WO2020262490A1 - Porous membrane and composite porous membrane - Google Patents

Porous membrane and composite porous membrane Download PDF

Info

Publication number
WO2020262490A1
WO2020262490A1 PCT/JP2020/024906 JP2020024906W WO2020262490A1 WO 2020262490 A1 WO2020262490 A1 WO 2020262490A1 JP 2020024906 W JP2020024906 W JP 2020024906W WO 2020262490 A1 WO2020262490 A1 WO 2020262490A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
porous film
thickness direction
average
cross
Prior art date
Application number
PCT/JP2020/024906
Other languages
French (fr)
Japanese (ja)
Inventor
稜 佐藤
花川 正行
健太 岩井
俊 志村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020539116A priority Critical patent/JPWO2020262490A1/ja
Publication of WO2020262490A1 publication Critical patent/WO2020262490A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride

Definitions

  • the present invention relates to a porous membrane and a composite porous membrane.
  • porous membranes such as microfiltration membranes and ultrafiltration membranes have been used in various fields such as water treatment fields such as water purification or wastewater treatment, medical fields such as blood purification, and food industry fields. Porous membranes in such fields are used repeatedly and are washed or sterilized with various chemicals, so that high chemical resistance is usually required.
  • Patent Document 1 discloses a technique for improving separation performance by reducing the pore size distribution in the cross-sectional structure of a porous membrane made of a polymer containing a polyvinylidene fluoride resin.
  • Patent Document 2 discloses a technique for expanding the pore size of a porous membrane and improving the permeation performance by selecting a long-chain branched fluoropolymer as the polyvinylidene fluoride-based resin contained in the porous membrane. There is.
  • an object of the present invention is to provide a porous membrane capable of achieving both excellent separation performance and permeation performance and having high chemical resistance.
  • the intensity ratio A / A'of the peak intensity A and the peak intensity A'derived from the polyvinylidene fluoride resin 5 ⁇ m, 10 ⁇ m, and 15 ⁇ m in the thickness direction from the dense surface on any one surface of the porous film.
  • the maximum value of the intensity ratio A / A'at four points of 20 ⁇ m is larger than the maximum value of the intensity ratio A / A'at three points of 25 ⁇ m, 30 ⁇ m and 35 ⁇ m in the thickness direction from the dense surface, and , A porous film in which the average value of the strength ratio A / A'at 5 points of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m and 25 ⁇ m in the thickness direction from the dense surface is in the range of 0.90 to 1.20.
  • the average cross-sectional pore diameter D of the pores existing in the region from the surface of the support layer not in contact with the porous film to 30 ⁇ m in the thickness direction is dense.
  • FIG. 1 is a graph showing the evaluation results of the porous membrane in each Example and Comparative Example.
  • the mass-based ratio (percentage, etc.) is the same as the weight-based ratio (percentage, etc.).
  • Porous Membrane (1-1) Composition of Porous Membrane (a) Polymer
  • the porous membrane of the present invention needs to contain a branched polyvinylidene fluoride resin and a hydrophilic resin.
  • the "polyvinylidene fluoride-based resin” refers to a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer.
  • the vinylidene fluoride copolymer refers to a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and another fluoromonomer or the like.
  • Examples of such a fluorine-based monomer include vinyl fluoride, ethylene tetrafluoroethylene, propylene hexafluoride, and ethylene trifluoride chloride.
  • the vinylidene fluoride copolymer may be copolymerized with ethylene or the like other than the above-mentioned fluorine-based monomer to the extent that the effect of the present invention is not impaired.
  • the "branched polyvinylidene fluoride resin” is a gel permeation chromatograph (hereinafter, "RI") equipped with a multi-angle light scattering detector (hereinafter, “MALS”) and a differential refractometer (hereinafter, "RI").
  • RI gel permeation chromatograph
  • MALS multi-angle light scattering detector
  • RI differential refractometer
  • the radius of gyration ⁇ S 2 > 1/2 is appropriately small with respect to the absolute molecular weight M w of the polymer, so that the polymer is porous when the porous film is formed. It becomes easy to move to the vicinity of the surface of the quality film. As a result, the polymer density of the layer near the surface of the porous membrane tends to increase, and it is presumed that the porous membrane exhibits excellent separation performance.
  • ⁇ S 2 > 1/2 bM w a ... (2)
  • the measurement using GPC-MALS is performed by dissolving the polymer constituting the porous membrane in a solvent.
  • a salt may be added to the solvent in order to improve the solubility of the polymer.
  • NMP N-methyl-2-pyrrolidone
  • Conformation plots are a commonly used technique in polymer research. That is, the radius of gyration ⁇ S 2 > 1/2 measured by GPC-MALS and the absolute molecular weight M w can be plotted in both logarithms, and the value of a in the above approximate expression (2) can be determined from the slope. it can.
  • Hydrophilic resin refers to a resin that has a high affinity for water. Since the porous membrane contains a hydrophilic resin, it has a high affinity with water and exhibits high permeation performance.
  • hydrophilic resin include cellulose esters such as cellulose acetate and cellulose acetate propionate, fatty acid vinyl esters, polyvinyl acetate, polymers of acrylic acids such as polymethyl methacrylate, or polymers of methacrylic esters, or their weights.
  • a coalesced copolymer can be mentioned.
  • the hydrophilic resin is preferably a water-insoluble resin in order to retain a large amount of the hydrophilic resin in the porous membrane when forming the porous membrane.
  • the hydrophilic resin it is preferable that the hydrophilic resin itself is insoluble in water or water-insoluble by appropriate treatment.
  • a treatment for example, in the case of a hydrophilic resin having vinylpyrrolidone, ethylene oxide or propylene oxide in the main chain and / or side chain, a method of copolymerizing with another monomer to make it water-insoluble is preferably adopted.
  • a random copolymer of vinylpyrrolidone and methylmethacrylate (PMMA-co-PVP) or a graft copolymer of vinylpyrrolidone to polymethylmethacrylate (PMMA-g-PVP) has an appropriate molar copolymerization ratio.
  • PMMA-co-PVP vinylpyrrolidone and methylmethacrylate
  • PMMA-g-PVP graft copolymer of vinylpyrrolidone to polymethylmethacrylate
  • insoluble in water means that it does not dissolve in water in an amount of 5% by mass or more even in a high temperature region of 60 ° C. or higher.
  • the porous membrane of the present invention is composed of a polymer containing a branched polyvinylidene fluoride resin and a hydrophilic resin. Further, the value of a in the above approximate formula (2) for the polymer constituting the porous membrane is 0.32 to 0.41, and the value of b is 0.18 to 0.42. Is preferable.
  • the radius of gyration ⁇ S 2 > 1/2 is appropriately smaller than the absolute molecular weight M w of the polymer.
  • the polymer easily moves to the vicinity of the surface of the porous membrane.
  • the polymer density of the layer near the surface of the porous membrane tends to increase, and it is presumed that the porous membrane exhibits excellent separation performance.
  • the value of a is 0.32 or more, the polymers are appropriately entangled with each other, and the polymer density of the layer near the surface tends to be uniform, so that it is presumed that even higher separation performance is exhibited.
  • the value of a is more preferably 0.37 to 0.40, and even more preferably 0.37 to 0.39.
  • the value of b for the polymer constituting the porous membrane of the present invention is 0.18 to 0.42 in order to further enhance the separation performance by homogenizing the polymer density of the layer near the surface due to the entanglement of the polymers. It is preferably 0.20 to 0.38, more preferably 0.25 to 0.33, and particularly preferably 0.25 to 0.33.
  • the porous membrane of the present invention has a peak intensity A derived from a hydrophilic resin detected when infrared spectroscopic measurement is performed at intervals of 5 ⁇ m in the thickness direction from the surface of the porous membrane, and polyvinylidene fluoride.
  • the strength ratio A / A'with the peak strength A'derived from the system resin the above-mentioned strength ratios at four points of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m and 20 ⁇ m in the thickness direction from the dense surface on any one surface of the porous film.
  • the maximum value of A / A' is larger than the maximum value of the above-mentioned strength ratio A / A'at three points of 25 ⁇ m, 30 ⁇ m and 35 ⁇ m in the thickness direction from the dense surface, and 5 ⁇ m in the thickness direction from the dense surface. It is required that the average value of the above-mentioned intensity ratio A / A'at 5 points of 10 ⁇ m, 15 ⁇ m, 20 ⁇ m and 25 ⁇ m is in the range of 0.90 to 1.20.
  • the dense surface means the surface of the front and back surfaces of the porous film, whichever has the smaller average surface pore diameter.
  • the porous membrane of the present invention tends to increase the polymer density near the surface of the porous membrane by using the branched polyvinylidene fluoride resin, whereby the porous membrane exhibits excellent separation performance.
  • the permeation performance tends to decrease in the vicinity of the surface where the polymer density is high.
  • the maximum value of the strength ratio A / A'at the four points of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m and 20 ⁇ m in the thickness direction from the dense surface of the porous membrane is the above strength ratio at the three points of 25 ⁇ m, 30 ⁇ m and 35 ⁇ m in the thickness direction.
  • the hydrophilic resin When it is larger than the maximum value of A / A', the hydrophilic resin is present at a high density in a portion having a high polymer density near the dense surface of the porous membrane. As a result, the affinity with water in the vicinity of the dense surface of the porous membrane tends to be high, and it is presumed that high permeation performance is exhibited. Further, when the average value of the intensity ratio A / A'at 5 points of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m and 25 ⁇ m from the dense surface in the thickness direction is 0.90 or more, water is formed in the vicinity of the dense surface of the porous film. It is presumed that it exhibits high permeation performance because it tends to have a high affinity with.
  • the average value of the strength ratio A / A' is 1.20 or less, the ratio of the branched polyvinylidene fluoride-based resin near the dense surface of the porous membrane becomes moderately high, and high chemical resistance is achieved. Easy to show.
  • the average value of the intensity ratio A / A' is more preferably in the range of 1.00 to 1.20, and particularly preferably in the range of 1.05 to 1.20.
  • Infrared spectroscopy is performed using a microscopic FT-IR.
  • the porous membrane immersed in distilled water is frozen using a cryostat and cut perpendicular to the surface of the porous membrane.
  • the cut porous membrane is placed on a CaF 2 plate, and the measurement range is set to a range of 10 ⁇ m centered on the measurement position in the thickness direction of the porous membrane, and the measurement is performed at intervals of 5 ⁇ m from the surface of the porous membrane in the thickness direction.
  • a peak derived from polyvinylidene fluoride resin and a peak derived from hydrophilic resin were detected, and the intensity ratio A / A'from the peak intensity derived from hydrophilic resin / the peak intensity derived from polyvinylidene fluoride resin. Is calculated.
  • the peak intensity is a value obtained from the absorbance of the absorption spectrum.
  • the position of the peak derived from the polyvinylidene fluoride resin is around 1400 cm -1 .
  • the position of the peak derived from the hydrophilic resin is, for example, is around 1750 cm -1 if cellulose acetate, is around 1250 cm -1 if polyvinyl acetate.
  • the porous membrane in the present invention preferably has a thickness of 35 ⁇ m or more in order to exhibit separation performance without defects.
  • the thickness of the porous membrane is preferably 35 to 80 ⁇ m, more preferably 35 to 50 ⁇ m.
  • the porous membrane of the present invention preferably has an average surface pore diameter of 3 to 16 nm on a dense surface in order to exhibit excellent separation performance. Further, the porous film of the present invention has an average surface pore diameter of 3 to 16 nm on a dense surface, and an electron microscope image (SEM image) of a cross section perpendicular to the surface of the porous film is 5 ⁇ m in the thickness direction from the surface. When photographed at intervals, the average cross-sectional hole diameter B in the region 25 to 30 ⁇ m in the thickness direction from the dense surface is 5 to 25 times the average cross-sectional hole diameter B in the region 0 to 5 ⁇ m in the thickness direction from the dense surface. It is more preferable that it is within the range.
  • the porous film of the present invention SEM images of a cross section perpendicular to the surface of the porous film are photographed at intervals of 5 ⁇ m in a range of up to 30 ⁇ m in the thickness direction from the dense surface, and a distance C from the dense surface.
  • the inclination k in the following approximate formula (1) obtained by the minimum square method from the measured values of ( ⁇ m) and the average cross-sectional pore diameter B ( ⁇ m) of the pores in each cross section obtained from the SEM image is 0.01 to 0.2. It is preferably within the range of.
  • the average surface pore diameter of the dense surface is 3 to 16 nm and the inclination k is in the range of 0.01 to 0.2.
  • B kC + d ... (1) (D is a constant)
  • the average surface pore size can be calculated by observing the surface of the porous membrane with an electron microscope (hereinafter, "SEM"). More specifically, the surface of the porous membrane is observed using SEM at a magnification of 30,000 to 100,000 times, and the areas of 300 randomly selected pores are measured respectively. From the area of each hole, the diameter when it is assumed that the hole is a circle is calculated as the hole diameter, and the average value thereof can be used as the average surface hole diameter.
  • the average surface pore size of the dense surface is more preferably 6 to 14 nm, and particularly preferably 8 to 11 nm.
  • the average surface pore size of the dense surface is in the above range, and the pure water permeability at 25 ° C. and 50 kPa is 0.1 to 0.8 m 3 / m 2 /. It is preferably hr, and more preferably 0.2 to 0.4 m 3 / m 2 / hr.
  • the membrane area and the amount of permeated water per hour are measured at a pressure within the range where the porous membrane is not deformed, and these values are measured under a pressure of 50 kPa. It may be calculated by converting each of the values into. A proportional relationship is established when converting the pressure.
  • the standard deviation of the average surface pore diameter of the dense surface is preferably 8.0 nm or less.
  • the standard deviation is 8.0 nm or less, high separation performance is likely to be exhibited due to the uniformity of the surface structure of the porous membrane.
  • the standard deviation of the average surface pore size is more preferably 5.0 nm or less.
  • the fractional molecular weight of the porous membrane or the composite porous membrane of the present invention is preferably 5,000 to 80,000 Da, more preferably 8,000 to 50,000 Da, and 10,000 to 29, It is more preferably 000 Da.
  • the "molecular weight cut-off" refers to the minimum molecular weight that can be removed by 90% of the molecular weights of the components contained in the liquid to be filtered by the porous membrane.
  • the average cross-sectional hole diameter B is calculated by a method using image analysis in the same manner as the average surface hole diameter. More specifically, the porous membrane immersed in distilled water is sectioned by cutting with a microtome. The cross section of the obtained section was observed using SEM at a magnification of 10,000 times, and in the cross-sectional image, (130 ⁇ m parallel to the surface of the porous membrane) ⁇ (relative to the thickness direction of the porous membrane). A region of 5 ⁇ m) in parallel is divided into one segment and continuously divided in the thickness direction. Each of the divided segments is binarized with a structural portion made of resin and a pore portion.
  • the contour of the hole can be discriminated using image processing software, and the structural part made of resin and the pore part are binarized, and the part and noise that cannot be discriminated are corrected with a freehand tool. can do. It is possible to use general image processing software for the binarization processing. Examples of the image processing software include ImageJ (Wayne Rasband, National Institutes of Health) and the like. Using the image after the binarization process, the areas of 30 holes randomly selected from the locations corresponding to the holes are measured by image processing software. From the area of each hole, the diameter when it is assumed that the hole is a circle is calculated as the hole diameter, and the average value thereof is defined as the average cross-sectional hole diameter B.
  • the average value of the average cross-sectional hole diameter B in each segment be the average cross-sectional hole diameter F.
  • the average cross-sectional pore diameter B and the average cross-sectional pore diameter F of the composite porous membrane described later are the same as the definitions of the average cross-sectional pore diameter B and the average cross-sectional pore diameter F of the porous membrane.
  • the average cross-sectional pore diameter B in the region 25 to 30 ⁇ m in the thickness direction from the dense surface is 5 to 25 times the average cross-sectional pore diameter B in the region 0 to 5 ⁇ m in the thickness direction from the dense surface. It is preferably within the range, more preferably 5 to 15 times, still more preferably 5 to 10 times. High separation performance is maintained because the average cross-sectional hole diameter B in the region 25 to 30 ⁇ m in the thickness direction from the dense surface is 5 times or more the average cross-sectional hole diameter B in the region 0 to 5 ⁇ m in the thickness direction from the dense surface. On the other hand, it is easy to suppress the deterioration of the permeation performance, and it is easy to maintain the separation performance when it is 25 times or less.
  • (C) Inclination k The slope k in the above approximate expression (1) is obtained by photographing SEM images of a cross section perpendicular to the surface of the porous film at intervals of 5 ⁇ m in the range of 30 ⁇ m in the thickness direction from the dense surface, and from the dense surface of the porous film. It is calculated by approximating all points when the distance C ( ⁇ m) is plotted on the horizontal axis and the average cross-sectional hole diameter B ( ⁇ m) measured in the cross section is plotted on the vertical axis.
  • the slope k is preferably in the range of 0.01 to 0.2.
  • an inclined asymmetric structure is formed in which the average cross-sectional pore diameter increases as the distance from the surface of the porous membrane increases in the thickness direction, and the permeation performance deteriorates while maintaining high separation performance. Is easy to suppress. Further, when k is 0.2 or less, it is easy to maintain the separation performance of the porous membrane.
  • the slope k is more preferably in the range of 0.01 to 0.08, and even more preferably in the range of 0.01 to 0.04.
  • the composite porous membrane of the present invention tends to exhibit physical strength when the support layer is in contact (laminated) with one surface of the porous membrane. ..
  • the "support layer” refers to a structure for physically reinforcing the porous membrane, which has a higher breaking strength than the porous membrane. It is preferable that the support layer contains a polyvinylidene fluoride-based resin as a main component from the viewpoint of adhesiveness to the porous film.
  • the breaking strength of the support layer that is, the breaking strength per unit area is preferably 3 MPa or more, and more preferably 10 MPa or more.
  • the breaking strength of the support layer is preferably 300 gf or more, and more preferably 800 gf or more.
  • the support layer preferably has a fibrous structure, a columnar structure or a spherical structure in order to further enhance the strength of the composite porous film.
  • the breaking strength or breaking strength can be calculated by repeating the tensile test 5 times on a sample having a length of 50 mm under the condition of a tensile speed of 50 mm / min using a tensile tester and averaging those values.
  • the breaking strength or breaking strength of the composite porous membrane is adjusted to the breaking strength or breaking strength of the supporting layer which is a component thereof. It can be regarded as breaking strength.
  • the support layer preferably has a thickness of 30 ⁇ m or more in order to exhibit physical strength.
  • the thickness of the support layer is preferably 30 to 400 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the support layer preferably has an average cross-sectional pore diameter D in the range of 50 to 500 times the average surface pore diameter of the dense surface.
  • the average cross-sectional hole diameter D is more preferably in the range of 100 to 400 times, and further preferably in the range of 150 to 300 times.
  • the average cross-sectional hole diameter D is 50 times or more, excellent permeation performance is likely to be exhibited.
  • the average cross-sectional hole diameter D is 500 times or less, excellent breaking strength is likely to be exhibited.
  • the average cross-sectional pore diameter D of the support layer is calculated by a method using image analysis in the same manner as the average cross-sectional pore diameter B of the porous film. Specifically, the cross section of the composite porous film was photographed using SEM at a magnification of 10,000 times, and in the cross-sectional image, from the surface of the support layer not in contact with the porous film (relative to the surface of the support layer). A region of (130 ⁇ m in parallel) ⁇ (30 ⁇ m in parallel with the thickness direction of the support layer) was cut out, binarized using image processing software, and randomly selected from the locations corresponding to the holes 30. The area of each pore is measured. From the area of each hole, the diameter when it is assumed that the hole is a circle is calculated as the hole diameter, and the average value thereof can be taken as the average cross-sectional hole diameter D.
  • the average surface pore size of the surface of the support layer on the side not in contact with the porous film is larger than the average surface pore size of the dense surface of the porous film in the composite porous film.
  • the average surface pore size of the surface of the support layer on the side not in contact with the porous film is preferably 0.01 to 120 ⁇ m, more preferably 0.01 to 10 ⁇ m, and even more preferably 0.01 to 5 ⁇ m.
  • the average surface pore size of the support layer can be calculated by the same method as the average surface pore size of the porous film.
  • the average cross-sectional pore size E in the range from the surface where the porous film and the support layer contact to 25 ⁇ m in the thickness direction of the support layer is in the range of 2 to 10 times the average cross-sectional pore size F of the porous film. It is preferable to be inside.
  • the average cross-sectional hole diameter E is twice or more the average cross-sectional hole diameter F, high permeation performance can be easily exhibited.
  • the average cross-sectional hole diameter E is 10 times or less the average cross-sectional hole diameter F, it is easy to prevent the porous membrane from entering the support layer and deteriorating the permeation performance.
  • the average cross-sectional hole diameter E is calculated as follows. That is, a cross section of the composite porous film is photographed using SEM at a magnification of 10,000 times, and in the cross-sectional image, from the surface where the porous film and the support layer are in contact (130 ⁇ m parallel to the surface of the support layer) ⁇ . A region (25 ⁇ m parallel to the thickness direction of the support layer) is cut out. This was binarized using image processing software, the areas of 30 holes randomly selected from the locations corresponding to the holes were measured, and it was assumed that the holes were circular from the area of each hole. The diameter at the time of this is calculated as the hole diameter. The average value of these hole diameters can be defined as the average cross-sectional hole diameter E.
  • the method for producing a porous film of the present invention includes (A) a polymer solution preparation step of dissolving a polymer containing a branched polyvinylidene fluoride resin and a hydrophilic resin in a solvent to obtain a polymer solution, and (B).
  • the present invention comprises a porous film forming step of coagulating the polymer solution in a non-solvent to form a porous film.
  • the polymer easily moves to the vicinity of the surface of the porous membrane, and the polymer density near the surface of the porous membrane tends to increase.
  • the maximum value of the strength ratio A / A'at the four points of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m and 20 ⁇ m in the thickness direction from the dense surface of the porous membrane is 25 ⁇ m, 30 ⁇ m and 35 ⁇ m in the thickness direction from the dense surface. It is presumed that the intensity ratio A / A'at the three points is larger than the maximum value.
  • the polymer density on the surface side is more likely to be homogenized due to the entanglement of the polymers, and the average value of A / A'is 0.90. It is estimated that it tends to be ⁇ 1.20.
  • a good solvent is preferable as the solvent used in the polymer solution preparation step.
  • the "good solvent” means a solvent capable of dissolving 5% by mass or more of the polyvinylidene fluoride-based resin even in a low temperature region of 60 ° C. or lower.
  • Examples of a good solvent include NMP, dimethylacetamide, dimethylformamide, methylethylketone, acetone, tetrahydrofuran, tetramethylurea or trimethyl phosphate, or a mixed solvent thereof.
  • the polymer solution obtained in the polymer solution preparation step may appropriately contain a third resin, a plasticizer, a salt, or the like in addition to the branched polyvinylidene fluoride resin and the hydrophilic resin. Further, when the polymer solution contains a plasticizer or a salt, the solubility of the polymer solution is improved.
  • the plasticizer include glycerol triacetate, diethylene glycol, dibutyl phthalate, dioctyl phthalate and the like.
  • the salt include calcium chloride, magnesium chloride, lithium chloride or barium sulfate.
  • the concentration of the polymer solution obtained in the polymer solution preparation step is preferably 15 to 30% by mass, more preferably 20 to 25% by mass, in order to achieve both high separation performance and permeation performance.
  • the "non-solvent" in the porous film forming step means a solvent that does not dissolve or swell the fluororesin polymer up to the melting point of the polyvinylidene fluoride resin or the boiling point of the solvent.
  • the non-solvent include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol and pentane.
  • Aliphatic hydrocarbons such as diols, hexanediols or low molecular weight polyethylene glycols, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinated organic liquids or theirs.
  • a mixed solvent can be mentioned.
  • the solvent of the polymer solution is mixed with the non-solvent in the coagulation bath in which the polymer solution and the non-solvent are brought into contact with each other, and the solvent derived from the polymer solution is used.
  • the concentration increases. Therefore, it is preferable to replace the non-solvent in the coagulation bath so that the composition of the liquid in the coagulation bath is maintained in a certain range. The lower the concentration of the good solvent in the coagulation bath, the faster the polymer solution coagulates, so that the structure of the porous membrane is homogenized and excellent separation performance is likely to be exhibited.
  • the concentration of the good solvent in the coagulation bath is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the polymer solution for forming the porous film of the present invention increases the density of the hydrophilic resin on the surface side, which greatly affects the permeation performance, so that even when the temperature of the non-solvent is lowered further. It is possible to realize excellent transmission performance.
  • the temperature of the polymer solution and / or the liquid containing the non-solvent in the coagulation bath is preferably 0 to 25 ° C, more preferably 0 to 20 ° C, still more preferably 5 to 15 ° C.
  • the shape of the produced porous membrane can be controlled by the mode of solidification of the polymer solution in the porous membrane forming step.
  • a film-like support layer made of a non-woven fabric, a metal oxide, a metal or the like coated with a polymer solution can be immersed in a coagulation bath.
  • the polymer solution can be discharged from the outer peripheral portion of the double tube cap, and the core solution can be discharged from the central portion into a coagulation bath containing a non-solvent at the same time.
  • the core liquid it is preferable to use a good solvent or the like in the polymer solution preparation step.
  • a porous film may be formed on the surface of a hollow thread-like support layer made of a polymer, a metal oxide, a metal or the like.
  • a method of forming a porous film on the surface of a hollow thread-like support layer made of a polymer for example, a method of simultaneously discharging a solution as a raw material of the hollow thread-like support layer and a polymer solution using a triple tube mouthpiece.
  • a method in which a polymer solution is applied to the outer surface of a hollow thread-like support layer formed in advance and passed through a non-solvent in a coagulation bath can be mentioned.
  • the surface of the hollow thread-like support layer is preferably dense, and as a method for producing the hollow thread-like support layer, the concentration of the polymer solution as a raw material for the support layer is increased, and the temperature of the coagulation bath is lowered.
  • GPC-MALS (column: manufactured by Showa Denko KK; Shodex KF-806M ⁇ 8.0 mm ⁇ 30 cm, connected in series, differential refractometer: manufactured by Waitt Technology; Optilab) of the obtained polymer solution under the following conditions.
  • rEX, MALS manufactured by Wyatt Technology; DAWN HeLEOS
  • the injected polymer solution eluted from the column in the range of 27-43 minutes.
  • Solvent NMP with 0.1M lithium chloride added Flow velocity: 0.5 mL / min Injection volume: 0.3 mL
  • dn / dc in the formula (3) is the amount of change in the refractive index of the polymer solution with respect to the change in the polymer concentration, that is, the increase in the refractive index.
  • the branched polyvinylidene fluoride-based resin is the measurement target, and the above solvent is used.
  • a value of ⁇ 0.05 mL / g can be applied as the index of refraction increment.
  • n 0 Refractive index of solvent
  • dn / dc Refractive index increment
  • Wavelength of incident light in vacuum
  • N 0 Avogadro's number
  • the intensity ratio A / A' was determined from the peak intensity A'derived from the peak intensity A / derived from the polyvinylidene fluoride resin.
  • the position of the peak derived from the polyvinylidene fluoride resin is around 1400 cm -1 .
  • the position of the peak derived from the hydrophilic resin is, for example, is around 1750 cm -1 if cellulose acetate, is around 1250 cm -1 if polyvinyl acetate.
  • the average value of the intensity ratio A / A' was determined from the average of 5 points of 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m and 25 ⁇ m in the thickness direction from the dense surface of the porous film or the composite porous film.
  • Dextran f1 to f4 (manufactured by Fluka; weight average molecular weights of 1,500 Da, 6,000 Da, 15,000 to 25,000 Da, 40,000 Da, respectively)
  • Dextran a1 and a2 (manufactured by Aldrich; weight average molecular weight is 60,000 Da, 20,000 Da, respectively)
  • Dextran a3 and a4 (Molecular weight standard material manufactured by Aldrich; weight average molecular weights of 5,200 Da and 150,000 Da, respectively)
  • Dextran a5 to a7 (Molecular weight standard substance manufactured by Aldrich; weight average molecular weights are 1,300 Da, 12,000 Da, 50,000 Da, respectively)
  • Dextran f1 to f4 and dextran a1 and a2 were mixed with distilled water in an amount of 500 ppm each to prepare an aqueous dextran solution 1.
  • the prepared dextran aqueous solution 1 was supplied to the porous membrane at 10 kPa, cross-flow filtered at a cross-flow linear velocity of 1.1 m / s, and the filtrate was sampled.
  • Dextran aqueous solution 1 and sampled filtrate are combined in series with one GPC (column: manufactured by Tosoh Corporation; TSKgel G3000PW ⁇ 7.5 mm x 30 cm and one manufactured by Tosoh Corporation; TSKgel ⁇ -M ⁇ 7.8 mm x 30 cm).
  • each elution time t i was calculated removal rate from the value of the differential refractive index between the filtrate and the aqueous dextran solution 1. Further, 500 ppm each of dextran a3 and a4 was mixed with distilled water to prepare a dextran aqueous solution 2. Further, 500 ppm each of dextran a5 to a7 was mixed with distilled water to prepare a dextran aqueous solution 3. These dextran solution 2 and 3, measured and injected into GPC under the same conditions as dextran solution 1, to calculate the molecular weight at each elution time t i, a calibration curve was prepared. A calibration curve prepared, the removal rate of each elution time t i, in terms of the removal rate in each molecular weight, removal rate of the minimum molecular weight is 90% and the molecular weight cutoff of the porous membrane to be evaluated ..
  • (V) Average cross-sectional pore size of the porous membrane The cross-section of the porous membrane is 10,000 times larger in the range from the dense surface to 30 ⁇ m in the thickness direction using SEM (manufactured by Hitachi High-Technologies Corporation; SU-1510). Observed at magnification, a region of (130 ⁇ m parallel to the surface) ⁇ (5 ⁇ m parallel to the thickness direction) was defined as one segment, continuously divided in the thickness direction, and randomly divided for each divided segment. The area of each of the 30 holes selected in 1 was measured. From the area of each hole, the diameter when the hole was assumed to be a circle was calculated as the hole diameter, and the average value thereof was taken as the average cross-sectional hole diameter B.
  • the average value of the average cross-sectional hole diameter B of each segment was defined as the average cross-sectional hole diameter F.
  • (Viii) Average cross-sectional hole diameter of the surface of the support layer The cross-section of the support layer in the thickness direction was observed using SEM (Hitachi High-Technologies Corporation; SU-1510) at a magnification of 10,000 times, and from the vicinity of the surface. , (130 ⁇ m parallel to the surface) ⁇ (25 ⁇ m parallel to the thickness direction) were cut out, and the areas of 30 randomly selected holes were measured for each of the cut out images. From the area of each hole, the diameter when the hole was assumed to be a circle was calculated as the hole diameter, and the average value thereof was taken as the average cross-sectional hole diameter E.
  • branched polyvinylidene fluoride (hereinafter, “branched PVDF”) 1 (Solvay Solef9009, crystallinity 44%, melt viscosity 3 kP)
  • Branched PVDF2 (manufactured by Solvay; Solef9007, crystallinity 38%, melt viscosity 26 kP)
  • Branched PVDF3 (manufactured by Solvay; Solef460, crystallinity 45%, melt viscosity 2 kP)
  • Linear PVDF Linear polyvinylidene fluoride
  • Linear PVDF Linear PVDF
  • Linear PVDF Linear polyvinylidene fluoride
  • Example 1 12% by mass of branched PVDF1 and 7% by mass of CA were mixed, NMP and the like were added, and the mixture was stirred at 120 ° C. for 4 hours to prepare a polymer solution having the composition ratio shown in Table 1.
  • the prepared polymer solution was uniformly applied to the surface thereof at 10 m / min using a bar coater (thickness 2 mil).
  • the support layer coated with the polymer solution held at 40 ° C. for 1 hour was immersed in distilled water at 15 ° C. for 60 seconds to solidify the support layer 3 seconds after the coating, to form a porous film (thickness 45 ⁇ m).
  • the results of evaluating the obtained porous membrane are shown in Table 1 and FIG.
  • the maximum value of the strength ratio A / A' was located at a position of 15 ⁇ m in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 1.06.
  • the average cross-sectional hole diameter B ( ⁇ m) is 0.07, 0.13, 0.16, 0.22, 0.30, 0.69 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.02.
  • the value of a in the above formula (2) was 0.40, and the value of b was 0.19.
  • Example 2 A polymer solution having a composition ratio shown in Table 1 was prepared in the same manner as in Example 1 except that branched PVDF2 was used instead of branched PVDF1. Next, a porous film (thickness 40 ⁇ m) was formed in the same manner as in Example 1 except that the temperature of the distilled water was changed to 10 ° C. The results of evaluating the obtained porous membrane are shown in Table 1 and FIG. The maximum value of the strength ratio A / A'was located at a position of 15 ⁇ m in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 1.06.
  • the average cross-sectional hole diameter B ( ⁇ m) is 0.08, 0.17, 0.21, 0.24, 0.30, 0.55 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.02. Further, the value of a in the above formula (2) was 0.37, and the value of b was 0.28. Both the molecular weight cut-off and the permeability of pure water showed excellent values.
  • Example 3 A polymer solution having a composition ratio shown in Table 1 was prepared in the same manner as in Example 1. Next, a porous film (thickness 45 ⁇ m) was formed in the same manner as in Example 1 except that the temperature of the distilled water was changed to 40 ° C. The results of evaluating the obtained porous membrane are shown in Table 1 and FIG. The maximum value of the strength ratio A / A'was located at a position of 10 ⁇ m in the thickness direction from the dense surface of the porous membrane, and the average value of the strength ratio A / A'was 1.04.
  • the average cross-sectional hole diameter B ( ⁇ m) is 0.17, 0.25, 0.77, 0.65, 1.20, 1.52 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.05.
  • the value of a in the above formula (2) was 0.40, and the value of b was 0.19. Both the molecular weight cut-off and the permeability of pure water showed excellent values.
  • Example 4 25% by mass of branched PVDF3 and 75% by mass of linear PVDF1 were mixed to prepare "PVDF", NMP and the like were added, and the mixture was stirred at 120 ° C. for 4 hours to prepare a polymer solution having the composition ratio shown in Table 1.
  • a porous film (thickness 45 ⁇ m) was formed in the same manner as in Example 1.
  • the results of evaluating the obtained porous membrane are shown in Table 1 and FIG.
  • the maximum value of the strength ratio A / A' was located at a position of 15 ⁇ m in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 0.99.
  • the average cross-sectional hole diameter B ( ⁇ m) is 0.08, 0.14, 0.24, 0.31, 1.20, 1.61 from the dense surface side, and the value of k in the above formula (1) is 0. It was .06. Further, the value of a in the above formula (2) was 0.40, and the value of b was 0.18. Both the molecular weight cut-off and the permeability of pure water showed excellent values.
  • Example 5 42% by mass of linear PVDF2 and 58% by mass of ⁇ -butyrolactone were mixed and dissolved at 160 ° C. to prepare a membrane-forming stock solution.
  • This film-forming stock solution is discharged from the double tube mouthpiece with an 85% by mass ⁇ -butyrolactone aqueous solution accompanied as a hollow portion forming liquid, and an 85% by mass ⁇ -butyrolactone aqueous solution at a temperature of 5 ° C. installed 30 mm below the base is contained.
  • a hollow filament-like support layer containing a polyvinylidene fluoride-based resin as a main component was prepared.
  • a polymer solution having a composition ratio shown in Table 1 was prepared in the same manner as in Example 1. Next, a polymer solution held at 50 ° C. for 1 hour was uniformly applied at 10 m / min to the surface of the support layer containing the hollow filament-like polyvinylidene fluoride resin as a main component (thickness 50 ⁇ m). One second after the application of the polymer solution, the support layer is immersed in distilled water at 15 ° C. for 10 seconds to coagulate to form a composite porous film (porous film thickness 40 ⁇ m, support layer thickness 200 ⁇ m). did.
  • the results of evaluating the obtained composite porous membrane are shown in Table 1 and FIG.
  • the maximum value of the strength ratio A / A' was located at a position of 15 ⁇ m in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 1.06.
  • the average cross-sectional hole diameter B ( ⁇ m) is 0.07, 0.13, 0.16, 0.21, 0.30, 0.70 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.02.
  • the average cross-sectional hole diameter D ( ⁇ m) was 1.80, which was 200 times the average surface hole diameter of the dense surface.
  • the average cross-sectional pore diameter E ( ⁇ m) was 0.84, and the average cross-sectional pore diameter F ( ⁇ m) of the porous membrane was 0.41.
  • the value of a in the above formula (2) was 0.40, and the value of b was 0.19. Both the molecular weight cut-off and the permeability of pure water showed excellent values.
  • the surface on the porous film side where the porous film and the support layer are not in contact that is, the average surface pore diameter of the dense surface is 9 nm, and the average of the surfaces on the support layer side where the porous film and the support layer are not in contact.
  • the surface pore diameter was 0.3 ⁇ m. It can be seen that the average surface pore size of the porous film is denser than the average surface pore size of the support layer.
  • the breaking strength of the composite porous membrane was 10 MPa, and the breaking strength was 970 gf.
  • the average cross-sectional hole diameter B ( ⁇ m) is 0.30, 0.31, 0.31, 0.34, 0.33, 0.35 from the dense surface side, and the value of k in the above formula (1) is 0. It was .002. Further, the value of a in the above formula (2) was 0.43, and the value of b was 0.17. Both the molecular weight cut-off and the water permeability of pure water were inferior to the results of Examples.
  • Comparative Example 2 A polymer solution having a composition ratio shown in Table 2 was prepared in the same manner as in Comparative Example 1 except that branched PVDF3 was used. Next, a porous film (thickness 35 ⁇ m) was formed in the same manner as in Example 1 except that the temperature of the distilled water was changed to 20 ° C. The results of evaluating the obtained porous membrane are shown in Table 2 and FIG. The maximum value of the strength ratio A / A'was located at a position of 10 ⁇ m in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 0.57.
  • the average cross-sectional hole diameter B ( ⁇ m) is 0.18, 0.22, 5.85, 6.02, 6.11, 8.90 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.4. Further, the value of a in the above formula (2) was 0.36, and the value of b was 0.27. Both the molecular weight cut-off and the water permeability of pure water were inferior to the results of Examples.

