JPS6097001A - Polyvinylidene fluoride porous membrane and its preparation - Google Patents

Polyvinylidene fluoride porous membrane and its preparation

Info

Publication number
JPS6097001A
JPS6097001A JP58204960A JP20496083A JPS6097001A JP S6097001 A JPS6097001 A JP S6097001A JP 58204960 A JP58204960 A JP 58204960A JP 20496083 A JP20496083 A JP 20496083A JP S6097001 A JPS6097001 A JP S6097001A
Authority
JP
Japan
Prior art keywords
membrane
polymer
polyvinylidene fluoride
water
stock solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58204960A
Other languages
Japanese (ja)
Inventor
Ryozo Hasegawa
長谷川 僚三
Eiichi Murakami
瑛一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58204960A priority Critical patent/JPS6097001A/en
Publication of JPS6097001A publication Critical patent/JPS6097001A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a membrane useful for industrial and medical purposes in uniform constitution, by using a polymer based on polyvinilidene fluoride having a fine open cell reticulated structure formed thereto. CONSTITUTION:A film forming stock solution consists of 5-35wt% of polyvinyliden fluoride, good and poor solvents therefor and 2-30wt% of a water soluble polymer. As the good solvent, N-methyl-2-pyrrolidone, DMA and DMF are pref. used and, as the poor solvent, there are acetone, MEK or cyclohexanone and, as the water soluble polymer, polyether and polyvinyl pyrrolidone are pref. This film forming stock solution is cast while the separation of a coagulated phase is allowed to advance in the open air or steam-containing gas and the formed film is immersed in a washing bath comprising a liquid capable of dissolving and removing three components other than polyvinylidene fluoride such as water for 5min or less to prepare a membrane. By this method, II-type crystal constitution as shown by the drawing is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は精密濾過、限外濾過など水系溶液の濃縮、物質
分離等の工業的操作および濾過型人工腎臓、血漿分離等
の医学的応用に適するポリフッ化ビニリデン多孔性膜に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to industrial operations such as precision filtration, ultrafiltration, concentration of aqueous solutions, substance separation, etc., and medical applications such as filtration type artificial kidneys and plasma separation. The present invention relates to a suitable polyvinylidene fluoride porous membrane.

〔従来技術〕[Prior art]

近年、多孔膜は電子工業用等の超純水の製造、紙パルプ
排液等の工業排水処理、製糖工業等の分離精製、濾過型
人工腎臓、血漿分離、血漿アルブミン回収等の血液浄化
、除菌や脱パイロジエン用の精密濾過等の工業用ないし
医療用の分離精製技術に利用されてきている。
In recent years, porous membranes have been used in the production of ultrapure water for the electronics industry, etc., industrial wastewater treatment such as paper pulp wastewater, separation and purification in the sugar manufacturing industry, blood purification and removal such as filtration-type artificial kidneys, plasma separation, and plasma albumin recovery. It has been used in industrial and medical separation and purification techniques such as precision filtration for bacteria and depyrogenization.

この様な目的のために、従来セルロースエステル系、ポ
リカーポーネー1〜系、ポリプロピレン系の多孔膜が用
いられている。多孔膜の製法としては、溶媒蒸発乾式法
、ミクロ相分離湿式法、フィルム延伸法、添加剤抽出法
、放射線照射後ニッティング法等が公知である。しかし
ながらポリマー素材および多孔膜構造とその安定性につ
いて、とくに透過性能、機械的強度、耐熱性、耐溶剤性
について必ずしも満足されるものではない。
For such purposes, cellulose ester-based, polycarbonate-based, and polypropylene-based porous membranes have conventionally been used. Known methods for producing porous membranes include a solvent evaporation dry method, a microphase separation wet method, a film stretching method, an additive extraction method, and a knitting method after irradiation. However, the polymer material, porous membrane structure, and stability thereof, particularly in terms of permeability, mechanical strength, heat resistance, and solvent resistance, are not always satisfied.

かかる観点から、機械的強度、耐熱性、耐溶剤性におい
てすぐれた特性を具備するポリフッ化ご二すデン系の樹
脂が注目され、その多孔膜に関していくつかの技術が開
示されている。特開昭54−16383号には単一溶媒
溶液による湿式製膜法が開示されている。特開昭55−
66935号、特開昭55〜69267および特開昭5
5−99304号には製膜原液に界面活性剤を添加する
方法が示されているが、いずれも非溶媒を凝固に用いる
ためスキン層有する不拘多孔膜である。特開昭56−5
6202号はスキン層とカポ−3− ト層を有する中空系多孔膜でマクロボイドを包含する。
From this point of view, polydifluoride-based resins, which have excellent properties in terms of mechanical strength, heat resistance, and solvent resistance, have attracted attention, and several techniques have been disclosed regarding porous membranes thereof. JP-A-54-16383 discloses a wet film forming method using a single solvent solution. Japanese Unexamined Patent Publication 1973-
No. 66935, JP-A No. 55-69267 and JP-A No. 5
No. 5-99304 discloses a method of adding a surfactant to a membrane forming stock solution, but in both cases a non-solvent is used for coagulation, so the unconfined porous membrane has a skin layer. Japanese Patent Publication No. 56-5
No. 6202 is a hollow porous membrane having a skin layer and a capo-3-layer and includes macrovoids.

