDF Modified Membranes of high throughput and preparation method thereof
WO2020262490A1 (en) * 2019-06-27 2020-12-30 東レ株式会社 Porous membrane and composite porous membrane

Similar Documents

Publication Publication Date Title
CA2746593C (en) Highly durable porous pvdf film, method of producing the same, and washing method and filtering method using the same
Razzaghi et al. Morphological and separation performance study of PVDF/CA blend membranes
JP5732719B2 (en) Separation membrane and manufacturing method thereof
US20160023170A1 (en) Polyvinylidene fluoride hollow fiber membranes and preparation thereof
JP2010094670A (en) Polyvinylidene fluoride-based multiple membrane and method for producing the same
JP6577781B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
JP2006326497A (en) Semi-permeable membrane for water treatment and its production method
JP4299468B2 (en) Cellulose derivative hollow fiber membrane
JP5109263B2 (en) Fluororesin polymer separation membrane and method for producing the same
JP2012187575A (en) Composite membrane and method for manufacturing the same
JP2008168224A (en) Hollow fiber porous membrane and its manufacturing method
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
WO2009119373A1 (en) Hollow-fiber membrane and process for production thereof
JPWO2012063669A1 (en) Manufacturing method of separation membrane
JP4757396B2 (en) Cellulose derivative hollow fiber membrane
JP2008036559A (en) Method of oxidization processing fluororesin-based polymer separation membrane
KR101675455B1 (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP2006205003A (en) Chlorine resistance polyolefin hollow fiber membrane and its manufacturing method
KR102172621B1 (en) Method for preparation of polyketone hollow fiber membrane
JP2008105019A (en) Porous film and its manufacturing method
JP6533064B2 (en) Hollow fiber type semipermeable membrane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025