Abstract

A porous membrane according to the present invention contains a branched polyvinylidene fluoride-based resin and a hydrophilic resin, wherein regarding the intensity ratio A/A' of a hydrophilic resin-derived peak intensity A to a polyvinylidene fluoride-based resin-derived peak intensity A', as detected by infrared spectroscopic measurement at intervals of 5 μm from the surface of the porous membrane in the thickness direction, the maximum value of the intensity ratios A/A' at four points of 5, 10, 15, and 20 μm from the dense surface of the porous membrane in the thickness direction is greater than the maximum value of the intensity ratios A/A' at three points of 25, 30, and 35 μm in the thickness direction, and the average value of the intensity ratios A/A' at five points of 5, 10, 15, 20, and 25 μm from the dense surface in the thickness direction is 0.90-1.20.

Description

多孔質膜および複合多孔質膜Porous Membrane and Composite Porous Membrane
 本発明は、多孔質膜および複合多孔質膜に関する。 The present invention relates to a porous membrane and a composite porous membrane.
 近年、精密ろ過膜や限外ろ過膜等の多孔質膜は、浄水または排水処理等の水処理分野、血液浄化等の医療分野、食品工業分野等、様々な分野で利用されている。そのような分野における多孔質膜は、繰り返し使用するため、多様な薬品で洗浄または殺菌されることから、高い耐薬品性が求められるのが通常である。 In recent years, porous membranes such as microfiltration membranes and ultrafiltration membranes have been used in various fields such as water treatment fields such as water purification or wastewater treatment, medical fields such as blood purification, and food industry fields. Porous membranes in such fields are used repeatedly and are washed or sterilized with various chemicals, so that high chemical resistance is usually required.
 優れた耐薬品性を示す多孔質膜としては、ポリフッ化ビニリデン系樹脂を含むポリマーからなる多孔質膜が知られている。例えば特許文献1では、ポリフッ化ビニリデン系樹脂を含むポリマーからなる多孔質膜の断面構造における孔径分布を小さくして、分離性能を向上させる技術が開示されている。また、特許文献2においては、多孔質膜に含まれるポリフッ化ビニリデン系樹脂として長鎖分岐フルオロポリマーを選択することで、多孔質膜の孔径を拡大して透過性能を向上させる技術が開示されている。 As a porous membrane exhibiting excellent chemical resistance, a porous membrane made of a polymer containing a polyvinylidene fluoride resin is known. For example, Patent Document 1 discloses a technique for improving separation performance by reducing the pore size distribution in the cross-sectional structure of a porous membrane made of a polymer containing a polyvinylidene fluoride resin. Further, Patent Document 2 discloses a technique for expanding the pore size of a porous membrane and improving the permeation performance by selecting a long-chain branched fluoropolymer as the polyvinylidene fluoride-based resin contained in the porous membrane. There is.
日本国特開2006-263721号公報Japanese Patent Application Laid-Open No. 2006-263721 日本国特表2016-510688号公報Japan Special Table 2016-510688
 しかしながら、従来のポリフッ化ビニリデン系樹脂を含むポリマーからなる多孔質膜では、分離性能と、透過性能の両方を兼ね備えた膜は得られていない。
 そこで本発明は、優れた分離性能と透過性能とを両立することが可能であり、かつ高い耐薬品性を有する多孔質膜を提供することを目的とする。
However, in the conventional porous membrane made of a polymer containing a polyvinylidene fluoride resin, a membrane having both separation performance and permeation performance has not been obtained.
Therefore, an object of the present invention is to provide a porous membrane capable of achieving both excellent separation performance and permeation performance and having high chemical resistance.
 上記課題を解決するため、本発明は、以下の態様を包含する。
[1]分岐ポリフッ化ビニリデン系樹脂と親水性樹脂を含む多孔質膜であって、前記多孔質膜の表面から厚さ方向に5μm間隔で赤外分光測定を行い検出される親水性樹脂由来のピーク強度Aと、ポリフッ化ビニリデン系樹脂由来のピーク強度A’との強度比A/A’について、前記多孔質膜のいずれか1つの表面にある緻密表面から厚さ方向に5μm、10μm、15μm及び20μmの4点における前記強度比A/A’の最大値が、前記緻密表面から厚さ方向に25μm、30μm及び35μmの3点における前記強度比A/A’の最大値よりも大きく、かつ、前記緻密表面から厚さ方向に5μm、10μm、15μm、20μm及び25μmの5点における前記強度比A/A’の平均値が0.90~1.20の範囲内である多孔質膜。
[2]前記親水性樹脂が水に不溶な樹脂である、上記[1]に記載の多孔質膜。
[3]前記緻密表面の平均表面孔径が3~16nmであり、前記多孔質膜の表面に垂直な断面の電子顕微鏡画像(SEM画像)を前記表面から厚さ方向に5μm間隔で撮影した際、前記緻密表面から厚さ方向に25~30μmの領域における平均断面孔径Bが、前記緻密表面から厚さ方向に0~5μmの領域における平均断面孔径Bの5~25倍の範囲内である、上記[1]または[2]に記載の多孔質膜。
[4]前記多孔質膜の表面に垂直な断面のSEM画像を、前記緻密表面から厚さ方向に30μmまでの範囲で5μm間隔で撮影し、前記緻密表面からの距離C(μm)と、前記SEM画像から得られる各断面における細孔の平均断面孔径B(μm)の測定値とから最小2乗法により得られる、下記近似式(1)における傾きkが0.01~0.2の範囲内である、上記[1]~[3]のいずれか1に記載の多孔質膜。
 B=kC+d・・・(1)
 (dは定数)
[5]前記緻密表面の平均表面孔径の標準偏差が8.0nm以下である、上記[1]~[4]のいずれか1に記載の多孔質膜。
[6]前記多孔質膜を構成するポリマーについて、多角度光散乱検出器および示差屈折率計を備えたゲル浸透クロマトグラフを用いて得られる回転半径〈S1/2と絶対分子量Mの測定結果から、コンフォメーションプロットにより得られる下記近似式(2)におけるaの値が、0.32~0.41の範囲内であり、かつ、bの値が、0.18~0.42の範囲内である、上記[1]~[5]のいずれか1に記載の多孔質膜。
  〈S1/2=bM    ・・・(2)
[7]上記[1]~[6]のいずれか1に記載の多孔質膜と、ポリフッ化ビニリデン系樹脂を主成分とする支持層とが積層された複合多孔質膜であって、前記複合多孔質膜の表面に垂直な断面のSEM画像における、前記支持層の前記多孔質膜と接していない面から厚さ方向に30μmまでの領域に存在する細孔の平均断面孔径Dが、前記緻密表面の平均表面孔径の50~500倍の範囲内である複合多孔質膜。
[8]前記複合多孔質膜の表面に垂直な断面のSEM画像における、前記多孔質膜と前記支持層が接する面から前記支持層の厚さ方向に25μmまでの範囲に存在する細孔の平均断面孔径Eが、前記複合多孔質膜の表面に垂直な断面のSEM画像における前記多孔質膜の平均断面孔径Fの2~10倍の範囲内となる、上記[7]に記載の複合多孔質膜。
In order to solve the above problems, the present invention includes the following aspects.
[1] A porous film containing a branched polyvinylidene fluoride resin and a hydrophilic resin, which is derived from a hydrophilic resin detected by infrared spectroscopic measurement at intervals of 5 μm in the thickness direction from the surface of the porous film. Regarding the intensity ratio A / A'of the peak intensity A and the peak intensity A'derived from the polyvinylidene fluoride resin, 5 μm, 10 μm, and 15 μm in the thickness direction from the dense surface on any one surface of the porous film. The maximum value of the intensity ratio A / A'at four points of 20 μm is larger than the maximum value of the intensity ratio A / A'at three points of 25 μm, 30 μm and 35 μm in the thickness direction from the dense surface, and , A porous film in which the average value of the strength ratio A / A'at 5 points of 5 μm, 10 μm, 15 μm, 20 μm and 25 μm in the thickness direction from the dense surface is in the range of 0.90 to 1.20.
[2] The porous membrane according to the above [1], wherein the hydrophilic resin is a water-insoluble resin.
[3] When an electron microscope image (SEM image) having an average surface pore diameter of 3 to 16 nm on the dense surface and a cross section perpendicular to the surface of the porous film is taken at intervals of 5 μm in the thickness direction from the surface. The average cross-sectional hole diameter B in the region 25 to 30 μm in the thickness direction from the dense surface is within a range of 5 to 25 times the average cross-sectional hole diameter B in the region 0 to 5 μm in the thickness direction from the dense surface. The porous membrane according to [1] or [2].
[4] SEM images of a cross section perpendicular to the surface of the porous film are taken at intervals of 5 μm in a range of up to 30 μm in the thickness direction from the dense surface, and the distance C (μm) from the dense surface and the above. The slope k in the following approximate formula (1) obtained by the minimum square method from the measured value of the average cross-sectional pore diameter B (μm) of the pores in each cross section obtained from the SEM image is within the range of 0.01 to 0.2. The porous film according to any one of the above [1] to [3].
B = kC + d ... (1)
(D is a constant)
[5] The porous film according to any one of [1] to [4] above, wherein the standard deviation of the average surface pore diameter of the dense surface is 8.0 nm or less.
[6] With respect to the polymer constituting the porous membrane, the radius of gyration <S 2 > 1/2 and the absolute molecular weight M w obtained by using a gel permeation chromatograph equipped with a multi-angle light scattering detector and a differential refractometer. The value of a in the following approximate formula (2) obtained by the conformation plot is in the range of 0.32 to 0.41, and the value of b is 0.18 to 0.42. The porous membrane according to any one of the above [1] to [5], which is within the range of.
<S 2 > 1/2 = bM w a ... (2)
[7] A composite porous membrane in which the porous membrane according to any one of [1] to [6] above and a support layer containing a polyvinylidene fluoride-based resin as a main component are laminated. In the SEM image of the cross section perpendicular to the surface of the porous film, the average cross-sectional pore diameter D of the pores existing in the region from the surface of the support layer not in contact with the porous film to 30 μm in the thickness direction is dense. A composite porous membrane within the range of 50 to 500 times the average surface pore size of the surface.
[8] In the SEM image of the cross section perpendicular to the surface of the composite porous membrane, the average of the pores existing in the range from the surface where the porous membrane and the support layer are in contact to 25 μm in the thickness direction of the support layer. The composite porous material according to the above [7], wherein the cross-sectional pore diameter E is within a range of 2 to 10 times the average cross-sectional pore diameter F of the porous membrane in the SEM image of the cross section perpendicular to the surface of the composite porous membrane. film.
 本発明によれば、分岐ポリフッ化ビニリデン系樹脂を含むことで高い耐薬品性を確保しつつ、優れた分離性能および透過性能の双方が達成された多孔質膜を提供することができる。 According to the present invention, it is possible to provide a porous membrane in which both excellent separation performance and permeation performance are achieved while ensuring high chemical resistance by containing a branched polyvinylidene fluoride resin.
図1は、各実施例、比較例における多孔質膜の評価結果を示すグラフである。FIG. 1 is a graph showing the evaluation results of the porous membrane in each Example and Comparative Example.
 以下に、本発明の実施形態について図面を参照しながら詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、本明細書において質量を基準とした割合(百分率等)は、重量を基準とした割合(百分率等)と同じである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the present specification, the mass-based ratio (percentage, etc.) is the same as the weight-based ratio (percentage, etc.).
1.多孔質膜
(1-1)多孔質膜の組成
(a)ポリマー
 本発明の多孔質膜は、分岐ポリフッ化ビニリデン系樹脂と親水性樹脂を含むことを必要とする。
 「ポリフッ化ビニリデン系樹脂」とは、フッ化ビニリデン単独重合体またはフッ化ビニリデン共重合体をいう。フッ化ビニリデン共重合体とは、フッ化ビニリデン残基構造を有するポリマーを言い、典型的には、フッ化ビニリデンモノマーと、それ以外のフッ素系モノマー等との共重合体である。そのようなフッ素系モノマーとしては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレンまたは三フッ化塩化エチレンが挙げられる。フッ化ビニリデン共重合体は、本発明の効果を損なわない程度に、上記フッ素系モノマー以外のエチレン等が共重合されていても構わない。
1. 1. Porous Membrane (1-1) Composition of Porous Membrane (a) Polymer The porous membrane of the present invention needs to contain a branched polyvinylidene fluoride resin and a hydrophilic resin.
The "polyvinylidene fluoride-based resin" refers to a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer. The vinylidene fluoride copolymer refers to a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and another fluoromonomer or the like. Examples of such a fluorine-based monomer include vinyl fluoride, ethylene tetrafluoroethylene, propylene hexafluoride, and ethylene trifluoride chloride. The vinylidene fluoride copolymer may be copolymerized with ethylene or the like other than the above-mentioned fluorine-based monomer to the extent that the effect of the present invention is not impaired.
 ここで「分岐ポリフッ化ビニリデン系樹脂」とは、多角度光散乱検出器(以下、「MALS」)および示差屈折率計(以下、「RI」)を備えた、ゲル浸透クロマトグラフ(以下、「GPC」)であるGPC-MALSにより測定される、回転半径〈S1/2と、絶対分子量Mとの測定結果から、コンフォメーションプロットにより得られる下記近似式(2)におけるaの値が、0.41以下のポリフッ化ビニリデン系樹脂をいう。aの値が0.41以下であることで、ポリマーの絶対分子量Mに対して回転半径〈S1/2が適度に小さくなるため、多孔質膜が形成される際にポリマーが多孔質膜の表面近傍へと移動しやすくなる。これにより、多孔質膜の表面近傍の層のポリマー密度が上昇しやすくなり、多孔質膜が優れた分離性能を発現するものと推測される。
 〈S1/2=bM    ・・・(2)
Here, the "branched polyvinylidene fluoride resin" is a gel permeation chromatograph (hereinafter, "RI") equipped with a multi-angle light scattering detector (hereinafter, "MALS") and a differential refractometer (hereinafter, "RI"). The value of a in the following approximate formula (2) obtained by the conformation plot from the measurement results of the radius of gyration <S 2 > 1/2 and the absolute molecular weight M w measured by GPC-MALS which is "GPC"). However, it refers to a polyvinylidene fluoride-based resin of 0.41 or less. When the value of a is 0.41 or less, the radius of gyration <S 2 > 1/2 is appropriately small with respect to the absolute molecular weight M w of the polymer, so that the polymer is porous when the porous film is formed. It becomes easy to move to the vicinity of the surface of the quality film. As a result, the polymer density of the layer near the surface of the porous membrane tends to increase, and it is presumed that the porous membrane exhibits excellent separation performance.
<S 2 > 1/2 = bM w a ... (2)
 GPC-MALSを用いた測定は、多孔質膜を構成するポリマーを、溶媒に溶解して行う。溶媒には、ポリマーの溶解性を向上させるため、塩を添加しても構わない。ポリフッ化ビニリデン系樹脂についてGPC-MALSを用いた測定をする場合においては、例えば、0.1mol/Lの塩化リチウムを添加した、N-メチル-2-ピロリドン(以下、「NMP」)を用いることが好ましい。 The measurement using GPC-MALS is performed by dissolving the polymer constituting the porous membrane in a solvent. A salt may be added to the solvent in order to improve the solubility of the polymer. When measuring a polyvinylidene fluoride resin using GPC-MALS, for example, N-methyl-2-pyrrolidone (hereinafter, “NMP”) to which 0.1 mol / L lithium chloride is added should be used. Is preferable.
 コンフォメーションプロットとは、ポリマーの研究において一般的に用いられる手法である。すなわち、GPC-MALSにより測定される、回転半径〈S1/2と、絶対分子量Mを両対数でプロットし、その傾きから上記近似式(2)におけるaの値を決定することができる。 Conformation plots are a commonly used technique in polymer research. That is, the radius of gyration <S 2 > 1/2 measured by GPC-MALS and the absolute molecular weight M w can be plotted in both logarithms, and the value of a in the above approximate expression (2) can be determined from the slope. it can.
 「親水性樹脂」とは、水との親和性が高い樹脂をいう。多孔質膜が親水性樹脂を含むことで、水との親和性が高くなり、高い透過性能を発現する。親水性樹脂としては、例えば、セルロースアセテート若しくはセルロースアセテートプロピオネート等のセルロースエステル、脂肪酸ビニルエステル、ポリ酢酸ビニル、ポリメタクリル酸メチル等のアクリル酸エステルまたはメタクリル酸エステルの重合体、あるいは、それら重合体の共重合体が挙げられる。 "Hydrophilic resin" refers to a resin that has a high affinity for water. Since the porous membrane contains a hydrophilic resin, it has a high affinity with water and exhibits high permeation performance. Examples of the hydrophilic resin include cellulose esters such as cellulose acetate and cellulose acetate propionate, fatty acid vinyl esters, polyvinyl acetate, polymers of acrylic acids such as polymethyl methacrylate, or polymers of methacrylic esters, or their weights. A coalesced copolymer can be mentioned.
 親水性樹脂は、多孔質膜を形成する際に親水性樹脂を多く多孔質膜内に保持するために、水に不溶な樹脂であることが好ましい。水に不溶な親水性樹脂としては、該親水性樹脂自身が水に不溶であるか、適切な処理によって水不溶性が付与されていることが好ましい。かかる処理としては、例えば、ビニルピロリドン、エチレンオキサイドまたはプロピレンオキサイドを主鎖および/または側鎖に有する親水性樹脂の場合、他のモノマーと共重合させて水不溶性にする方法が好ましく採用される。例えば、ビニルピロリドンとメチルメタクリレートのランダム共重合体(PMMA-co-PVP)や、ビニルピロリドンのポリメチルメタクリレートへのグラフト共重合体(PMMA-g-PVP)は、共重合モル比を適切に設定することにより水不溶性の親水性樹脂として得られる。
 ここで、水に不溶とは、60℃以上の高温領域でも水に5質量%以上溶解しないことをいう。
The hydrophilic resin is preferably a water-insoluble resin in order to retain a large amount of the hydrophilic resin in the porous membrane when forming the porous membrane. As the water-insoluble hydrophilic resin, it is preferable that the hydrophilic resin itself is insoluble in water or water-insoluble by appropriate treatment. As such a treatment, for example, in the case of a hydrophilic resin having vinylpyrrolidone, ethylene oxide or propylene oxide in the main chain and / or side chain, a method of copolymerizing with another monomer to make it water-insoluble is preferably adopted. For example, a random copolymer of vinylpyrrolidone and methylmethacrylate (PMMA-co-PVP) or a graft copolymer of vinylpyrrolidone to polymethylmethacrylate (PMMA-g-PVP) has an appropriate molar copolymerization ratio. By doing so, it can be obtained as a water-insoluble hydrophilic resin.
Here, insoluble in water means that it does not dissolve in water in an amount of 5% by mass or more even in a high temperature region of 60 ° C. or higher.
 本発明の多孔質膜は、分岐ポリフッ化ビニリデン系樹脂と親水性樹脂を含有するポリマーからなる。また、多孔質膜を構成するポリマーについての上記近似式(2)におけるaの値が、0.32~0.41であり、かつ、bの値が、0.18~0.42であることが好ましい。 The porous membrane of the present invention is composed of a polymer containing a branched polyvinylidene fluoride resin and a hydrophilic resin. Further, the value of a in the above approximate formula (2) for the polymer constituting the porous membrane is 0.32 to 0.41, and the value of b is 0.18 to 0.42. Is preferable.