これらの方法では均一な細孔を有する膜が得がたく、ま
た膜の内側にマクロボイドを含むため機械的強度に問題
がある。特開昭58−91808号には非水溶性のアル
コール、特開昭58−93734号いは親水性無機微粉
末を添加して製膜し次いでそれらを抽出して多孔膜を得
る方法が開示されているが、抽出に特殊操作が必要であ
るし、添加物が膜中に異物として残留するおそれがある
。特開昭58−91731号には非対称構造を有さない
多孔膜と溶媒を20%以−1含有する水溶液にて凝固す
る製法が開示されている。
With these methods, it is difficult to obtain a membrane with uniform pores, and since the membrane contains macrovoids inside, there is a problem in mechanical strength. JP-A No. 58-91808 discloses a method of forming a membrane by adding water-insoluble alcohol, JP-A No. 58-93734 or hydrophilic inorganic fine powder, and then extracting them to obtain a porous membrane. However, special operations are required for extraction, and there is a risk that additives may remain in the membrane as foreign matter. JP-A-58-91731 discloses a manufacturing method in which a porous membrane having no asymmetric structure is coagulated in an aqueous solution containing 20% or more of a solvent.

ポリフッ化ビニリデンはその規則正しい分子構造と凝集
力により血漿化が速く、これらの従来技術をしても非対
称構造を有さない均一な多孔性膜を得ることはかなり難
かしいことである。またポリフッ化ごニリデンが非常に
疎水性であるため水系溶液の分離操作で膜が濡れがたい
欠点を有している。
Polyvinylidene fluoride is rapidly converted into plasma due to its regular molecular structure and cohesive force, and even with these conventional techniques, it is quite difficult to obtain a uniform porous membrane without an asymmetric structure. Furthermore, since polynylidene fluoride is extremely hydrophobic, it has the disadvantage that the membrane is difficult to wet during separation operations of aqueous solutions.

〔発明の目的および構成〕[Object and structure of the invention]

4− かかる状況に鑑がみ、ポリフッ化ビニリデンのすぐれた
特性を活し、均一構成の多孔性膜を1qることおよび親
水性を賦与して工業用および医療用として有益な膜を得
ることを目的とし、鋭意研究の結果本発明を完成するに
至った。
4- In view of this situation, we have made use of the excellent properties of polyvinylidene fluoride to create a porous membrane with a uniform structure and impart hydrophilicity to obtain a membrane useful for industrial and medical purposes. As a result of intensive research, we have completed the present invention.

即ち本発明はポリフッ化ビニリデンを主体としたポリマ
ーの多、孔性膜であって、該ポリマーの凝集体が連通し
た細孔を有する網目状組織を形成していること、該凝集
体が■準結晶構造をとり実質的に無配向であること、該
多孔性膜の表面における細孔が繰返しのある孔群または
平面網目状組織を形成し、その平均孔径が0.05〜1
0μであること、および該連通綱目状組織内の空孔が多
面体状でかつ互に連通しており、その空隙率が60〜9
5%であることを特徴とするポリフッ化ビニリデン多孔
性膜である。さらに本発明は、ポリフッ化ビニリデンを
主体としたポリマー、該ポリマーから製膜原液を調整し
、流延し、凝固し、次いで洗浄浴にて該良溶媒、該貧溶
媒および該水溶性ポリマーを除去することを特徴とする
ポリフッ化ビニリデン多孔性膜の製造方法である。
That is, the present invention is a porous membrane made of a polymer mainly composed of polyvinylidene fluoride, in which the aggregates of the polymer form a network structure having interconnected pores, and the aggregates are The porous membrane has a crystal structure and is substantially non-oriented, and the pores on the surface of the porous membrane form a repeating pore group or a planar network structure, and the average pore diameter is 0.05 to 1.
0 μ, and the pores in the continuous mesh structure are polyhedral and communicate with each other, and the porosity is 60 to 9.
5% polyvinylidene fluoride porous membrane. Furthermore, the present invention provides a polymer mainly composed of polyvinylidene fluoride, a membrane forming stock solution prepared from the polymer, cast, solidified, and then the good solvent, the poor solvent, and the water-soluble polymer removed in a cleaning bath. This is a method for producing a porous polyvinylidene fluoride membrane.

以下、本発明について詳細に説明する。ポリフッ化ごニ
リデンを主体とするポリマー凝集体とは、ポリフッ化ビ
ニリデンのみであってもよく、あるいは実質的にポリフ
ッ化ビニリデンが大分を占める共重合体であっても、ブ
レンドであってもよい。
The present invention will be explained in detail below. The polymer aggregate mainly composed of polyvinylidene fluoride may be only polyvinylidene fluoride, or may be a copolymer in which polyvinylidene fluoride substantially accounts for the majority, or a blend.

また製造する際に添加する水溶性ポリマーが一部混合な
いし表面等に残っていてもよい。微量の水溶性ポリマー
が残留することにより膜の親水性は改良される。ポリフ
ッ化ビニリデンには3つの結晶変態が存在し、本発明の
膜は熱力学的にも最も安定な■型結晶構成を有する。こ
れが耐熱性、とくに膜特性の耐熱性を賦与する一条件で
ある。
Further, a part of the water-soluble polymer added during production may remain in the mixture or on the surface. The hydrophilicity of the membrane is improved by the residual trace amount of water-soluble polymer. There are three crystal modifications of polyvinylidene fluoride, and the film of the present invention has the -type crystal structure, which is thermodynamically the most stable. This is one condition for imparting heat resistance, especially heat resistance to film properties.

結晶構造および安定性については下記文献がある。Regarding the crystal structure and stability, there are the following documents.

fil R9Haseoawa etai、、Po1y
u+er J、、3゜(5)、591(1972)。
fil R9Haseoawa etai,,Poly
u+er J, 3°(5), 591 (1972).

[2J R、Haseoawa etai;、Poly
mer ’ J 、、β−2(5)、600(1972
)。
[2J R, Haseoawa etai;, Poly
mer' J, β-2(5), 600 (1972
).

[3) ・Y 、 Takahashi and H、
Tadokoro 。
[3) ・Y, Takahashi and H,
Tadokoro.

Macromolecules 、13. 1317 
(1980)本発明の膜はまた実質的に無配向である。
Macromolecules, 13. 1317
(1980) The membranes of the present invention are also substantially unoriented.

水膜を延伸すると細孔および網目構造が変形し、多孔膜
とし機能せず、結晶型も熱的に不安定な■型に変態する
When a water film is stretched, its pores and network structure are deformed, so that it does not function as a porous film, and its crystal form transforms into a thermally unstable (2) type.

本発明の膜は、表面にある細孔が(a>繰かえしのある
孔群(第1図(a)〕または(b)平面網目状組織〔第
1図(b)〕を形成し、その孔径が0.05〜10μで
ある。第1図(c−e)に本発明の膜表面の典型的な走
査型電子顕微鏡写真を示す。平均孔径とは、走査型電子
顕微鏡によってめられた平均孔径である。平均孔径が0
.05μ−500人未満の場合、本発明の目的とする多
孔性膜の特性を発揮しえない。また平均孔径が10μ以
上の倍は、膜のピンホール欠陥に相当し、当然膜機能と
形成が保持しえない。本発明の膜はその連通網目状組織
内の空孔が多面体状でかつ互に連通している〔模式同第
2 (a > )。この多面体は本発明特有の製膜原液
が、流延後の凝固相分離する際、ポリマー希薄層が成長
して生成し、凝固浴、水洗7− 浴にて水等で置換され、膜の空孔となったものである。
In the membrane of the present invention, the pores on the surface form (a>repetitive pore group (Fig. 1 (a)) or (b) a planar network structure [Fig. 1 (b)]). The pore diameter is 0.05 to 10μ. Figure 1 (ce) shows typical scanning electron micrographs of the membrane surface of the present invention. The average pore diameter is the average diameter determined by a scanning electron microscope. The average pore size is 0.
.. If the number of porous membranes is less than 0.05μ-500, the characteristics of the porous membrane targeted by the present invention cannot be exhibited. Further, when the average pore diameter is 10 μm or more, this corresponds to a pinhole defect in the membrane, and naturally the membrane function and formation cannot be maintained. In the membrane of the present invention, the pores in the communicating network structure are polyhedral and communicate with each other [Scheme 2 (a>). This polyhedron is formed by the growth of a dilute polymer layer when the membrane-forming stock solution unique to the present invention undergoes solidification phase separation after casting, and is replaced with water in the coagulation bath and water washing bath, and the vacancies in the membrane are It became a hole.

一方ポリマー澹厚相はこれら多面体の面および綾に濃縮
され、最終的に多面体の境界面、綾にポリマー凝集体と
なる。境界面には少なくとも連通孔が存在することが必
要で、これによって分子目的及び精密濾過用多孔性膜と
しての機能が発現する。製膜条件によっては多面体の境
界面の大部分が連通孔となった場合は、ポリマー凝集体
は綾に集中し細骨路内網目状組織となる。本発明の膜の
典型的な走査型電子顕微鏡写真を第2図(b)(C)に
示す。また連通網目状組織内の空孔全体の空隙率は60
〜95%である。空隙率は下記式(1)からめた。
On the other hand, the thick polymer phase is concentrated on the faces and twills of these polyhedra, and finally forms polymer aggregates at the interfaces and twills of the polyhedra. It is necessary that at least communicating pores exist at the interface, and this allows the membrane to function as a porous membrane for molecular purposes and precision filtration. Depending on the film forming conditions, if most of the boundary surfaces of the polyhedron become communicating pores, the polymer aggregates will concentrate on the twills and form a network structure within the bone tracts. Typical scanning electron micrographs of the membrane of the invention are shown in FIG. 2(b)(C). In addition, the porosity of the entire pores in the continuous network structure is 60
~95%. The porosity was calculated using the following formula (1).

ここにポリフッ化ビニリデン■型結晶試料の実測密度1
.89/crIを用いたが、結晶化度100%の理想結
晶では1,958g/cifである(前記文献2)。
Here is the measured density of polyvinylidene fluoride ■ type crystal sample 1
.. 89/crI was used, but it is 1,958 g/cif for an ideal crystal with 100% crystallinity (Reference 2).