 本発明の多孔質膜を構成するポリマーについてのaの値が0.41以下であることで、ポリマーの絶対分子量Mに対して回転半径〈S1/2が適度に小さくなるため、多孔質膜が形成される際にポリマーが多孔質膜の表面近傍へと移動しやすくなる。これにより、多孔質膜の表面近傍の層のポリマー密度が上昇しやすくなり、多孔質膜が優れた分離性能を発現するものと推測される。加えて、aの値が0.32以上であることで、ポリマー同士が適度に絡み合い、表面近傍の層のポリマー密度が均質となりやすいため、さらに高い分離性能が発現するものと推測される。さらに多孔質膜の表面近傍の層のポリマー密度の上昇に伴って、内層のポリマー密度は低下するため、優れた分離性能と同時に、高い透過性能が発現するものと推測される。aの値は、0.37~0.40であることがより好ましく、0.37~0.39であることがさらに好ましい。 Since the value of a for the polymer constituting the porous membrane of the present invention is 0.41 or less, the radius of gyration <S 2 > 1/2 is appropriately smaller than the absolute molecular weight M w of the polymer. When the porous membrane is formed, the polymer easily moves to the vicinity of the surface of the porous membrane. As a result, the polymer density of the layer near the surface of the porous membrane tends to increase, and it is presumed that the porous membrane exhibits excellent separation performance. In addition, when the value of a is 0.32 or more, the polymers are appropriately entangled with each other, and the polymer density of the layer near the surface tends to be uniform, so that it is presumed that even higher separation performance is exhibited. Further, as the polymer density of the layer near the surface of the porous membrane increases, the polymer density of the inner layer decreases, so that it is presumed that high separation performance and high permeation performance are exhibited. The value of a is more preferably 0.37 to 0.40, and even more preferably 0.37 to 0.39.
 本発明の多孔質膜を構成するポリマーについてのbの値は、ポリマー同士の絡み合いによる表面近傍の層のポリマー密度の均質化によって、さらに分離性能を高めるため、0.18~0.42であることが好ましく、0.20~0.38であることがより好ましく、0.25~0.33であることが特に好ましい。 The value of b for the polymer constituting the porous membrane of the present invention is 0.18 to 0.42 in order to further enhance the separation performance by homogenizing the polymer density of the layer near the surface due to the entanglement of the polymers. It is preferably 0.20 to 0.38, more preferably 0.25 to 0.33, and particularly preferably 0.25 to 0.33.
(b)組成分布
 本発明の多孔質膜は、多孔質膜の表面から厚さ方向に5μm間隔で赤外分光測定を行った時に検出される親水性樹脂由来のピーク強度Aと、ポリフッ化ビニリデン系樹脂由来のピーク強度A’との強度比A/A’について、多孔質膜のいずれか1つの表面にある緻密表面から厚さ方向に5μm、10μm、15μm及び20μmの4点における上記強度比A/A’の最大値が、緻密表面から厚さ方向に25μm、30μm及び35μmの3点における上記強度比A/A’の最大値よりも大きく、かつ、緻密表面から厚さ方向に5μm、10μm、15μm、20μm及び25μmの5点における上記強度比A/A’の平均値が、0.90~1.20の範囲内であることを必要とする。ここで、緻密表面とは、多孔質膜の表裏の表面のうち、平均表面孔径の小さい方の表面を意味する。なお、上記多孔質膜が支持層を備える複合多孔質膜である場合は、多孔質膜と支持層とが接していない側の表面を緻密表面と定義する。
(B) Composition distribution The porous membrane of the present invention has a peak intensity A derived from a hydrophilic resin detected when infrared spectroscopic measurement is performed at intervals of 5 μm in the thickness direction from the surface of the porous membrane, and polyvinylidene fluoride. Regarding the strength ratio A / A'with the peak strength A'derived from the system resin, the above-mentioned strength ratios at four points of 5 μm, 10 μm, 15 μm and 20 μm in the thickness direction from the dense surface on any one surface of the porous film. The maximum value of A / A'is larger than the maximum value of the above-mentioned strength ratio A / A'at three points of 25 μm, 30 μm and 35 μm in the thickness direction from the dense surface, and 5 μm in the thickness direction from the dense surface. It is required that the average value of the above-mentioned intensity ratio A / A'at 5 points of 10 μm, 15 μm, 20 μm and 25 μm is in the range of 0.90 to 1.20. Here, the dense surface means the surface of the front and back surfaces of the porous film, whichever has the smaller average surface pore diameter. When the porous membrane is a composite porous membrane provided with a support layer, the surface on the side where the porous membrane and the support layer are not in contact is defined as a dense surface.
 本発明の多孔質膜は、上述の通り、分岐ポリフッ化ビニリデン系樹脂を用いることで多孔質膜の表面近傍のポリマー密度が上昇しやすく、それによって多孔質膜が優れた分離性能を発現する。一方で、ポリマー密度が高い表面近傍においては、透過性能が低下しやすい。多孔質膜の緻密表面から厚さ方向に5μm、10μm、15μm及び20μmの4点における上記強度比A/A’の最大値が、厚さ方向に25μm、30μm及び35μmの3点における上記強度比A/A’の最大値よりも大きいことで、多孔質膜の緻密表面近傍の、ポリマー密度が高い部位に親水性樹脂が高密度に存在することとなる。これにより、多孔質膜の緻密表面近傍における水との親和性が高くなりやすく、高い透過性能を発現するものと推測される。また、緻密表面から厚さ方向に5μm、10μm、15μm、20μm及び25μmの5点における強度比A/A’の平均値が0.90以上であることで、多孔質膜の緻密表面近傍において水との親和性が高くなりやすいため、高い透過性能を発現すると推測される。一方で、かかる強度比A/A’の平均値が1.20以下であることで、多孔質膜の緻密表面近傍の分岐ポリフッ化ビニリデン系樹脂の比率が適度に高くなり、高い耐薬品性を示しやすい。強度比A/A’の平均値は、1.00~1.20の範囲内であることがより好ましく、1.05~1.20の範囲内であることが特に好ましい。 As described above, the porous membrane of the present invention tends to increase the polymer density near the surface of the porous membrane by using the branched polyvinylidene fluoride resin, whereby the porous membrane exhibits excellent separation performance. On the other hand, the permeation performance tends to decrease in the vicinity of the surface where the polymer density is high. The maximum value of the strength ratio A / A'at the four points of 5 μm, 10 μm, 15 μm and 20 μm in the thickness direction from the dense surface of the porous membrane is the above strength ratio at the three points of 25 μm, 30 μm and 35 μm in the thickness direction. When it is larger than the maximum value of A / A', the hydrophilic resin is present at a high density in a portion having a high polymer density near the dense surface of the porous membrane. As a result, the affinity with water in the vicinity of the dense surface of the porous membrane tends to be high, and it is presumed that high permeation performance is exhibited. Further, when the average value of the intensity ratio A / A'at 5 points of 5 μm, 10 μm, 15 μm, 20 μm and 25 μm from the dense surface in the thickness direction is 0.90 or more, water is formed in the vicinity of the dense surface of the porous film. It is presumed that it exhibits high permeation performance because it tends to have a high affinity with. On the other hand, when the average value of the strength ratio A / A'is 1.20 or less, the ratio of the branched polyvinylidene fluoride-based resin near the dense surface of the porous membrane becomes moderately high, and high chemical resistance is achieved. Easy to show. The average value of the intensity ratio A / A'is more preferably in the range of 1.00 to 1.20, and particularly preferably in the range of 1.05 to 1.20.
 赤外分光測定は、顕微FT-IRを用いて行われる。蒸留水中に浸漬した多孔質膜を、クライオスタットを用いて凍結し、多孔質膜の表面に垂直に切断する。切断した多孔質膜をCaF板の上に載せ、測定範囲を、多孔質膜の厚さ方向に測定位置を中心として10μmの範囲とし、多孔質膜の表面から厚さ方向に5μm間隔で測定する。 Infrared spectroscopy is performed using a microscopic FT-IR. The porous membrane immersed in distilled water is frozen using a cryostat and cut perpendicular to the surface of the porous membrane. The cut porous membrane is placed on a CaF 2 plate, and the measurement range is set to a range of 10 μm centered on the measurement position in the thickness direction of the porous membrane, and the measurement is performed at intervals of 5 μm from the surface of the porous membrane in the thickness direction. To do.
 測定した吸収スペクトルより、ポリフッ化ビニリデン系樹脂由来のピークと親水性樹脂由来のピークを検出し、親水性樹脂由来のピーク強度/ポリフッ化ビニリデン系樹脂由来のピーク強度より、強度比A/A’を算出する。ピーク強度とは、吸収スペクトルの吸光度より得られる値である。なお、ポリフッ化ビニリデン系樹脂由来のピークの位置は1400cm-1付近である。親水性樹脂由来のピークの位置は、例えば、セルロースアセテートであれば1750cm-1付近であり、ポリ酢酸ビニルであれば1250cm-1付近である。 From the measured absorption spectrum, a peak derived from polyvinylidene fluoride resin and a peak derived from hydrophilic resin were detected, and the intensity ratio A / A'from the peak intensity derived from hydrophilic resin / the peak intensity derived from polyvinylidene fluoride resin. Is calculated. The peak intensity is a value obtained from the absorbance of the absorption spectrum. The position of the peak derived from the polyvinylidene fluoride resin is around 1400 cm -1 . The position of the peak derived from the hydrophilic resin is, for example, is around 1750 cm -1 if cellulose acetate, is around 1250 cm -1 if polyvinyl acetate.
 本発明における多孔質膜は、欠点無く分離性能を発現するためには35μm以上の厚さが好ましい。一方、優れた透過性能を発現するためには、多孔質膜の厚さは35~80μmであることが好ましく、35~50μmであることがより好ましい。 The porous membrane in the present invention preferably has a thickness of 35 μm or more in order to exhibit separation performance without defects. On the other hand, in order to exhibit excellent permeation performance, the thickness of the porous membrane is preferably 35 to 80 μm, more preferably 35 to 50 μm.
(1-2)多孔質膜の構造
(a)平均表面孔径
 本発明の多孔質膜は、優れた分離性能を発現させるため、緻密表面の平均表面孔径が3~16nmであることが好ましい。さらに、本発明の多孔質膜は、緻密表面の平均表面孔径が3~16nmであり、前記多孔質膜の表面に垂直な断面の電子顕微鏡画像(SEM画像)を前記表面から厚さ方向に5μm間隔で撮影した際、前記緻密表面から厚さ方向に25~30μmの領域における平均断面孔径Bが、前記緻密表面から厚さ方向に0~5μmの領域における平均断面孔径Bの5~25倍の範囲内であることがより好ましい。
(1-2) Structure of Porous Membrane (a) Average Surface Pore Diameter The porous membrane of the present invention preferably has an average surface pore diameter of 3 to 16 nm on a dense surface in order to exhibit excellent separation performance. Further, the porous film of the present invention has an average surface pore diameter of 3 to 16 nm on a dense surface, and an electron microscope image (SEM image) of a cross section perpendicular to the surface of the porous film is 5 μm in the thickness direction from the surface. When photographed at intervals, the average cross-sectional hole diameter B in the region 25 to 30 μm in the thickness direction from the dense surface is 5 to 25 times the average cross-sectional hole diameter B in the region 0 to 5 μm in the thickness direction from the dense surface. It is more preferable that it is within the range.
 また、本発明の多孔質膜は、前記多孔質膜の表面に垂直な断面のSEM画像を前記緻密表面から厚さ方向に30μmまでの範囲で5μm間隔で撮影し、前記緻密表面からの距離C(μm)と、SEM画像から得られる各断面における細孔の平均断面孔径B(μm)の測定値から最小2乗法により得られる下記近似式(1)における傾きkが0.01~0.2の範囲内であることが好ましい。さらに、本発明の多孔質膜は、緻密表面の平均表面孔径が3~16nmであり、かつ、傾きkが0.01~0.2の範囲内であることがより好ましい。
 B=kC+d・・・(1)
 (dは定数)
Further, in the porous film of the present invention, SEM images of a cross section perpendicular to the surface of the porous film are photographed at intervals of 5 μm in a range of up to 30 μm in the thickness direction from the dense surface, and a distance C from the dense surface. The inclination k in the following approximate formula (1) obtained by the minimum square method from the measured values of (μm) and the average cross-sectional pore diameter B (μm) of the pores in each cross section obtained from the SEM image is 0.01 to 0.2. It is preferably within the range of. Further, in the porous film of the present invention, it is more preferable that the average surface pore diameter of the dense surface is 3 to 16 nm and the inclination k is in the range of 0.01 to 0.2.
B = kC + d ... (1)
(D is a constant)
 平均表面孔径は、多孔質膜の表面を電子顕微鏡(以降、「SEM」)で観察することで算出できる。より具体的には、多孔質膜の表面を3~10万倍の倍率でSEMを用いて観察し、無作為に選択した300個の孔の面積をそれぞれ測定する。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を、平均表面孔径とすることができる。特に優れた分離性能と透過性能を発現するためには、緻密表面の平均表面孔径は6~14nmであることがより好ましく、8~11nmであることが特に好ましい。 The average surface pore size can be calculated by observing the surface of the porous membrane with an electron microscope (hereinafter, "SEM"). More specifically, the surface of the porous membrane is observed using SEM at a magnification of 30,000 to 100,000 times, and the areas of 300 randomly selected pores are measured respectively. From the area of each hole, the diameter when it is assumed that the hole is a circle is calculated as the hole diameter, and the average value thereof can be used as the average surface hole diameter. In order to exhibit particularly excellent separation performance and permeation performance, the average surface pore size of the dense surface is more preferably 6 to 14 nm, and particularly preferably 8 to 11 nm.
 本発明の多孔質膜または複合多孔質膜は、緻密表面の平均表面孔径が上記の範囲であり、かつ25℃、50kPaにおける純水透水性が、0.1~0.8m/m/hrであることが好ましく、0.2~0.4m/m/hrであることがさらに好ましい。本発明の多孔質膜または複合多孔質膜の50kPaにおける純水透水性は、多孔質膜が変形しない範囲の圧力で膜面積及び時間当たりの透過水量を測定し、それらの値を50kPaの圧力下の値にそれぞれ換算して、算出すればよい。なお、圧力の換算時には比例関係が成立する。 In the porous membrane or composite porous membrane of the present invention, the average surface pore size of the dense surface is in the above range, and the pure water permeability at 25 ° C. and 50 kPa is 0.1 to 0.8 m 3 / m 2 /. It is preferably hr, and more preferably 0.2 to 0.4 m 3 / m 2 / hr. For the pure water permeability of the porous membrane or composite porous membrane of the present invention at 50 kPa, the membrane area and the amount of permeated water per hour are measured at a pressure within the range where the porous membrane is not deformed, and these values are measured under a pressure of 50 kPa. It may be calculated by converting each of the values into. A proportional relationship is established when converting the pressure.
 ここで、緻密表面の平均表面孔径の標準偏差は8.0nm以下であることが好ましい。標準偏差が8.0nm以下であることで、多孔質膜の表面構造の均一性から、高い分離性能を発現しやすい。特に、優れた分離性能を発現するためには、平均表面孔径の標準偏差は5.0nm以下であることがより好ましい。 Here, the standard deviation of the average surface pore diameter of the dense surface is preferably 8.0 nm or less. When the standard deviation is 8.0 nm or less, high separation performance is likely to be exhibited due to the uniformity of the surface structure of the porous membrane. In particular, in order to exhibit excellent separation performance, the standard deviation of the average surface pore size is more preferably 5.0 nm or less.
 本発明の多孔質膜または複合多孔質膜の分画分子量は、5,000~80,000Daであることが好ましく、8,000~50,000Daであることがより好ましく、10,000~29,000Daであることがさらに好ましい。ここで「分画分子量」とは、被ろ過液に含まれる成分の分子量の内、多孔質膜で90%除去できる、最小の分子量をいう。 The fractional molecular weight of the porous membrane or the composite porous membrane of the present invention is preferably 5,000 to 80,000 Da, more preferably 8,000 to 50,000 Da, and 10,000 to 29, It is more preferably 000 Da. Here, the "molecular weight cut-off" refers to the minimum molecular weight that can be removed by 90% of the molecular weights of the components contained in the liquid to be filtered by the porous membrane.
(b)平均断面孔径
 平均断面孔径Bは、平均表面孔径と同様に、画像解析を用いた方法で算出する。より具体的には、蒸留水に浸漬させた多孔質膜を、ミクロトームによる切削により切片化する。得られた切片の断面を1万倍の倍率でSEMを用いて観察し、その断面画像において、(多孔質膜の表面に対して平行に130μm)×(多孔質膜の厚さ方向に対して平行に5μm)の領域を1セグメントとして、厚さ方向に連続的に分割する。分割した各セグメントに対して、樹脂からなる構造部と細孔部とで二値化処理する。画像処理ソフトを用いて孔部の輪郭が判別可能な闘値で、樹脂からなる構造部と細孔部とで二値化処理し、判別出来なかった部分やノイズについては、フリーハンドツールで補正することができる。二値化処理には一般的な画像処理ソフトを用いることが可能である。画像処理ソフトとしては、例えばImageJ(Wayne Rasband,National Institutes of Health)などが挙げられる。二値化処理後の画像を用い、画像処理ソフトにより孔部に該当する箇所から無作為に選択した30個の孔の面積をそれぞれ測定する。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を平均断面孔径Bとする。
 各セグメントにおける平均断面孔径Bの平均値を平均断面孔径Fとする。なお、後述する複合多孔質膜における平均断面孔径Bおよび平均断面孔径Fは、上記多孔質膜の平均断面孔径Bおよび平均断面孔径Fの定義と同じである。
(B) Average cross-sectional hole diameter The average cross-sectional hole diameter B is calculated by a method using image analysis in the same manner as the average surface hole diameter. More specifically, the porous membrane immersed in distilled water is sectioned by cutting with a microtome. The cross section of the obtained section was observed using SEM at a magnification of 10,000 times, and in the cross-sectional image, (130 μm parallel to the surface of the porous membrane) × (relative to the thickness direction of the porous membrane). A region of 5 μm) in parallel is divided into one segment and continuously divided in the thickness direction. Each of the divided segments is binarized with a structural portion made of resin and a pore portion. The contour of the hole can be discriminated using image processing software, and the structural part made of resin and the pore part are binarized, and the part and noise that cannot be discriminated are corrected with a freehand tool. can do. It is possible to use general image processing software for the binarization processing. Examples of the image processing software include ImageJ (Wayne Rasband, National Institutes of Health) and the like. Using the image after the binarization process, the areas of 30 holes randomly selected from the locations corresponding to the holes are measured by image processing software. From the area of each hole, the diameter when it is assumed that the hole is a circle is calculated as the hole diameter, and the average value thereof is defined as the average cross-sectional hole diameter B.
Let the average value of the average cross-sectional hole diameter B in each segment be the average cross-sectional hole diameter F. The average cross-sectional pore diameter B and the average cross-sectional pore diameter F of the composite porous membrane described later are the same as the definitions of the average cross-sectional pore diameter B and the average cross-sectional pore diameter F of the porous membrane.
 本発明の多孔質膜は、緻密表面から厚さ方向に25~30μmの領域における平均断面孔径Bが、緻密表面から厚さ方向に0~5μmの領域における平均断面孔径Bの5~25倍の範囲内であることが好ましく、5~15倍がより好ましく、5~10倍がさらに好ましい。緻密表面から厚さ方向に25~30μmの領域における平均断面孔径Bが、緻密表面から厚さ方向に0~5μmの領域における平均断面孔径Bの5倍以上であることで、高い分離性能を維持しながら、透過性能の低下を抑制しやすく、また、25倍以下であることで、分離性能を維持しやすい。 In the porous membrane of the present invention, the average cross-sectional pore diameter B in the region 25 to 30 μm in the thickness direction from the dense surface is 5 to 25 times the average cross-sectional pore diameter B in the region 0 to 5 μm in the thickness direction from the dense surface. It is preferably within the range, more preferably 5 to 15 times, still more preferably 5 to 10 times. High separation performance is maintained because the average cross-sectional hole diameter B in the region 25 to 30 μm in the thickness direction from the dense surface is 5 times or more the average cross-sectional hole diameter B in the region 0 to 5 μm in the thickness direction from the dense surface. On the other hand, it is easy to suppress the deterioration of the permeation performance, and it is easy to maintain the separation performance when it is 25 times or less.