空隙率95%を越えると膜が弱く、また60%未満では
密になり過ぎ、膜特性が劣る。
If the porosity exceeds 95%, the membrane will be weak, and if it is less than 60%, it will become too dense and the membrane properties will be poor.

8一 本発明の膜の製造方法は製膜原液に前記の如き特定の四
元成分を用いることによって、多孔性膜として特徴的な
連通網目構造を発現するものである。四元成分の何れを
も欠いても、前記した特注を十分有した表面細孔と組織
内空孔が得られない。
81 The membrane manufacturing method of the present invention uses the above-mentioned specific quaternary components in the membrane-forming stock solution to develop a continuous network structure characteristic of a porous membrane. Absence of any of the quaternary components does not result in surface pores and tissue pores with sufficient customization as described above.

水膜の膜形成はいわば目元的相分離に近いもので、水蒸
気と接触することによっても誘起されて相分離が進行し
、多孔性膜としての網目構造が発現していく様子は光学
顕微鏡をもって観察することができる。尚肉眼での観察
は、流延した薄層が失透することが認められる。よって
、流延した製膜原液を大気ないし水蒸気を含む気体中に
て凝固相分離を進行せ、次いで洗浄浴にてポリマー以外
の成分を除去する製造方法を完成するに至った。実際的
時間内、例えば5分以内、に相分離を誘起進行させるた
めには、例えば30℃では水蒸気圧力が16IIIiF
k11すなわち相対湿度として50%以上が必要である
。洗浄浴にはポリフッ化ビニリデン以外の三成分を溶解
除去できる液体が好ましく、ポリフッ化ビニリデンの非
溶媒から選択しうる。具体例としては、水、アルコール
等を挙げることができるが、一般的には水が好ましい。
The formation of a water film is similar to visual phase separation, and the progress of phase separation induced by contact with water vapor and the development of a network structure as a porous film can be observed using an optical microscope. can do. Furthermore, when observed with the naked eye, it is observed that the cast thin layer becomes devitrified. Therefore, we have completed a production method in which the cast membrane forming stock solution is subjected to solidification phase separation in the atmosphere or a gas containing water vapor, and then components other than the polymer are removed in a cleaning bath. In order to induce phase separation to proceed within a practical time, for example within 5 minutes, a water vapor pressure of 16IIIiF at 30°C, for example, is required.
k11, that is, relative humidity of 50% or more is required. The cleaning bath is preferably a liquid capable of dissolving and removing three components other than polyvinylidene fluoride, and can be selected from non-solvents for polyvinylidene fluoride. Specific examples include water, alcohol, etc., but water is generally preferred.

本発明の製膜原液を公知の方法の凝固浴を用いて湿式製
膜をしてもよい。とくに特開昭58−91731号に開
示されているポリフッ化ビニリデンの溶媒を20%以上
含有する水溶液を凝固浴として用いることが好ましい。
Wet film formation may be performed using the membrane forming stock solution of the present invention using a coagulation bath of a known method. In particular, it is preferable to use an aqueous solution of polyvinylidene fluoride containing 20% or more of a solvent as disclosed in JP-A-58-91731 as the coagulation bath.

流延した製膜原液を凝固浴中にて凝固相分離を進行させ
、次いで洗浄浴にてポリマー以外の成分を除去する製造
方法も本発明の範囲である。原液の相分離の進行を遅く
した方が均一で大きな細孔および空孔が発現するが、実
際的時間、例えば平膜なら5分以内、中空糸なら1分以
内、を考慮して凝固液の溶媒含量は、製膜原液組成によ
るが、一般的には50〜80%が好ましい。
The scope of the present invention also includes a production method in which a cast membrane-forming stock solution is subjected to coagulation phase separation in a coagulation bath, and then components other than the polymer are removed in a washing bath. Although it is better to slow the progress of phase separation of the stock solution to develop uniform and large pores and voids, it is important to consider the practical time, e.g., within 5 minutes for a flat membrane, and within 1 minute for a hollow fiber. The solvent content depends on the composition of the film-forming stock solution, but is generally preferably 50 to 80%.

製膜原液に用いるポリフッ化ビニリデンの良溶媒として
は、N−メチル−2−ピロリドン、ジエチルアセトアミ
ド、ジエチルホルムアミド、ヘキサメチルホスホルアミ
ド、テトラメチル尿素、ヘクサメチルホスホルアミド、
ジメチルスルホキシドが好ましい。これらの溶媒群の中
から少なくとも1種、必要に応じては混合溶媒を用いる
。溶解力が大きく、水溶性であるN−メチル−2−ピロ
リドン、ジメチルアセトアミド、ジメチルホルムアミド
が特に好ましい良溶媒である。
Good solvents for polyvinylidene fluoride used in the membrane forming stock solution include N-methyl-2-pyrrolidone, diethylacetamide, diethylformamide, hexamethylphosphoramide, tetramethylurea, hexamethylphosphoramide,
Dimethyl sulfoxide is preferred. At least one solvent from these solvent groups is used, and if necessary, a mixed solvent is used. Particularly preferred good solvents are N-methyl-2-pyrrolidone, dimethylacetamide, and dimethylformamide, which have a high dissolving power and are water-soluble.