(c)傾きk
 上記近似式(1)における傾きkは、多孔質膜の表面に垂直な断面のSEM画像を緻密表面から厚さ方向に30μmまでの範囲で5μm間隔で撮影し、多孔質膜の緻密表面からの距離C(μm)を横軸に、その断面で測定される平均断面孔径B(μm)を縦軸にプロットした時の全点を最小2乗法近似することで算出する。傾きkは0.01~0.2の範囲内であることが好ましい。kが0.01以上であることで、多孔質膜の表面から厚さ方向に距離が大きくなるにつれて平均断面孔径が大きくなる傾斜型非対称構造となり、高い分離性能を維持しながら、透過性能の低下を抑制しやすい。また、kが0.2以下であることで、多孔質膜の分離性能を維持しやすい。傾きkは0.01~0.08の範囲内であることがより好ましく、0.01~0.04の範囲内であることがさらに好ましい。
(C) Inclination k
The slope k in the above approximate expression (1) is obtained by photographing SEM images of a cross section perpendicular to the surface of the porous film at intervals of 5 μm in the range of 30 μm in the thickness direction from the dense surface, and from the dense surface of the porous film. It is calculated by approximating all points when the distance C (μm) is plotted on the horizontal axis and the average cross-sectional hole diameter B (μm) measured in the cross section is plotted on the vertical axis. The slope k is preferably in the range of 0.01 to 0.2. When k is 0.01 or more, an inclined asymmetric structure is formed in which the average cross-sectional pore diameter increases as the distance from the surface of the porous membrane increases in the thickness direction, and the permeation performance deteriorates while maintaining high separation performance. Is easy to suppress. Further, when k is 0.2 or less, it is easy to maintain the separation performance of the porous membrane. The slope k is more preferably in the range of 0.01 to 0.08, and even more preferably in the range of 0.01 to 0.04.
2.複合多孔質膜
(2-1)支持層の構造
 本発明の複合多孔質膜は、多孔質膜の一方の面に支持層が接する(積層される)ことで、物理的な強度を発現しやすい。「支持層」とは、多孔質膜を物理的に補強するための、多孔質膜よりも破断強力が高い構造体をいう。支持層はポリフッ化ビニリデン系樹脂を主成分とすることが、多孔質膜との接着性の観点で好ましい。多孔質膜を補強するためには、支持層の破断強度、すなわち、単位面積あたりの破断強力は、3MPa以上であることが好ましく、10MPa以上であることがより好ましい。なお複合多孔質膜が中空糸状である場合には、支持層の破断強力は300gf以上であることが好ましく、800gf以上であることがより好ましい。また支持層は、複合多孔質膜の強力をより高めるため、繊維状組織、柱状組織または球状組織を有することが好ましい。
2. 2. Composite Porous Membrane (2-1) Structure of Support Layer The composite porous membrane of the present invention tends to exhibit physical strength when the support layer is in contact (laminated) with one surface of the porous membrane. .. The "support layer" refers to a structure for physically reinforcing the porous membrane, which has a higher breaking strength than the porous membrane. It is preferable that the support layer contains a polyvinylidene fluoride-based resin as a main component from the viewpoint of adhesiveness to the porous film. In order to reinforce the porous film, the breaking strength of the support layer, that is, the breaking strength per unit area is preferably 3 MPa or more, and more preferably 10 MPa or more. When the composite porous film is hollow filamentous, the breaking strength of the support layer is preferably 300 gf or more, and more preferably 800 gf or more. Further, the support layer preferably has a fibrous structure, a columnar structure or a spherical structure in order to further enhance the strength of the composite porous film.
 破断強度または破断強力は、引張試験機を用い、長さ50mmの試料について、引張速度50mm/分の条件で引張試験を5回繰り返し、それらの値を平均して算出することができる。なお、複合多孔質膜の全体積に占める支持層の体積の割合が50%以上である場合には、複合多孔質膜の破断強度または破断強力を、その構成要素である支持層の破断強度または破断強力と見なすことができる。 The breaking strength or breaking strength can be calculated by repeating the tensile test 5 times on a sample having a length of 50 mm under the condition of a tensile speed of 50 mm / min using a tensile tester and averaging those values. When the ratio of the volume of the support layer to the total volume of the composite porous membrane is 50% or more, the breaking strength or breaking strength of the composite porous membrane is adjusted to the breaking strength or breaking strength of the supporting layer which is a component thereof. It can be regarded as breaking strength.
 支持層は、物理的な強度を発現するためには30μm以上の厚さが好ましい。一方、優れた透過性能を発現するためには、支持層の厚さは30~400μmであることが好ましく、30~200μmであることがより好ましい。 The support layer preferably has a thickness of 30 μm or more in order to exhibit physical strength. On the other hand, in order to exhibit excellent permeation performance, the thickness of the support layer is preferably 30 to 400 μm, more preferably 30 to 200 μm.
 ここで支持層は、優れた破断強度と透過性能発現のため、平均断面孔径Dが、緻密表面の平均表面孔径の50~500倍の範囲内であることが好ましい。平均断面孔径Dは100~400倍の範囲内であることがより好ましく、150~300倍の範囲内であることがさらに好ましい。平均断面孔径Dが50倍以上であることで、優れた透過性能を発現しやすい。平均断面孔径Dが500倍以下であることで、優れた破断強力を発現しやすい。 Here, in order to exhibit excellent breaking strength and permeation performance, the support layer preferably has an average cross-sectional pore diameter D in the range of 50 to 500 times the average surface pore diameter of the dense surface. The average cross-sectional hole diameter D is more preferably in the range of 100 to 400 times, and further preferably in the range of 150 to 300 times. When the average cross-sectional hole diameter D is 50 times or more, excellent permeation performance is likely to be exhibited. When the average cross-sectional hole diameter D is 500 times or less, excellent breaking strength is likely to be exhibited.
 支持層の平均断面孔径Dは、多孔質膜の平均断面孔径Bと同様に、画像解析を用いた方法で算出する。具体的には、複合多孔質膜の断面を1万倍の倍率でSEMを用いて撮影し、その断面画像において、支持層の多孔質膜と接していない面から、(支持層の表面に対して平行に130μm)×(支持層の厚さ方向に対して平行に30μm)の領域を切り取り、画像処理ソフトを用いて二値化処理し、孔部に該当する箇所から無作為に選択した30の細孔の面積をそれぞれ測定する。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を平均断面孔径Dとすることができる。 The average cross-sectional pore diameter D of the support layer is calculated by a method using image analysis in the same manner as the average cross-sectional pore diameter B of the porous film. Specifically, the cross section of the composite porous film was photographed using SEM at a magnification of 10,000 times, and in the cross-sectional image, from the surface of the support layer not in contact with the porous film (relative to the surface of the support layer). A region of (130 μm in parallel) × (30 μm in parallel with the thickness direction of the support layer) was cut out, binarized using image processing software, and randomly selected from the locations corresponding to the holes 30. The area of each pore is measured. From the area of each hole, the diameter when it is assumed that the hole is a circle is calculated as the hole diameter, and the average value thereof can be taken as the average cross-sectional hole diameter D.
 また、支持層の多孔質膜と接していない側の面の平均表面孔径は、複合多孔質膜における多孔質膜の緻密表面の平均表面孔径よりも大きいことが好ましい。具体的には、支持層の多孔質膜と接していない側の面の平均表面孔径は0.01~120μmが好ましく、0.01~10μmがより好ましく、0.01~5μmがさらに好ましい。かかる平均表面孔径が上記下限値以上であることで、優れた透過性能を発現しやすい。また、かかる平均表面孔径が上記上限値以下であることで、優れた破断強力および破断強度を発現しやすい。なお、支持層の平均表面孔径は多孔質膜の平均表面孔径と同様の方法で算出できる。 Further, it is preferable that the average surface pore size of the surface of the support layer on the side not in contact with the porous film is larger than the average surface pore size of the dense surface of the porous film in the composite porous film. Specifically, the average surface pore size of the surface of the support layer on the side not in contact with the porous film is preferably 0.01 to 120 μm, more preferably 0.01 to 10 μm, and even more preferably 0.01 to 5 μm. When the average surface pore diameter is at least the above lower limit value, excellent permeation performance is likely to be exhibited. Further, when the average surface pore diameter is not more than the above upper limit value, excellent breaking strength and breaking strength are likely to be exhibited. The average surface pore size of the support layer can be calculated by the same method as the average surface pore size of the porous film.
(2-2)支持層表面部の構造
 一般に層を多段に重ねると、各層の界面では層同士が互いに入り込むために緻密になり、透過性能が低下しやすい。そこで、支持層の表面部の密度が高いと、支持層表面に接している多孔質膜が支持層側に入り込む割合が低下し、高い透過性能を発現しやすい。
(2-2) Structure of the surface of the support layer Generally, when the layers are stacked in multiple stages, the layers become dense because the layers enter each other at the interface of each layer, and the permeation performance tends to deteriorate. Therefore, when the density of the surface portion of the support layer is high, the ratio of the porous membrane in contact with the surface of the support layer entering the support layer side decreases, and high permeation performance is likely to be exhibited.
 本発明における支持層は、多孔質膜と支持層が接する面から支持層の厚さ方向に25μmまでの範囲における平均断面孔径Eが、多孔質膜の平均断面孔径Fの2~10倍の範囲内であることが好ましい。平均断面孔径Eが平均断面孔径Fの2倍以上であることで、高い透過性能を発現しやすい。平均断面孔径Eが平均断面孔径Fの10倍以下であることで、多孔質膜が支持層に入り込み、透過性能が低下することを防止しやすい。 In the support layer of the present invention, the average cross-sectional pore size E in the range from the surface where the porous film and the support layer contact to 25 μm in the thickness direction of the support layer is in the range of 2 to 10 times the average cross-sectional pore size F of the porous film. It is preferable to be inside. When the average cross-sectional hole diameter E is twice or more the average cross-sectional hole diameter F, high permeation performance can be easily exhibited. When the average cross-sectional hole diameter E is 10 times or less the average cross-sectional hole diameter F, it is easy to prevent the porous membrane from entering the support layer and deteriorating the permeation performance.
 平均断面孔径Eの算出は次のように行う。すなわち、複合多孔質膜の断面をSEMを用いて倍率1万倍で撮影し、その断面画像において、多孔質膜と支持層が接する面から、(支持層の表面に対して平行に130μm)×(支持層の厚さ方向に対して平行に25μm)の領域を切り取る。これを画像処理ソフトを用いて二値化処理し、孔部に該当する箇所から無作為に選択した30個の孔の面積をそれぞれ測定し、各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出する。それら孔径の平均値を平均断面孔径Eとすることができる。 The average cross-sectional hole diameter E is calculated as follows. That is, a cross section of the composite porous film is photographed using SEM at a magnification of 10,000 times, and in the cross-sectional image, from the surface where the porous film and the support layer are in contact (130 μm parallel to the surface of the support layer) ×. A region (25 μm parallel to the thickness direction of the support layer) is cut out. This was binarized using image processing software, the areas of 30 holes randomly selected from the locations corresponding to the holes were measured, and it was assumed that the holes were circular from the area of each hole. The diameter at the time of this is calculated as the hole diameter. The average value of these hole diameters can be defined as the average cross-sectional hole diameter E.
3.製造方法
 本発明の多孔質膜の製造方法は、(A)分岐ポリフッ化ビニリデン系樹脂と親水性樹脂を含むポリマーを溶媒に溶解させて、ポリマー溶液を得る、ポリマー溶液調製工程と、(B)上記ポリマー溶液を非溶媒中で凝固させて、多孔質膜を形成する、多孔質膜形成工程と、を備える。ポリマー溶液調製工程において溶媒に溶解される、分岐ポリフッ化ビニリデン系樹脂と親水性樹脂を含むポリマーについてのaの値が0.37~0.41であることで、多孔質膜が形成される際にポリマーが多孔質膜の表面近傍へと移動しやすく、多孔質膜の表面近傍のポリマー密度が上昇しやすい。これにより、多孔質膜の緻密表面から厚さ方向に5μm、10μm、15μm及び20μmの4点における上記強度比A/A’の最大値が、緻密表面から厚さ方向に25μm、30μm及び35μmの3点における上記強度比A/A’の最大値よりも大きくなると推測される。
3. 3. Production Method The method for producing a porous film of the present invention includes (A) a polymer solution preparation step of dissolving a polymer containing a branched polyvinylidene fluoride resin and a hydrophilic resin in a solvent to obtain a polymer solution, and (B). The present invention comprises a porous film forming step of coagulating the polymer solution in a non-solvent to form a porous film. When the value of a for the polymer containing the branched polyvinylidene fluoride resin and the hydrophilic resin dissolved in the solvent in the polymer solution preparation step is 0.37 to 0.41, the porous membrane is formed. In addition, the polymer easily moves to the vicinity of the surface of the porous membrane, and the polymer density near the surface of the porous membrane tends to increase. As a result, the maximum value of the strength ratio A / A'at the four points of 5 μm, 10 μm, 15 μm and 20 μm in the thickness direction from the dense surface of the porous membrane is 25 μm, 30 μm and 35 μm in the thickness direction from the dense surface. It is presumed that the intensity ratio A / A'at the three points is larger than the maximum value.
 また上記ポリマーについてのbの値が0.18~0.42であることで、ポリマー同士の絡み合いにより表面側のポリマー密度がさらに均質化されやすく、上記A/A’の平均値が0.90~1.20になりやすいと推測される。 Further, when the value of b for the polymer is 0.18 to 0.42, the polymer density on the surface side is more likely to be homogenized due to the entanglement of the polymers, and the average value of A / A'is 0.90. It is estimated that it tends to be ~ 1.20.
 ポリマー溶液調製工程で用いる溶媒としては、良溶媒が好ましい。ここで「良溶媒」とは、60℃以下の低温領域でもポリフッ化ビニリデン系樹脂を5質量%以上溶解させることができる溶媒をいう。良溶媒としては、例えば、NMP、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素もしくはリン酸トリメチルまたはそれらの混合溶媒が挙げられる。 A good solvent is preferable as the solvent used in the polymer solution preparation step. Here, the "good solvent" means a solvent capable of dissolving 5% by mass or more of the polyvinylidene fluoride-based resin even in a low temperature region of 60 ° C. or lower. Examples of a good solvent include NMP, dimethylacetamide, dimethylformamide, methylethylketone, acetone, tetrahydrofuran, tetramethylurea or trimethyl phosphate, or a mixed solvent thereof.
 ポリマー溶液調製工程で得られるポリマー溶液は、分岐ポリフッ化ビニリデン系樹脂と親水性樹脂の他に、第三の樹脂、可塑剤または塩等を適宜含んでいても構わない。
 またポリマー溶液が可塑剤または塩を含むことで、ポリマー溶液の溶解性が向上する。可塑剤としては、例えば、グリセロールトリアセテート、ジエチレングリコール、フタル酸ジブチルまたはフタル酸ジオクチル等が挙げられる。塩としては、例えば、塩化カルシウム、塩化マグネシウム、塩化リチウムまたは硫酸バリウムが挙げられる。
The polymer solution obtained in the polymer solution preparation step may appropriately contain a third resin, a plasticizer, a salt, or the like in addition to the branched polyvinylidene fluoride resin and the hydrophilic resin.
Further, when the polymer solution contains a plasticizer or a salt, the solubility of the polymer solution is improved. Examples of the plasticizer include glycerol triacetate, diethylene glycol, dibutyl phthalate, dioctyl phthalate and the like. Examples of the salt include calcium chloride, magnesium chloride, lithium chloride or barium sulfate.
 ポリマー溶液調製工程で得られるポリマー溶液の濃度は、高い分離性能と透過性能とを両立させるため、15~30質量%であることが好ましく、20~25質量%であることがより好ましい。 The concentration of the polymer solution obtained in the polymer solution preparation step is preferably 15 to 30% by mass, more preferably 20 to 25% by mass, in order to achieve both high separation performance and permeation performance.
 多孔質膜形成工程における「非溶媒」とは、ポリフッ化ビニリデン系樹脂の融点または溶媒の沸点まで、フッ素樹脂系高分子を溶解も膨潤もさせない溶媒をいう。非溶媒としては、例えば、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o-ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール若しくは低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、または、その他の塩素化有機液体あるいはそれらの混合溶媒が挙げられる。 The "non-solvent" in the porous film forming step means a solvent that does not dissolve or swell the fluororesin polymer up to the melting point of the polyvinylidene fluoride resin or the boiling point of the solvent. Examples of the non-solvent include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol and pentane. Aliphatic hydrocarbons such as diols, hexanediols or low molecular weight polyethylene glycols, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinated organic liquids or theirs. A mixed solvent can be mentioned.
 多孔質膜形成工程において連続的に多孔質膜の形成を行う場合には、ポリマー溶液と非溶媒とを接触させる凝固浴において、ポリマー溶液の溶媒が非溶媒と混合され、ポリマー溶液由来の溶媒の濃度が上昇する。そのため、凝固浴中の液体の組成が一定範囲に保たれるように、凝固浴中の非溶媒を入れ替えることが好ましい。凝固浴中の良溶媒の濃度が低いほど、ポリマー溶液の凝固が速くなるため、多孔質膜の構造が均質化され、優れた分離性能を発現させやすい。また、ポリマー溶液の凝固が速くなるため製膜速度を上げることができ、多孔質膜の生産性を向上させることができる。凝固浴中の良溶媒の濃度は、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。 When the porous film is continuously formed in the porous film forming step, the solvent of the polymer solution is mixed with the non-solvent in the coagulation bath in which the polymer solution and the non-solvent are brought into contact with each other, and the solvent derived from the polymer solution is used. The concentration increases. Therefore, it is preferable to replace the non-solvent in the coagulation bath so that the composition of the liquid in the coagulation bath is maintained in a certain range. The lower the concentration of the good solvent in the coagulation bath, the faster the polymer solution coagulates, so that the structure of the porous membrane is homogenized and excellent separation performance is likely to be exhibited. Further, since the polymer solution coagulates faster, the film forming speed can be increased, and the productivity of the porous film can be improved. The concentration of the good solvent in the coagulation bath is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