本発明に用いる貧溶媒は良溶媒および後述する水溶性ポ
リマーと混和して、製膜原液中のポリマー(ポリフッ化
ビニリデン)希薄相として相分離しうるちのでなければ
れならない。また貧溶媒である以上、例えば高温ではポ
リフッ化ビニリデンを溶解しうる親和力を持つが故に本
発明の相分離機構を円滑かつミクロに進行さ氾でいるも
のど推定できる。貧溶媒は水溶性であると水で洗浄でき
る。ケトン、エステル、環状エステル類が好ましいこと
がわかった。その中で、アセ1〜ン、メチルエチルムト
ン、シクロヘキサノン、トリエチルボスフェート、ジメ
チルサクシネート、γ−ブチロラクトン、ε−カプロラ
クトンが特に好ましい。
The poor solvent used in the present invention must be capable of being mixed with a good solvent and the water-soluble polymer described below, and capable of phase separation as a dilute phase of the polymer (polyvinylidene fluoride) in the membrane forming stock solution. Furthermore, since it is a poor solvent, for example, it has an affinity to dissolve polyvinylidene fluoride at high temperatures, so it can be assumed that the phase separation mechanism of the present invention proceeds smoothly and microscopically. If the poor solvent is water-soluble, it can be washed with water. Ketones, esters and cyclic esters have been found to be preferred. Among them, acetin, methylethylmutone, cyclohexanone, triethylbosphate, dimethylsuccinate, γ-butyrolactone, and ε-caprolactone are particularly preferred.

本発明に用いる水溶性ポリマーは前述した良溶媒および
貧溶媒と混和して、製膜原液中のポリマー(ポリフッ化
ビニリデン)希薄相として相分離−11− しうるちのでなければならない。また水溶性ポリマーか
らみれば自らの濃厚相を形成し、空孔へと発展さす起孔
剤である。水溶性であると水素洗浄により膜から実質的
に除去されやすく、また一方膜に残って微量の水溶性ポ
リマーは本発明の躾に親水性を賦与する。水溶性ポリマ
ーとしてはポリエーテル(ポリエチレングリコール、ポ
リプロピレングリコール等)、ポリビニルピロリドンが
好ましい。これらの水溶性ポリマーの少なくとも1種を
用いるが、必要に応じては性状の異なる同種または異種
のポリマーを混合して用いてもよい。
The water-soluble polymer used in the present invention must be able to be mixed with the above-mentioned good solvent and poor solvent and undergo phase separation as a dilute phase of the polymer (polyvinylidene fluoride) in the membrane forming stock solution. Also, from the perspective of water-soluble polymers, it is a pore-forming agent that forms its own dense phase and develops into pores. If it is water-soluble, it can be substantially removed from the membrane by hydrogen washing, while the trace amount of water-soluble polymer remaining in the membrane imparts hydrophilic properties to the membrane of the present invention. Preferred water-soluble polymers include polyether (polyethylene glycol, polypropylene glycol, etc.) and polyvinylpyrrolidone. At least one of these water-soluble polymers is used, but if necessary, polymers of the same type or different types having different properties may be used in combination.

ポリビニルピロリドンがその性状、粘度等からみて特に
好ましい。
Polyvinylpyrrolidone is particularly preferred in view of its properties, viscosity, etc.

製膜原液の組成は、目的とする多孔性膜の構造、形態お
よび製膜方法によって異なるが一般的に次の範囲が好ま
しい。ポリフッ化ビニリデンは5〜35wt%、水溶性
ポリマー2〜3owt%である。これらの濃度は製膜原
液の用改正と暗転性、および粘度から特定される。ポリ
フッ化ビニリデンが5wt%未満ではできた膜が弱(,
35wt%をこえると原12− 液溶解性が損なわれるが、粘度゛が高すぎて製膜しがた
い。貧溶媒および水溶性ポリマーの添加効果の発現は2
wt%以上であり、添加過剰となると原液が相分離した
り、ゲル化する。さらに必要に応じて、水、アルコール
等の非溶媒、シリカ、アルミナ等の微粉添加物等を添加
して本発明の製膜原液の粘度調整および膜孔径調整をな
してもよい。
The composition of the membrane-forming stock solution varies depending on the structure and form of the intended porous membrane and the membrane-forming method, but is generally preferably in the following range. The polyvinylidene fluoride content is 5 to 35 wt%, and the water-soluble polymer content is 2 to 3 wt%. These concentrations are determined from the use, dark conversion properties, and viscosity of the film-forming stock solution. If polyvinylidene fluoride is less than 5 wt%, the resulting film will be weak (,
If it exceeds 35 wt%, the solubility of the raw material 12 will be impaired, but the viscosity will be too high and it will be difficult to form a film. The effect of adding poor solvents and water-soluble polymers is 2.
wt% or more, and if it is added in excess, the stock solution will undergo phase separation or gelation. Furthermore, if necessary, non-solvents such as water and alcohol, fine powder additives such as silica and alumina, etc. may be added to adjust the viscosity and membrane pore diameter of the membrane forming stock solution of the present invention.