 通常の多孔質膜の形成においては、ポリマー溶液を凝固させる非溶媒の温度が低いほど分離性能が向上するが、その一方で透過性能が低下してしまう、いわゆるトレードオフの関係が存在する。本発明の多孔質膜を形成するためのポリマー溶液は、透過性能に大きく影響を与える表面側の親水性樹脂の密度を高めていることにより、非溶媒の温度をより低温化した場合においても、優れた透過性能を実現することが可能となる。凝固浴中の、ポリマー溶液および/または非溶媒を含む液体の温度は、0~25℃が好ましく、0~20℃がより好ましく、5~15℃がさらに好ましい。 In the formation of a normal porous membrane, the lower the temperature of the non-solvent that coagulates the polymer solution, the better the separation performance, but on the other hand, the permeation performance deteriorates, so there is a so-called trade-off relationship. The polymer solution for forming the porous film of the present invention increases the density of the hydrophilic resin on the surface side, which greatly affects the permeation performance, so that even when the temperature of the non-solvent is lowered further. It is possible to realize excellent transmission performance. The temperature of the polymer solution and / or the liquid containing the non-solvent in the coagulation bath is preferably 0 to 25 ° C, more preferably 0 to 20 ° C, still more preferably 5 to 15 ° C.
 製造される多孔質膜の形状は、多孔質膜形成工程におけるポリマー溶液の凝固の態様により制御することができる。平膜状の多孔質膜を製造する場合には、例えば、不織布、金属酸化物または金属等からなるフィルム状の支持層に、ポリマー溶液を塗布したものを凝固浴に浸漬させることができる。 The shape of the produced porous membrane can be controlled by the mode of solidification of the polymer solution in the porous membrane forming step. In the case of producing a flat film-like porous film, for example, a film-like support layer made of a non-woven fabric, a metal oxide, a metal or the like coated with a polymer solution can be immersed in a coagulation bath.
 中空糸膜状の多孔質膜を製造する場合には、二重管口金の外周部からポリマー溶液を、中心部から芯液を、同時に非溶媒の入った凝固浴に吐出することができる。芯液としては、ポリマー溶液調製工程における良溶媒等を用いることが好ましい。またポリマー、金属酸化物または金属等からなる中空糸状の支持層の表面に、多孔質膜を形成しても構わない。ポリマーからなる中空糸状の支持層の表面に多孔質膜を形成する方法としては、例えば、三重管口金を用いて、中空糸状の支持層の原料となる溶液と、ポリマー溶液とを同時に吐出する方法、または、予め製膜した中空糸状の支持層の外表面にポリマー溶液を塗布したものを、凝固浴中の非溶媒を通過させる方法が挙げられる。中空糸状の支持層の表面は緻密であることが好ましく、その製造方法としては、支持層の原料となるポリマー溶液の濃度を高くすることや、凝固浴の温度を低温にすることが挙げられる。 When producing a hollow fiber membrane-like porous film, the polymer solution can be discharged from the outer peripheral portion of the double tube cap, and the core solution can be discharged from the central portion into a coagulation bath containing a non-solvent at the same time. As the core liquid, it is preferable to use a good solvent or the like in the polymer solution preparation step. Further, a porous film may be formed on the surface of a hollow thread-like support layer made of a polymer, a metal oxide, a metal or the like. As a method of forming a porous film on the surface of a hollow thread-like support layer made of a polymer, for example, a method of simultaneously discharging a solution as a raw material of the hollow thread-like support layer and a polymer solution using a triple tube mouthpiece. Alternatively, a method in which a polymer solution is applied to the outer surface of a hollow thread-like support layer formed in advance and passed through a non-solvent in a coagulation bath can be mentioned. The surface of the hollow thread-like support layer is preferably dense, and as a method for producing the hollow thread-like support layer, the concentration of the polymer solution as a raw material for the support layer is increased, and the temperature of the coagulation bath is lowered.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらによって何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
(i)多孔質膜を構成するポリマーについてのa値およびb値
 蒸留水中に浸漬した多孔質膜または複合多孔質膜を、クライオスタット(Leica社製;Jung CM3000)を用いて-20℃で凍結し、多孔質膜の切片を採取して、25℃で1晩、真空乾燥した。真空乾燥後の5mgの多孔質膜に、5mLの0.1M塩化リチウム添加NMPを加え、50℃で約2時間撹拌した。得られたポリマー溶液を、以下の条件でGPC-MALS(カラム:昭和電工株式会社製;Shodex KF-806M φ8.0mm×30cm 2本を直列に接続、示差屈折率計:Wyatt Technology社製;Optilab rEX、MALS:Wyatt Technology社製;DAWN HeLEOS)に注入して測定した。注入したポリマー溶液は、27~43分間の範囲でカラムから溶出した。
 カラム温度 : 50℃
 検出器温度 : 23℃
 溶媒    : 0.1M塩化リチウム添加NMP
 流速    : 0.5mL/min
 注入量   : 0.3mL
(I) A value and b value of the polymer constituting the porous membrane The porous membrane or composite porous membrane immersed in distilled water is frozen at −20 ° C. using a cryostat (manufactured by Leica; Jung CM3000). , Porous membrane sections were harvested and vacuum dried overnight at 25 ° C. To the 5 mg porous membrane after vacuum drying, 5 mL of NMP containing 0.1 M lithium chloride was added, and the mixture was stirred at 50 ° C. for about 2 hours. GPC-MALS (column: manufactured by Showa Denko KK; Shodex KF-806M φ8.0 mm × 30 cm, connected in series, differential refractometer: manufactured by Waitt Technology; Optilab) of the obtained polymer solution under the following conditions. rEX, MALS: manufactured by Wyatt Technology; DAWN HeLEOS) was injected and measured. The injected polymer solution eluted from the column in the range of 27-43 minutes.
Column temperature: 50 ° C
Detector temperature: 23 ° C
Solvent: NMP with 0.1M lithium chloride added
Flow velocity: 0.5 mL / min
Injection volume: 0.3 mL
 RIから得られた、溶出時間tのときのポリマー濃度c、MALSから得られた、溶出時間tのときの過剰レーリー比Rθiから、sin(θ/2)と(K×c/Rθi1/2とのプロットを行い(Berry plotまたはZimm plot;下記式(4))、その近似式のθ→0の値から、各溶出時間tにおける絶対分子量MWiを算出した。ここで、Kは光学定数であり、下記式(3)から算出される。なお式(3)におけるdn/dcは、ポリマー濃度の変化に対するポリマー溶液の屈折率の変化量、すなわち屈折率増分であるが、分岐ポリフッ化ビニリデン系樹脂を測定対象とし、かつ上記の溶媒を用いる場合には、屈折率増分として-0.050mL/gの値を適用することができる。
 K=4π×n ×(dn/dc)/(λ×N)  ・・・(3)
  n : 溶媒の屈折率
  dn/dc : 屈折率増分
  λ : 入射光の真空中での波長
  N : アボガドロ数
Obtained from RI, polymer concentration c i of when the elution time t i, obtained from the MALS, from the excess Rayleigh ratio R .theta.i when the elution time t i, sin 2 (θ / 2) and (K × c i / R .theta.i) performs a plot of 1/2; calculated (Berry plot or Zimm plot formula (4)), the value of theta → 0 of the approximate expression, the absolute molecular weight M Wi at each elution time t i did. Here, K is an optical constant and is calculated from the following equation (3). Note that dn / dc in the formula (3) is the amount of change in the refractive index of the polymer solution with respect to the change in the polymer concentration, that is, the increase in the refractive index. However, the branched polyvinylidene fluoride-based resin is the measurement target, and the above solvent is used. In some cases, a value of −0.05 mL / g can be applied as the index of refraction increment.
K = 4π 2 × n 0 2 × (dn / dc) 2 / (λ 4 × N 0 ) ・ ・ ・ (3)
n 0 : Refractive index of solvent dn / dc: Refractive index increment λ: Wavelength of incident light in vacuum N 0 : Avogadro's number
 また、各溶出時間tにおける回転半径〈S1/2の値は、下記式(4)の傾きから算出した。
 (Kc/Rθi1/2=MWi -1/2{1+1/6(4πn/λ)〈S〉sin(θ/2)}   ・・・(4)
 式(4)から算出される、各溶出時間tにおける絶対分子量Mwiをx軸にとって、かつ、各溶出時間tにおける回転半径〈S1/2をy軸にとって両対数プロットし、上記の式(2)で近似して、多孔質膜を構成するポリマーについてのaの値およびbの値を求めた。
The value of the radius of gyration <S 2> 1/2 at each elution time t i was calculated from the slope of the following formula (4).
(Kc i / R θi ) 1/2 = M Wi -1 / 2 {1 + 1/6 (4πn 0 / λ) 2 <S 2 > sin 2 (θ / 2)} ・ ・ ・ (4)
Is calculated from equation (4), for the x-axis the absolute molecular weight M wi at each elution time t i, and, to a log-log plot of radius of gyration <S 2> 1/2 to y-axis in each elution time t i, By approximating with the above formula (2), the values of a and b for the polymer constituting the porous membrane were obtained.
(ii)多孔質膜または複合多孔質膜の赤外分光測定
 蒸留水中に浸漬した多孔質膜または複合多孔質膜を、クライオスタット(Leica社製;Jung CM3000)を用いて-20℃で凍結し、多孔質膜または複合多孔質膜の表面に垂直に30μm間隔で切断して切片を作製した。切断した多孔質膜または複合多孔質膜の切片を、CaF板の上にその一方の切断面がCaF板と接するように載せ、顕微FT-IR(日本分光株式会社製、IRT-3000)を用いて、以下の条件で測定した。
 波長範囲 : 4000~650cm-1
 分解能  : 4cm-1
 積算回数 : 512回
 測定方法 : 透過
 観察方法 : 反射
 アパーチャ : 幅10、高さ90、角度0
(Ii) Infrared spectroscopic measurement of porous membrane or composite porous membrane The porous membrane or composite porous membrane immersed in distilled water is frozen at −20 ° C. using a cryostat (manufactured by Leica; Jung CM3000) and frozen at −20 ° C. Sections were prepared by cutting at intervals of 30 μm perpendicular to the surface of the porous membrane or the composite porous membrane. Sections of the cut porous membrane or composite porous membrane, placed as one of its cut surfaces on the CaF 2 plate is in contact with the CaF 2 plate, microscopic FT-IR (manufactured by JASCO Corporation, IRT-3000) Was measured under the following conditions.
Wavelength range: 4000-650 cm -1
Resolution: 4 cm -1
Number of integrations: 512 times Measurement method: Transmission observation method: Reflection aperture: Width 10, height 90, angle 0
 多孔質膜または複合多孔質膜の緻密表面から厚さ方向に5μm間隔で測定し、得られた吸収スペクトルよりポリフッ化ビニリデン系樹脂由来のピークと親水性樹脂由来のピークを検出し、親水性樹脂由来のピーク強度A/ポリフッ化ビニリデン系樹脂由来のピーク強度A’より、強度比A/A’を求めた。なお、ポリフッ化ビニリデン系樹脂由来のピークの位置は1400cm-1付近である。親水性樹脂由来のピークの位置は、例えば、セルロースアセテートであれば1750cm-1付近であり、ポリ酢酸ビニルであれば1250cm-1付近である。
 上記強度比A/A’の平均値は、多孔質膜または複合多孔質膜の緻密表面から厚さ方向に5μm、10μm、15μm、20μm及び25μmの5点における平均から求めた。
Measured at 5 μm intervals in the thickness direction from the dense surface of the porous film or composite porous film, and the peak derived from polyvinylidene fluoride resin and the peak derived from hydrophilic resin were detected from the obtained absorption spectrum, and the hydrophilic resin was detected. The intensity ratio A / A'was determined from the peak intensity A'derived from the peak intensity A / derived from the polyvinylidene fluoride resin. The position of the peak derived from the polyvinylidene fluoride resin is around 1400 cm -1 . The position of the peak derived from the hydrophilic resin is, for example, is around 1750 cm -1 if cellulose acetate, is around 1250 cm -1 if polyvinyl acetate.
The average value of the intensity ratio A / A'was determined from the average of 5 points of 5 μm, 10 μm, 15 μm, 20 μm and 25 μm in the thickness direction from the dense surface of the porous film or the composite porous film.
(iii)多孔質膜または複合多孔質膜の分画分子量
 多孔質膜の形状が平膜状の場合には、有効膜面積30cmに対して評価を行った。また、多孔質膜の形状が中空糸膜状の場合には、有効膜面積14cmに対して評価を行った。なお、多孔質膜に加えて支持層を備える複合多孔質膜については、支持層を含めた複合多孔質膜全体について評価を行った。評価には、下記各種のデキストランを用いた。
(Iii) Fractional molecular weight of the porous membrane or the composite porous membrane When the shape of the porous membrane is flat membrane, evaluation was performed for an effective membrane area of 30 cm 2 . When the shape of the porous membrane was a hollow fiber membrane, the effective film area of 14 cm 2 was evaluated. Regarding the composite porous membrane having a support layer in addition to the porous membrane, the entire composite porous membrane including the support layer was evaluated. The following various dextrans were used for the evaluation.
 デキストランf1~f4(Fluka製;重量平均分子量がそれぞれ1,500Da、6,000Da、15,000~25,000Da、40,000Da)
 デキストランa1およびa2(アルドリッチ製;重量平均分子量がそれぞれ60,000Da、20,000Da)
 デキストランa3およびa4(アルドリッチ製分子量標準物質;重量平均分子量がそれぞれ5,200Da、150,000Da)
 デキストランa5~a7(アルドリッチ製分子量標準物質;重量平均分子量がそれぞれ1,300Da、12,000Da、50,000Da)
Dextran f1 to f4 (manufactured by Fluka; weight average molecular weights of 1,500 Da, 6,000 Da, 15,000 to 25,000 Da, 40,000 Da, respectively)
Dextran a1 and a2 (manufactured by Aldrich; weight average molecular weight is 60,000 Da, 20,000 Da, respectively)
Dextran a3 and a4 (Molecular weight standard material manufactured by Aldrich; weight average molecular weights of 5,200 Da and 150,000 Da, respectively)
Dextran a5 to a7 (Molecular weight standard substance manufactured by Aldrich; weight average molecular weights are 1,300 Da, 12,000 Da, 50,000 Da, respectively)
 デキストランf1~f4、ならびに、デキストランa1およびa2をそれぞれ500ppmずつ蒸留水に混合して、デキストラン水溶液1を調製した。調製したデキストラン水溶液1を多孔質膜に10kPaで供給して、クロスフロー線速度1.1m/sでクロスフローろ過し、ろ液をサンプリングした。デキストラン水溶液1、および、サンプリングしたろ液を、GPC(カラム:東ソー株式会社製;TSKgel G3000PW φ7.5mm×30cm 1本および東ソー株式会社製;TSKgel α-M φ7.8mm×30cm 1本を直列に接続、RI:東ソー株式会社製;HLC-8320)に注入して測定した。注入したデキストランは26~42分間の範囲でカラムから溶出した。
 カラム温度 : 40℃
 検出器温度 : 40℃
 溶媒    : 0.5M硝酸リチウム添加50体積%メタノール水溶液
 流速    : 0.5mL/min
 注入量   : 0.1mL
Dextran f1 to f4 and dextran a1 and a2 were mixed with distilled water in an amount of 500 ppm each to prepare an aqueous dextran solution 1. The prepared dextran aqueous solution 1 was supplied to the porous membrane at 10 kPa, cross-flow filtered at a cross-flow linear velocity of 1.1 m / s, and the filtrate was sampled. Dextran aqueous solution 1 and sampled filtrate are combined in series with one GPC (column: manufactured by Tosoh Corporation; TSKgel G3000PW φ7.5 mm x 30 cm and one manufactured by Tosoh Corporation; TSKgel α-M φ7.8 mm x 30 cm). Connection, RI: manufactured by Tosoh Corporation; HLC-8320) was injected and measured. The injected dextran eluted from the column in the range of 26-42 minutes.
Column temperature: 40 ° C
Detector temperature: 40 ° C
Solvent: 0.5M lithium nitrate added 50% by volume methanol aqueous solution Flow rate: 0.5mL / min
Injection volume: 0.1 mL
 各溶出時間tにおいて、ろ液とデキストラン水溶液1との示差屈折率の値から除去率を算出した。また、デキストランa3およびa4をそれぞれ500ppmずつ蒸留水に混合して、デキストラン水溶液2を調製した。さらに、デキストランa5~a7をそれぞれ500ppmずつ蒸留水に混合して、デキストラン水溶液3を調製した。これらデキストラン水溶液2および3を、デキストラン水溶液1と同じ条件でGPCに注入して測定し、各溶出時間tにおける分子量を算出する、検量線を作成した。作成した検量線から、各溶出時間tにおける除去率を、各分子量における除去率に換算し、除去率が90%となる最小の分子量を、評価対象である多孔質膜の分画分子量とした。 At each elution time t i, was calculated removal rate from the value of the differential refractive index between the filtrate and the aqueous dextran solution 1. Further, 500 ppm each of dextran a3 and a4 was mixed with distilled water to prepare a dextran aqueous solution 2. Further, 500 ppm each of dextran a5 to a7 was mixed with distilled water to prepare a dextran aqueous solution 3. These dextran solution 2 and 3, measured and injected into GPC under the same conditions as dextran solution 1, to calculate the molecular weight at each elution time t i, a calibration curve was prepared. A calibration curve prepared, the removal rate of each elution time t i, in terms of the removal rate in each molecular weight, removal rate of the minimum molecular weight is 90% and the molecular weight cutoff of the porous membrane to be evaluated ..
(iv)多孔質膜の平均表面孔径
 多孔質膜の表面をSEM(株式会社日立ハイテクノロジーズ製;S-5500)を用いて、3万~10万倍の倍率で観察し、無作為に選択した孔300個の面積をそれぞれ測定した。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を平均表面孔径とした。
(Iv) Average surface pore size of the porous membrane The surface of the porous membrane was observed using SEM (manufactured by Hitachi High-Technologies Corporation; S-5500) at a magnification of 30,000 to 100,000 times, and was randomly selected. The area of each of the 300 holes was measured. From the area of each hole, the diameter when the hole was assumed to be a circle was calculated as the hole diameter, and the average value thereof was taken as the average surface hole diameter.
(v)多孔質膜の平均断面孔径
 多孔質膜の断面を緻密表面から厚さ方向に30μmまでの範囲で、SEM(株式会社日立ハイテクノロジーズ製;SU-1510)を用いて、1万倍の倍率で観察し、(表面に対して平行に130μm)×(厚さ方向に対して平行に5μm)の領域を1セグメントとし、厚さ方向に連続的に分割し、分割した各セグメントについて無作為に選択した孔30個の面積をそれぞれ測定した。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を平均断面孔径Bとした。
 各セグメントの平均断面孔径Bの平均値を平均断面孔径Fとした。
 平均断面孔径Bを縦軸に、多孔質膜の表面からの距離C(μm)を横軸にプロットした時の全点について最小2乗法近似して下記式(1)を求めた。なおkは傾きである。
 B=kC+d ・・・(1)
 (dは定数)
(V) Average cross-sectional pore size of the porous membrane The cross-section of the porous membrane is 10,000 times larger in the range from the dense surface to 30 μm in the thickness direction using SEM (manufactured by Hitachi High-Technologies Corporation; SU-1510). Observed at magnification, a region of (130 μm parallel to the surface) × (5 μm parallel to the thickness direction) was defined as one segment, continuously divided in the thickness direction, and randomly divided for each divided segment. The area of each of the 30 holes selected in 1 was measured. From the area of each hole, the diameter when the hole was assumed to be a circle was calculated as the hole diameter, and the average value thereof was taken as the average cross-sectional hole diameter B.
The average value of the average cross-sectional hole diameter B of each segment was defined as the average cross-sectional hole diameter F.
The following equation (1) was obtained by approximating the least squares method for all points when the average cross-sectional pore diameter B was plotted on the vertical axis and the distance C (μm) from the surface of the porous film was plotted on the horizontal axis. Note that k is the slope.
B = kC + d ... (1)
(D is a constant)
(vi)支持層の平均表面孔径
 複合多孔質膜について、支持層の多孔質膜と接していない側の面をSEM(株式会社日立ハイテクノロジーズ製;S-5500)を用いて、3万~10万倍の倍率で観察し、無作為に選択した孔300個の面積をそれぞれ測定した。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を平均表面孔径とした。