本発明の膜は平膜、筒状膜、中空糸膜等、何れの形状に
も成型しつる。また不織布等の支持体上に製膜してもよ
いし、また他の薄膜の支持体用多孔性膜として製膜して
もよい。
The membrane of the present invention can be molded into any shape, such as a flat membrane, a cylindrical membrane, or a hollow fiber membrane. Further, the film may be formed on a support such as a nonwoven fabric, or may be formed as another thin porous film for a support.

〔発明の効果〕〔Effect of the invention〕

本発明の多孔性膜の構造は表面および組織内に空隙率の
高い空孔群を有するものであり、精密濾過膜ないし限外
濾過膜として優れた特性を有する。
The structure of the porous membrane of the present invention has pore groups with high porosity on the surface and within the structure, and has excellent characteristics as a microfiltration membrane or an ultrafiltration membrane.

すなわち高分子量溶質の透過性および溶液流速が高い。That is, the permeability of high molecular weight solutes and the solution flow rate are high.

ポリフッ化ビニリデン■型結晶から成り熱的に安定であ
り、熱滅菌が可能で食品工業、製薬工業、および医療に
有用である。水溶性ポリマーの働きで、親水性膜となっ
ており水素の分離操作に適している。また流体分離膜以
外に隔膜として用いてもよい。例えば電気分解用隔膜や
、創傷面の保護膜(人王皮ふ)等に応用しうるちのであ
る。
It is composed of polyvinylidene fluoride type crystals, is thermally stable, can be heat sterilized, and is useful in the food industry, pharmaceutical industry, and medicine. The water-soluble polymer makes it a hydrophilic membrane, making it suitable for hydrogen separation operations. In addition to the fluid separation membrane, it may also be used as a diaphragm. For example, it can be applied to diaphragms for electrolysis and protective membranes for wound surfaces (human skin).

さらに細胞培養用隔膜(分離、担体も兼ねうる)として
も応用できる。
Furthermore, it can be applied as a cell culture diaphragm (separation and can also serve as a carrier).

以上実施例を用いて説明するが、本発明はこれらの実施
例で限定されるものではない。
Although the present invention is described above using Examples, the present invention is not limited to these Examples.

実施例1゜ ポリフッ化ヒニリデン(以下PVDFど略す=p en
wa l を社、K ynar (o登録商標) 30
1F)16重量%(以下%と略す)、N−メチル−2−
ピロリドン(以下NMPと略す)64%、シクロへキサ
ノン10%、およびポリビニルピロリドン〔以下PVP
と略す:G、A、F社、K−30(分子量40000 
)〕10%からなる製膜原液を調整し、150μの原状
を有するドクターナイフでガラス板上に流延した。
Example 1 Polyhynylidene fluoride (hereinafter abbreviated as PVDF)
Wal wo company, Kynar (o registered trademark) 30
1F) 16% by weight (hereinafter abbreviated as %), N-methyl-2-
Pyrrolidone (hereinafter abbreviated as NMP) 64%, cyclohexanone 10%, and polyvinylpyrrolidone [hereinafter PVP]
Abbreviated as: Company G, A, F, K-30 (molecular weight 40,000
)] A film-forming stock solution consisting of 10% was prepared and cast onto a glass plate using a doctor knife having an original size of 150μ.

(a )大気30℃、60%RH(相対湿度)下に5M
放置し、流延膜が十分白濁してから水洗浄浴に浸漬して
P V D F膜(実1a)を得た。(b)流延後直ち
にN M P 70%、メタノール15%および水15
%からなる凝固浴に浸漬し、流延膜が白濁してから2m
tn後に水洗浴に浸漬してPVDF膜(実1b)を得た
。生血清グロブリン0.05%水溶液を用い、膜性能と
して水の限外濾過速度(UFR(ρ/77f−hr−履
−))および溶質透過率(SC(%)〕を測定した。そ
の結束を膜特性とともに第1表に示す。またX線回折写
真を第3図(a )に示すが、■型結晶〔同図(b)〕
であり、実質的に無配向であった。
(a) 5M in atmosphere 30℃, 60%RH (relative humidity)
The cast membrane was left to stand until it became sufficiently cloudy, and then immersed in a water washing bath to obtain a P V D F membrane (Example 1a). (b) NMP 70%, methanol 15% and water 15% immediately after casting.
2 m after the cast film becomes cloudy.
After tn, the membrane was immersed in a water washing bath to obtain a PVDF membrane (Example 1b). Using a 0.05% aqueous solution of live serum globulin, the ultrafiltration rate of water (UFR (ρ/77f-hr)) and solute permeability (SC (%)) were measured as membrane performance. The film properties are shown in Table 1. Also, the X-ray diffraction photograph is shown in Figure 3 (a), which shows a ■-type crystal [Figure (b)]
and was substantially non-oriented.

(以下余白) 15− 第1表 17− 16− 比較例1 PVDF16%およびNMP84%からなる製膜原液を
実施例1と同様に流延し、(a)大気中製膜後水洗、お
よび(b)凝固浴製膜水洗によりPVDF膜〔比1aお
よび比IB、)を得た。結果を第表に示すが多孔性膜と
しての均一な構造が形成されず、膜性能も劣っていた。
(The following is a blank space) 15- Table 1 17- 16- Comparative Example 1 A film-forming stock solution consisting of 16% PVDF and 84% NMP was cast in the same manner as in Example 1, and (a) washing with water after film-forming in the air, and (b) ) PVDF membranes [Ratio 1a and Ratio IB] were obtained by coagulation bath membrane forming and washing with water. The results are shown in Table 1, and a uniform structure as a porous membrane was not formed, and the membrane performance was also poor.