(Vi) Average surface pore size of the support layer For the composite porous film, the surface of the support layer on the side not in contact with the porous film is 30,000 to 10 using SEM (Hitachi High-Technologies Corporation; S-5500). The area of 300 randomly selected holes was measured by observing at a magnification of 10,000 times. From the area of each hole, the diameter when the hole was assumed to be a circle was calculated as the hole diameter, and the average value thereof was taken as the average surface hole diameter.
(vii)支持層の平均断面孔径
 支持層の厚さ方向の断面をSEM(株式会社日立ハイテクノロジーズ製;SU-1510)を用いて、1万倍の倍率で観察し、支持層の多孔質膜と接していない面から、(表面に対して平行に130μm)×(厚さ方向に対して平行に30μm)の領域を切り取り、切り取った画像について無作為に選択した孔30個の面積をそれぞれ測定した。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を平均断面孔径Dとした。
(Vii) Average cross-sectional pore size of the support layer A cross-section in the thickness direction of the support layer was observed using SEM (manufactured by Hitachi High-Technologies Corporation; SU-1510) at a magnification of 10,000 times, and the porous film of the support layer was observed. A region (130 μm parallel to the surface) × (30 μm parallel to the thickness direction) was cut out from the surface not in contact with the surface, and the areas of 30 randomly selected holes were measured for each of the cut images. did. From the area of each hole, the diameter when the hole was assumed to be a circle was calculated as the hole diameter, and the average value thereof was taken as the average cross-sectional hole diameter D.
(viii)支持層の表面部の平均断面孔径
 支持層の厚さ方向の断面をSEM(株式会社日立ハイテクノロジーズ製;SU-1510)を用いて、1万倍の倍率で観察し、表面近傍から、(表面に対して平行に130μm)×(厚さ方向に対して平行に25μm)の領域を切り取り、切り取った画像について無作為に選択した孔30個の面積をそれぞれ測定した。各孔の面積から、孔が円であったと仮定したときの直径を孔径としてそれぞれ算出し、それらの平均値を平均断面孔径Eとした。
(Viii) Average cross-sectional hole diameter of the surface of the support layer The cross-section of the support layer in the thickness direction was observed using SEM (Hitachi High-Technologies Corporation; SU-1510) at a magnification of 10,000 times, and from the vicinity of the surface. , (130 μm parallel to the surface) × (25 μm parallel to the thickness direction) were cut out, and the areas of 30 randomly selected holes were measured for each of the cut out images. From the area of each hole, the diameter when the hole was assumed to be a circle was calculated as the hole diameter, and the average value thereof was taken as the average cross-sectional hole diameter E.
(ix)多孔質膜または複合多孔質膜の純水透水性
 多孔質膜が平膜状の場合には、有効膜面積30cmに対して評価を行った。また、多孔質膜が中空糸膜状の場合には、有効膜面積14cmに対して評価を行った。多孔質膜に、温度25℃、ろ過差圧10kPaの条件で、1時間にわたって蒸留水を送液して全量ろ過し、得られた透過水量(m)を測定し、単位時間(h)および単位膜面積(m)当たりの数値に換算し、さらに圧力(50kPa)換算して算出した。なお、多孔質膜に加えて支持層を備える複合多孔質膜については、支持層を含めた複合多孔質膜全体について評価を行った。
(Ix) Pure water permeability of the porous membrane or the composite porous membrane When the porous membrane has a flat membrane shape, an evaluation was performed for an effective membrane area of 30 cm 2 . When the porous membrane was in the form of a hollow fiber membrane, an evaluation was performed on an effective membrane area of 14 cm 2 . Distilled water was sent to the porous membrane at a temperature of 25 ° C. and a filtration differential pressure of 10 kPa for 1 hour to filter the entire amount, and the obtained permeated water amount (m 3 ) was measured, and the unit time (h) and It was calculated by converting it into a numerical value per unit film area (m 2 ) and further converting it into a pressure (50 kPa). Regarding the composite porous membrane having a support layer in addition to the porous membrane, the entire composite porous membrane including the support layer was evaluated.
 実施例および比較例で用いたポリマー溶液の原料を、以下にまとめる。
 分岐ポリフッ化ビニリデン(以下、「分岐PVDF」)1(ソルベイ社製Solef9009、結晶化度44%、溶融粘度3kP)
 分岐PVDF2(ソルベイ社製;Solef9007、結晶化度38%、溶融粘度26kP)
 分岐PVDF3(ソルベイ社製;Solef460、結晶化度45%、溶融粘度2kP)
 直鎖ポリフッ化ビニリデン(以下、「直鎖PVDF」)1(アルケマ社製Kynar710、結晶化度49%、溶融粘度6kP)
 直鎖PVDF2(ソルベイ社製Solef1015、結晶化度48%、溶融粘度22kP)
 NMP(三菱ケミカル株式会社製)
 セルロースアセテート(以下、「CA」)(株式会社ダイセル製;LT-35)
The raw materials of the polymer solutions used in Examples and Comparative Examples are summarized below.
Branched polyvinylidene fluoride (hereinafter, "branched PVDF") 1 (Solvay Solef9009, crystallinity 44%, melt viscosity 3 kP)
Branched PVDF2 (manufactured by Solvay; Solef9007, crystallinity 38%, melt viscosity 26 kP)
Branched PVDF3 (manufactured by Solvay; Solef460, crystallinity 45%, melt viscosity 2 kP)
Linear polyvinylidene fluoride (hereinafter, "linear PVDF") 1 (Kynar710 manufactured by Arkema, crystallinity 49%, melt viscosity 6 kP)
Linear PVDF2 (Solvay Solef 1015, crystallinity 48%, melt viscosity 22 kP)
NMP (manufactured by Mitsubishi Chemical Corporation)
Cellulose Acetate (hereinafter "CA") (manufactured by Daicel Corporation; LT-35)
 (実施例1)
 12質量%の分岐PVDF1と、7質量%のCAを混合し、NMP等を加えて120℃で4時間撹拌し、表1に示す組成比のポリマー溶液を調製した。次いで、密度0.42g/cmのポリエステル繊維製不織布を支持層として、その表面に、調製したポリマー溶液を、バーコーター(膜厚2mil)を用いて10m/minで均一に塗布した。40℃で1時間保持したポリマー溶液を塗布した支持層を塗布から3秒後に、15℃の蒸留水に60秒間浸漬させて凝固させ、多孔質膜(厚さ45μm)を形成した。
(Example 1)
12% by mass of branched PVDF1 and 7% by mass of CA were mixed, NMP and the like were added, and the mixture was stirred at 120 ° C. for 4 hours to prepare a polymer solution having the composition ratio shown in Table 1. Next, using a polyester fiber non-woven fabric having a density of 0.42 g / cm 3 as a support layer, the prepared polymer solution was uniformly applied to the surface thereof at 10 m / min using a bar coater (thickness 2 mil). The support layer coated with the polymer solution held at 40 ° C. for 1 hour was immersed in distilled water at 15 ° C. for 60 seconds to solidify the support layer 3 seconds after the coating, to form a porous film (thickness 45 μm).
 得られた多孔質膜を評価した結果を、表1および図1に示す。強度比A/A’の最大値は多孔質膜の緻密表面から厚さ方向に15μmの位置にあり、かつ、強度比A/A’の平均値が1.06であった。平均断面孔径B(μm)は、緻密表面側から0.07、0.13、0.16、0.22、0.30、0.69であり、上記式(1)におけるkの値は0.02であった。また、上記式(2)におけるaの値は0.40、bの値は0.19であった。分離性能の指標である分画分子量と、透過性能の指標である純水透水性は、いずれも優れた値を示した。 The results of evaluating the obtained porous membrane are shown in Table 1 and FIG. The maximum value of the strength ratio A / A'was located at a position of 15 μm in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 1.06. The average cross-sectional hole diameter B (μm) is 0.07, 0.13, 0.16, 0.22, 0.30, 0.69 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.02. The value of a in the above formula (2) was 0.40, and the value of b was 0.19. The molecular weight cut-off, which is an index of separation performance, and the water permeability of pure water, which is an index of permeation performance, both showed excellent values.
 (実施例2)
 分岐PVDF1に代えて分岐PVDF2を用いた以外は実施例1と同様にして、表1に示す組成比のポリマー溶液を調製した。次いで、蒸留水の温度を10℃に変更した以外は実施例1と同様にして、多孔質膜(厚さ40μm)を形成した。
 得られた多孔質膜を評価した結果を、表1および図1に示す。強度比A/A’の最大値は多孔質膜の緻密表面から厚さ方向に15μmの位置にあり、かつ、強度比A/A’の平均値が1.06であった。平均断面孔径B(μm)は、緻密表面側から0.08、0.17、0.21、0.24、0.30、0.55であり、上記式(1)におけるkの値は0.02であった。また、上記式(2)におけるaの値は0.37、bの値は0.28であった。分画分子量と純水透水性は、いずれも優れた値を示した。
(Example 2)
A polymer solution having a composition ratio shown in Table 1 was prepared in the same manner as in Example 1 except that branched PVDF2 was used instead of branched PVDF1. Next, a porous film (thickness 40 μm) was formed in the same manner as in Example 1 except that the temperature of the distilled water was changed to 10 ° C.
The results of evaluating the obtained porous membrane are shown in Table 1 and FIG. The maximum value of the strength ratio A / A'was located at a position of 15 μm in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 1.06. The average cross-sectional hole diameter B (μm) is 0.08, 0.17, 0.21, 0.24, 0.30, 0.55 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.02. Further, the value of a in the above formula (2) was 0.37, and the value of b was 0.28. Both the molecular weight cut-off and the permeability of pure water showed excellent values.
 (実施例3)
 実施例1と同様にして、表1に示す組成比のポリマー溶液を調製した。次いで、蒸留水の温度を40℃に変更した以外は実施例1と同様にして、多孔質膜(厚さ45μm)を形成した。
 得られた多孔質膜を評価した結果を、表1および図1に示す。強度比A/A’の最大値は多孔質膜の緻密表面から厚さ方向に10μmの位置にあり、かつ、強度比A/A’の平均値は1.04であった。平均断面孔径B(μm)は、緻密表面側から0.17、0.25、0.77、0.65、1.20、1.52であり、上記式(1)におけるkの値は0.05であった。また、上記式(2)におけるaの値は0.40、bの値は0.19であった。分画分子量と純水透水性は、いずれも優れた値を示した。
(Example 3)
A polymer solution having a composition ratio shown in Table 1 was prepared in the same manner as in Example 1. Next, a porous film (thickness 45 μm) was formed in the same manner as in Example 1 except that the temperature of the distilled water was changed to 40 ° C.
The results of evaluating the obtained porous membrane are shown in Table 1 and FIG. The maximum value of the strength ratio A / A'was located at a position of 10 μm in the thickness direction from the dense surface of the porous membrane, and the average value of the strength ratio A / A'was 1.04. The average cross-sectional hole diameter B (μm) is 0.17, 0.25, 0.77, 0.65, 1.20, 1.52 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.05. The value of a in the above formula (2) was 0.40, and the value of b was 0.19. Both the molecular weight cut-off and the permeability of pure water showed excellent values.
 (実施例4)
 25質量%の分岐PVDF3と、75質量%の直鎖PVDF1を混合して「PVDF」として、NMP等を加えて120℃で4時間撹拌し、表1に示す組成比のポリマー溶液を調製した。
 次いで、実施例1と同様にして、多孔質膜(厚さ45μm)を形成した。
 得られた多孔質膜を評価した結果を、表1および図1に示す。強度比A/A’の最大値は多孔質膜の緻密表面から厚さ方向に15μmの位置にあり、かつ、強度比A/A’の平均値は0.99であった。平均断面孔径B(μm)は、緻密表面側から0.08、0.14、0.24、0.31、1.20、1.61であり、上記式(1)におけるkの値は0.06であった。また、上記式(2)におけるaの値は0.40、bの値は0.18であった。分画分子量と純水透水性とは、いずれも優れた値を示した。
(Example 4)
25% by mass of branched PVDF3 and 75% by mass of linear PVDF1 were mixed to prepare "PVDF", NMP and the like were added, and the mixture was stirred at 120 ° C. for 4 hours to prepare a polymer solution having the composition ratio shown in Table 1.
Next, a porous film (thickness 45 μm) was formed in the same manner as in Example 1.
The results of evaluating the obtained porous membrane are shown in Table 1 and FIG. The maximum value of the strength ratio A / A'was located at a position of 15 μm in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 0.99. The average cross-sectional hole diameter B (μm) is 0.08, 0.14, 0.24, 0.31, 1.20, 1.61 from the dense surface side, and the value of k in the above formula (1) is 0. It was .06. Further, the value of a in the above formula (2) was 0.40, and the value of b was 0.18. Both the molecular weight cut-off and the permeability of pure water showed excellent values.
 (実施例5)
 42質量%の直鎖PVDF2と、58質量%のγ-ブチロラクトンを混合し、160℃で溶解して、製膜原液を調製した。この製膜原液を、85質量%γ-ブチロラクトン水溶液を中空部形成液体として随伴させながら二重管口金から吐出し、口金の30mm下方に設置した温度5℃の85質量%γ-ブチロラクトン水溶液が入った冷却浴中で凝固させて、球状構造を有する、中空糸状の、ポリフッ化ビニリデン系樹脂を主成分とする支持層を作製した。
(Example 5)
42% by mass of linear PVDF2 and 58% by mass of γ-butyrolactone were mixed and dissolved at 160 ° C. to prepare a membrane-forming stock solution. This film-forming stock solution is discharged from the double tube mouthpiece with an 85% by mass γ-butyrolactone aqueous solution accompanied as a hollow portion forming liquid, and an 85% by mass γ-butyrolactone aqueous solution at a temperature of 5 ° C. installed 30 mm below the base is contained. By solidifying in a cooling bath, a hollow filament-like support layer containing a polyvinylidene fluoride-based resin as a main component was prepared.
 実施例1と同様にして表1に示す組成比のポリマー溶液を調製した。
 次いで、上記の中空糸状のポリフッ化ビニリデン系樹脂を主成分とする支持層の表面に、50℃で1時間保持したポリマー溶液を、10m/minで均一に塗布した(厚さ50μm)。ポリマー溶液を塗布した支持層を塗布から1秒後に、15℃の蒸留水に10秒間浸漬させて凝固させ、複合多孔質膜(多孔質膜の厚さ40μm、支持層の厚さ200μm)を形成した。
A polymer solution having a composition ratio shown in Table 1 was prepared in the same manner as in Example 1.
Next, a polymer solution held at 50 ° C. for 1 hour was uniformly applied at 10 m / min to the surface of the support layer containing the hollow filament-like polyvinylidene fluoride resin as a main component (thickness 50 μm). One second after the application of the polymer solution, the support layer is immersed in distilled water at 15 ° C. for 10 seconds to coagulate to form a composite porous film (porous film thickness 40 μm, support layer thickness 200 μm). did.
 得られた複合多孔質膜を評価した結果を、表1および図1に示す。強度比A/A’の最大値は多孔質膜の緻密表面から厚さ方向に15μmの位置にあり、かつ、強度比A/A’の平均値は1.06であった。平均断面孔径B(μm)は、緻密表面側から0.07、0.13、0.16、0.21、0.30、0.70であり、上記式(1)におけるkの値は0.02であった。平均断面孔径D(μm)は1.80であり、緻密表面の平均表面孔径の200倍であった。平均断面孔径E(μm)は0.84、多孔質膜の平均断面孔径F(μm)は0.41であった。また、上記式(2)におけるaの値は0.40、bの値は0.19であった。分画分子量と純水透水性は、いずれも優れた値を示した。また、多孔質膜と支持層とが接していない多孔質膜側の表面、つまり緻密表面の平均表面孔径は9nmであり、多孔質膜と支持層とが接していない支持層側の面の平均表面孔径は0.3μmであった。多孔質膜の平均表面孔径の方が、支持層の平均表面孔径より緻密であることがわかる。複合多孔質膜の破断強度は10MPa、破断強力は970gfであった。 The results of evaluating the obtained composite porous membrane are shown in Table 1 and FIG. The maximum value of the strength ratio A / A'was located at a position of 15 μm in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 1.06. The average cross-sectional hole diameter B (μm) is 0.07, 0.13, 0.16, 0.21, 0.30, 0.70 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.02. The average cross-sectional hole diameter D (μm) was 1.80, which was 200 times the average surface hole diameter of the dense surface. The average cross-sectional pore diameter E (μm) was 0.84, and the average cross-sectional pore diameter F (μm) of the porous membrane was 0.41. The value of a in the above formula (2) was 0.40, and the value of b was 0.19. Both the molecular weight cut-off and the permeability of pure water showed excellent values. Further, the surface on the porous film side where the porous film and the support layer are not in contact, that is, the average surface pore diameter of the dense surface is 9 nm, and the average of the surfaces on the support layer side where the porous film and the support layer are not in contact. The surface pore diameter was 0.3 μm. It can be seen that the average surface pore size of the porous film is denser than the average surface pore size of the support layer. The breaking strength of the composite porous membrane was 10 MPa, and the breaking strength was 970 gf.
 (比較例1)
 直鎖PVDF1を「PVDF」として、NMPを加えて120℃で4時間撹拌し、表2に示す組成比のポリマー溶液を調製した。次いで、実施例1と同様にして、多孔質膜(厚さ40μm)を形成した。
 得られた多孔質膜を評価した結果を、表2および図1に示す。強度比A/A’の最大値は多孔質膜の緻密表面から厚さ方向に30μmの位置にあり、かつ、強度比A/A’の平均値は1.08であった。平均断面孔径B(μm)は、緻密表面側から0.30、0.31、0.31、0.34、0.33、0.35であり、上記式(1)におけるkの値は0.002であった。また、上記式(2)におけるaの値は0.43、bの値は0.17であった。分画分子量と純水透水性とは、いずれも実施例の結果と比較して劣るものであった。
(Comparative Example 1)
Using linear PVDF1 as "PVDF", NMP was added and the mixture was stirred at 120 ° C. for 4 hours to prepare a polymer solution having the composition ratio shown in Table 2. Next, a porous film (thickness 40 μm) was formed in the same manner as in Example 1.
The results of evaluating the obtained porous membrane are shown in Table 2 and FIG. The maximum value of the strength ratio A / A'was located at a position of 30 μm in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 1.08. The average cross-sectional hole diameter B (μm) is 0.30, 0.31, 0.31, 0.34, 0.33, 0.35 from the dense surface side, and the value of k in the above formula (1) is 0. It was .002. Further, the value of a in the above formula (2) was 0.43, and the value of b was 0.17. Both the molecular weight cut-off and the water permeability of pure water were inferior to the results of Examples.
 (比較例2)
 分岐PVDF3を用いた以外は比較例1と同様にして、表2に示す組成比のポリマー溶液を調製した。
 次いで、蒸留水の温度を20℃に変更した以外は実施例1と同様にして、多孔質膜(厚さ35μm)を形成した。
 得られた多孔質膜を評価した結果を、表2および図1に示す。強度比A/A’の最大値は多孔質膜の緻密表面から厚さ方向に10μmの位置にあり、かつ、強度比A/A’の平均値は0.57であった。平均断面孔径B(μm)は、緻密表面側から0.18、0.22、5.85、6.02、6.11、8.90であり、上記式(1)におけるkの値は0.4であった。また、上記式(2)におけるaの値は0.36、bの値は0.27であった。分画分子量と純水透水性とは、いずれも実施例の結果と比較して劣るものであった。
(Comparative Example 2)
A polymer solution having a composition ratio shown in Table 2 was prepared in the same manner as in Comparative Example 1 except that branched PVDF3 was used.
Next, a porous film (thickness 35 μm) was formed in the same manner as in Example 1 except that the temperature of the distilled water was changed to 20 ° C.
The results of evaluating the obtained porous membrane are shown in Table 2 and FIG. The maximum value of the strength ratio A / A'was located at a position of 10 μm in the thickness direction from the dense surface of the porous film, and the average value of the strength ratio A / A'was 0.57. The average cross-sectional hole diameter B (μm) is 0.18, 0.22, 5.85, 6.02, 6.11, 8.90 from the dense surface side, and the value of k in the above formula (1) is 0. It was 0.4. Further, the value of a in the above formula (2) was 0.36, and the value of b was 0.27. Both the molecular weight cut-off and the water permeability of pure water were inferior to the results of Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2019年6月27日出願の日本特許出願(特願2019-119656)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on June 27, 2019 (Japanese Patent Application No. 2019-119656), the contents of which are incorporated herein by reference.

Claims (8)

  1.  分岐ポリフッ化ビニリデン系樹脂と親水性樹脂を含む多孔質膜であって、前記多孔質膜の表面から厚さ方向に5μm間隔で赤外分光測定を行い検出される親水性樹脂由来のピーク強度Aと、ポリフッ化ビニリデン系樹脂由来のピーク強度A’との強度比A/A’について、前記多孔質膜のいずれか1つの表面にある緻密表面から厚さ方向に5μm、10μm、15μm及び20μmの4点における前記強度比A/A’の最大値が、前記緻密表面から厚さ方向に25μm、30μm及び35μmの3点における前記強度比A/A’の最大値よりも大きく、かつ、前記緻密表面から厚さ方向に5μm、10μm、15μm、20μm及び25μmの5点における前記強度比A/A’の平均値が0.90~1.20の範囲内である多孔質膜。 A porous film containing a branched polyvinylidene fluoride resin and a hydrophilic resin, and the peak intensity A derived from the hydrophilic resin detected by infrared spectroscopic measurement at intervals of 5 μm in the thickness direction from the surface of the porous film. With respect to the intensity ratio A / A'with the peak intensity A'derived from the polyvinylidene fluoride resin, 5 μm, 10 μm, 15 μm and 20 μm in the thickness direction from the dense surface on any one surface of the porous film. The maximum value of the strength ratio A / A'at four points is larger than the maximum value of the strength ratio A / A'at three points of 25 μm, 30 μm, and 35 μm in the thickness direction from the dense surface, and the density is high. A porous film in which the average value of the strength ratio A / A'at 5 points of 5 μm, 10 μm, 15 μm, 20 μm and 25 μm from the surface in the thickness direction is in the range of 0.90 to 1.20.
  2.  前記親水性樹脂が水に不溶な樹脂である、請求項1に記載の多孔質膜。 The porous membrane according to claim 1, wherein the hydrophilic resin is a water-insoluble resin.
  3.  前記緻密表面の平均表面孔径が3~16nmであり、前記多孔質膜の表面に垂直な断面の電子顕微鏡画像(SEM画像)を前記表面から厚さ方向に5μm間隔で撮影した際、前記緻密表面から厚さ方向に25~30μmの領域における平均断面孔径Bが、前記緻密表面から厚さ方向に0~5μmの領域における平均断面孔径Bの5~25倍の範囲内である、請求項1または2に記載の多孔質膜。 When an electron microscope image (SEM image) having an average surface pore diameter of 3 to 16 nm and a cross section perpendicular to the surface of the porous film is taken at 5 μm intervals in the thickness direction from the surface, the dense surface 1 or claim 1, wherein the average cross-sectional hole diameter B in the region from 25 to 30 μm in the thickness direction is within a range of 5 to 25 times the average cross-sectional hole diameter B in the region from 0 to 5 μm in the thickness direction from the dense surface. 2. The porous membrane according to 2.
  4.  前記多孔質膜の表面に垂直な断面のSEM画像を、前記緻密表面から厚さ方向に30μmまでの範囲で5μm間隔で撮影し、前記緻密表面からの距離C(μm)と、前記SEM画像から得られる各断面における細孔の平均断面孔径B(μm)の測定値とから最小2乗法により得られる、下記近似式(1)における傾きkが0.01~0.2の範囲内である、請求項1~3のいずれか1項に記載の多孔質膜。
     B=kC+d・・・(1)
     (dは定数)
    SEM images of a cross section perpendicular to the surface of the porous film were taken at intervals of 5 μm in a range of up to 30 μm in the thickness direction from the dense surface, and the distance C (μm) from the dense surface and the SEM image were taken. The slope k in the following approximate formula (1), which is obtained by the minimum square method from the measured value of the average cross-sectional pore diameter B (μm) of the pores in each obtained cross section, is in the range of 0.01 to 0.2. The porous film according to any one of claims 1 to 3.
    B = kC + d ... (1)
    (D is a constant)
  5.  前記緻密表面の平均表面孔径の標準偏差が8.0nm以下である、請求項1~4のいずれか1項に記載の多孔質膜。 The porous film according to any one of claims 1 to 4, wherein the standard deviation of the average surface pore diameter of the dense surface is 8.0 nm or less.
  6.  前記多孔質膜を構成するポリマーについて、多角度光散乱検出器および示差屈折率計を備えたゲル浸透クロマトグラフを用いて得られる回転半径〈S1/2と絶対分子量Mの測定結果から、コンフォメーションプロットにより得られる下記近似式(2)におけるaの値が、0.32~0.41の範囲内であり、かつ、bの値が、0.18~0.42の範囲内である、請求項1~5のいずれか1項に記載の多孔質膜。
      〈S1/2=bM    ・・・(2)
    Measurement results of radius of gyration <S 2 > 1/2 and absolute molecular weight M w obtained by using a gel permeation chromatograph equipped with a multi-angle light scattering detector and a differential refractometer for the polymer constituting the porous membrane. Therefore, the value of a in the following approximate formula (2) obtained by the conformation plot is in the range of 0.32 to 0.41, and the value of b is in the range of 0.18 to 0.42. The porous membrane according to any one of claims 1 to 5.
    <S 2 > 1/2 = bM w a ... (2)
  7.  請求項1~6のいずれか1項に記載の多孔質膜と、ポリフッ化ビニリデン系樹脂を主成分とする支持層とが積層された複合多孔質膜であって、前記複合多孔質膜の表面に垂直な断面のSEM画像における、前記支持層の前記多孔質膜と接していない面から厚さ方向に30μmまでの領域に存在する細孔の平均断面孔径Dが、前記緻密表面の平均表面孔径の50~500倍の範囲内である複合多孔質膜。 A composite porous membrane in which the porous membrane according to any one of claims 1 to 6 and a support layer containing a polyvinylidene fluoride-based resin as a main component are laminated, and the surface of the composite porous membrane. In the SEM image of the cross section perpendicular to, the average cross-sectional pore diameter D of the pores existing in the region from the surface of the support layer not in contact with the porous film to 30 μm in the thickness direction is the average surface pore diameter of the dense surface. A composite porous membrane in the range of 50 to 500 times that of.
  8.  前記複合多孔質膜の表面に垂直な断面のSEM画像における、前記多孔質膜と前記支持層が接する面から前記支持層の厚さ方向に25μmまでの範囲に存在する細孔の平均断面孔径Eが、前記複合多孔質膜の表面に垂直な断面のSEM画像における前記多孔質膜の平均断面孔径Fの2~10倍の範囲内となる、請求項7に記載の複合多孔質膜。 In the SEM image of the cross section perpendicular to the surface of the composite porous film, the average cross-sectional pore diameter E of the pores existing in the range from the surface where the porous film and the support layer are in contact to 25 μm in the thickness direction of the support layer. The composite porous film according to claim 7, wherein the composition is within a range of 2 to 10 times the average cross-sectional pore diameter F of the porous film in the SEM image of the cross section perpendicular to the surface of the composite porous film.
PCT/JP2020/024906 2019-06-27 2020-06-24 Porous membrane and composite porous membrane WO2020262490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539116A JPWO2020262490A1 (en) 2019-06-27 2020-06-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019119656 2019-06-27
JP2019-119656 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020262490A1 true WO2020262490A1 (en) 2020-12-30