(以下余白) 第2表 〔註1〕走査型顕微鏡観察倍率50000で孔が認めら
れない実施例2〜8 PVDFi6%、NMP64%、第3表に示す貧溶媒1
0%、およびPVP (K−30> 10%カラ’>ル
製膜原液を実施例1と同様に流延し、(a )大気中で
製膜水洗、および(b)凝固浴中製膜水洗によ実施例2
〜8 PVDF16%、NMP64%、第3表に示す貧溶媒1
0%、およびPVP (K−30) 10%からなる製
膜原液を実施例1と同様に流延し、(a >大気中で製
膜水洗、および(b)凝固浴中製膜水洗によりPVDF
膜〔実2(a)、(b)〜8(a)、(b)を得た。何
れも均一な多孔構造と優れた膜性能を示した。
(Margin below) Table 2 [Note 1] Examples 2 to 8 where no pores are observed under scanning microscope observation at a magnification of 50,000 PVDFi 6%, NMP 64%, poor solvent 1 shown in Table 3
0% and PVP (K-30>10% color) film forming stock solutions were cast in the same manner as in Example 1, (a) film forming in the air and washing with water, and (b) film forming in a coagulation bath with water washing. Example 2
~8 PVDF 16%, NMP 64%, poor solvent 1 shown in Table 3
A film forming stock solution consisting of 0% and 10% PVP (K-30) was cast in the same manner as in Example 1, and the PVDF
Films [Examples 2 (a), (b) to 8 (a), (b) were obtained. All exhibited uniform porous structures and excellent membrane performance.

実施例9〜15 PVDF16%および第4表に示す良溶媒64%、貧溶
媒10%および水溶性ポリマー10%からなる製膜原液
を実施例1と同様に流延し、良溶媒を65%含む凝固浴
にて製膜し、水洗してPVDF膜(実9〜5)を得た。
Examples 9 to 15 A membrane forming stock solution consisting of 16% PVDF, 64% good solvent, 10% poor solvent and 10% water-soluble polymer shown in Table 4 was cast in the same manner as in Example 1, and contained 65% good solvent. A film was formed in a coagulation bath and washed with water to obtain a PVDF film (Examples 9 to 5).

何れも均一な多孔構造と優れた膜性能を示した。All exhibited uniform porous structures and excellent membrane performance.

比較例2 実施例1と同様な製膜原液を昇温大気(45℃、30%
PH)下で流延し、51n間放置した。流延膜は透明の
ままで、水洗浴にいれてから半透明化した。結果を第5
表に示すが多孔性膜としての均一な膜構造がえられなか
った。また減湿大気(30℃、40%PH)下でも流延
膜は透明のままであり、本発明の多孔性膜を得るには5
0%PH以上の水蒸気が必要であることが示された。
Comparative Example 2 The same film-forming stock solution as in Example 1 was heated in the atmosphere at elevated temperature (45°C, 30%
PH) and left for 51n. The cast membrane remained transparent and became translucent after being placed in a water washing bath. 5th result
As shown in the table, a uniform membrane structure as a porous membrane could not be obtained. Furthermore, the cast membrane remains transparent even under a dehumidified atmosphere (30°C, 40% PH).
It was shown that water vapor with a pH of 0% or more is required.

(以下余白) 23− 第5表 実施例16.17 実施例1bの膜および実施例8bの膜にいて、高圧蒸気
減菌器にて121℃、301n湿熱処理を行なった。膜
は若干着色(茶色)し、平面内長さ方向で数%収縮した
が、他異常は認められなかった。
(The following is a blank space) 23- Table 5 Example 16.17 The membrane of Example 1b and the membrane of Example 8b were subjected to moist heat treatment at 121°C for 301n in a high-pressure steam sterilizer. The membrane was slightly colored (brown) and shrunk by several percent in the in-plane longitudinal direction, but no other abnormalities were observed.

生血清アルブミン(分子量6万)、同グロブリン(分子
団16万)およびプループキスラン(200万)のプル
ープキスラン(200万)K水溶液を用いた膜性能を第
6表に示すが、性能変化は認められなかった。
Table 6 shows the membrane performance of raw serum albumin (molecular weight 60,000), Serum Globin (molecular group 160,000), and Propxrane (2 million) using an aqueous solution of Propxrane (2 million) K, and no change in performance was observed. Ta.