Family

ID=74059944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024906 WO2020262490A1 (en) 2019-06-27 2020-06-24 Porous membrane and composite porous membrane

Country Status (2)

Country Link
JP (1) JPWO2020262490A1 (en)
WO (1) WO2020262490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686632A (en) * 2021-08-09 2021-11-23 中国科学院城市环境研究所 Preparation method of filter membrane section sample
WO2023054228A1 (en) * 2021-09-28 2023-04-06 東レ株式会社 Porous membrane and method for manufacturing porous membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505719A (en) * 1996-01-22 2000-05-16 メムテック アメリカ コーポレイション Highly porous polyvinylidene difluoride membrane
JP2006326497A (en) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd Semi-permeable membrane for water treatment and its production method
WO2010032808A1 (en) * 2008-09-19 2010-03-25 東レ株式会社 Separation membrane, and method for producing same
JP2014076446A (en) * 2006-04-19 2014-05-01 Asahi Kasei Chemicals Corp Highly durable pvdf porous membrane and method of producing the same, and washing method and filtration method using the same
JP2016510688A (en) * 2013-03-04 2016-04-11 アーケマ・インコーポレイテッド Long-chain branched fluoropolymer membrane
WO2017217446A1 (en) * 2016-06-17 2017-12-21 旭化成株式会社 Porous membrane, and method for manufacturing porous membrane
JP2018008272A (en) * 2017-09-05 2018-01-18 株式会社クラレ Method for producing hollow fiber membrane
JP2020104104A (en) * 2018-12-26 2020-07-09 東レ株式会社 Porous film, composite film and method for producing porous film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505719A (en) * 1996-01-22 2000-05-16 メムテック アメリカ コーポレイション Highly porous polyvinylidene difluoride membrane
JP2006326497A (en) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd Semi-permeable membrane for water treatment and its production method
JP2014076446A (en) * 2006-04-19 2014-05-01 Asahi Kasei Chemicals Corp Highly durable pvdf porous membrane and method of producing the same, and washing method and filtration method using the same
WO2010032808A1 (en) * 2008-09-19 2010-03-25 東レ株式会社 Separation membrane, and method for producing same
JP2016510688A (en) * 2013-03-04 2016-04-11 アーケマ・インコーポレイテッド Long-chain branched fluoropolymer membrane
WO2017217446A1 (en) * 2016-06-17 2017-12-21 旭化成株式会社 Porous membrane, and method for manufacturing porous membrane
JP2018008272A (en) * 2017-09-05 2018-01-18 株式会社クラレ Method for producing hollow fiber membrane
JP2020104104A (en) * 2018-12-26 2020-07-09 東レ株式会社 Porous film, composite film and method for producing porous film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686632A (en) * 2021-08-09 2021-11-23 中国科学院城市环境研究所 Preparation method of filter membrane section sample
WO2023054228A1 (en) * 2021-09-28 2023-04-06 東レ株式会社 Porous membrane and method for manufacturing porous membrane

Also Published As

Publication number Publication date
JPWO2020262490A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
JP5732719B2 (en) Separation membrane and manufacturing method thereof
WO2020262490A1 (en) Porous membrane and composite porous membrane
JPH11515036A (en) High strength and air permeable membrane of polytetrafluoroethylene
JP7409072B2 (en) Porous membrane, composite membrane, and porous membrane manufacturing method
KR101292485B1 (en) Fluororesin polymer separation membrane and process for producing the same
JP7014714B2 (en) Porous membrane and method for producing porous membrane
CN111107926A (en) Porous hollow fiber membrane and method for producing same
JP5109263B2 (en) Fluororesin polymer separation membrane and method for producing the same
JP7435438B2 (en) Porous membrane, composite membrane, and porous membrane manufacturing method
WO2012063669A1 (en) Process for production of separation membrane
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
US20230053706A1 (en) Separation membrane and method for producing separation membrane
JP2020171923A (en) Porous film
WO2021106726A1 (en) Porous membrane, composite membrane, and method for producing porous membrane or composite membrane
WO2022249839A1 (en) Separation membrane and method for producing same
WO2021241514A1 (en) Porous film and composite film
JP2021186746A (en) Porous film and composite membrane
WO2023054228A1 (en) Porous membrane and method for manufacturing porous membrane
CN110026090B (en) Porous membrane
JP2024049374A (en) Porous hollow fiber membrane and method for producing same
JP2021186747A (en) Composite membrane and method for producing composite membrane
KR20180036293A (en) Hollow fiber membrane and method for preparing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020539116

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832371

Country of ref document: EP

Kind code of ref document: A1