(以下余白) 25−(Margin below) 25-

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多孔性膜の表面の模式図および走査型
電子顕微鏡写真である。(a )繰返しある孔群、(b
)平面網目状組織の模式図。(C)実施例1aの表面、
(d >実施例2aの表面、(e)実施例8aの裏面の
写真。 第2図は本発明の多孔性膜の連通網目状組織の模式図と
断面の走査型電子顕微鏡写真である。 (a )空孔が多面体状で互に連通している模式図。 (b)実施例1Aの断面、(C)実施例8(b)の断面
の写真。 第3図はポリフッ化ビニリデン■型結晶を示す(a)実
施例1b膜のX線回析写真、および(b)結晶構造図(
前記文献2)である。 特許出願人 帝 人 株 式 会 社 (C)1μ m9− (′a) b=9.64人 b)Oc OF 舘3図 手続補正層 昭和60年 1月7?日 特許庁長官殿 1、事件の表示 特願昭 58−204960 号 2、発明の名称 ポリフッ化ビニリデン多孔性膜およびその製造方法3、
補正をする者 事件との関係 特許出願人 大阪府大阪市東区南本町1丁目11番地(300)帝人
株式会社 代表者 岡 本 佐 四 部 4、代 理 人 東京都千代田区内幸町2丁目1番1号
5、補正の対象 明細書における「特許請求の範囲」、「発明の詳細な説
明」の欄及び図面 6、補正の内容 (1)明細書の特許請求の範囲を別紙の通り訂正する。 (2)明細書4頁3行の「ボーネート」を「ボネー1−
」と訂正する。 (3)同4頁6行の「エッチ」を「エッチ」と訂正する
。 (4)同4頁下から5行のl−69267Jをl 69
627Jと訂正する。 (5)同4頁下から4行の「99304Jをl 999
34Jと訂正する。 (6)同4頁下から1行の「カポ−」を「ザポー」と訂
正する。 (7)同5頁5行の「号いは」を「号には」と訂正する
。 (8)同5頁下から7行のし血漿化」を「結晶化」と訂
正する。 (9)同6頁2行の「構成」を「構造」と訂正する。 (10)同6頁下から4〜3行の「から製膜原液を調整
」を[の良溶媒、該ポリマーの貧溶媒および2− 水溶性ポリマーから製膜原液を調製」と訂正する。 (11)同7頁5行の「大分」を「大部分」と訂正する
。 ・(12)同7頁下から5行及び下から3行の「eta
i、 Jを各々「et al、Jと訂正する。 (13)同8頁下から6行の「倍は」を1場合は」と訂
正する。 (14)同8頁下から5行の「形成」を1形態」と訂正
する。 (15)同9頁6行のE子目的」を「子ふるい的」と訂
正する。 (16)同9頁12行の「式(1)か」を「式が」と訂
正する。 (17)同9頁14行のr 1,8(gcn?) Jを
11.8g/cn?) Jと訂正する。 (18)同9頁下から3行のr 1.958Jを[1,
925Jと訂正する。 (19)同10頁6行の1目発的」を「自発的」と訂正
する。 (20)同11頁下から8行の「含量は」を[含量を定
める必要がある。さらに溶媒含量は」と訂正する。 (21)同12頁下から6行の[ムトン、シクロヘキサ
ノン、]ヘリエテル]を[ケトン、シクロヘキザノン、
トリエチル」と訂正する。 (22)同13頁3行の「水素」を1水系」と訂正する
。 (23)同13頁下から3行の「用改正と暗転」を1溶
解性と安定」と訂正する。 (24)同14頁下から5行の「流速」を「流束」と訂
正する。 (25)同14頁下から1行の「水素」を1水系」と訂
正する。 (26)同15頁6行の「以上」を「以下」と訂正する
。 (27)同15頁10行の「(○登録」を「(登録」と
訂正する。 (28)同15頁下から7行のrG、A、FJを[G。 A、FJと訂正する。 (29)同15頁下から6行の1調整」を「調製」と訂
正する。 (30)同15頁下から4行及び16頁2行の「馴」を
各々[m1nJと訂正する。 (31)同16頁5行及び26真下から1行の「−hr
・(nttt HgJを1・hr−#Hg」と訂正する
。 (3,2)同18頁5行の「1B]を得た。結果第」を
「1b]を得た。結果を第2」と訂正する。 (33)同19頁の第2表の1aの行における[<1.
OJを「1.0」と訂正する。 (34)同20頁1〜5行を削除する。 (35)同25頁8行、7行及び8行の1PHJを各々
rRHJと訂正する。 (36)同25頁8行の「ブルーデキストラン(200
万)KJを削除する。 (37)図面の第3図(b)を別紙の通り訂正する。 (以 上) 特許請求の範囲 (1)ポリフッ化ビニリデンを主体としたポリマーの多
孔性膜であって、該ポリマーの凝集体が連通した細孔を
有する網目状組織を形成していること、該凝集体が■型
結晶構lをとり実質的に無配向であること、該多孔性膜
の表面における細孔が繰返しのある孔群または平面網目
状組織を形成しその平均孔径が0.05〜10μである
こと、および該連通網目状組織内の空孔が多面体状でか
つ互に連通しておりその空隙率が60〜95%であるこ
とを特徴とするポリフッ化ビニリデン多孔性膜。 (2)該連通網口状組織内の空孔が、0.05〜10μ
の平均孔径を有し実質的に均一である特許請求の範囲第
1項記載のポリフッ化ビニリデン多孔性膜。 (3) ポリフッ化ビニリデンを主体としたポリマー、
該ポリマーの良溶媒、該ポリマーの貧溶媒、および水溶
性ポリマーから製膜原液を14tjL、流延し、凝固し
、次いで洗浄浴にて該良溶媒、該貧溶媒および該水溶性
ポリマーを除去することを特徴とするポリフッ化ビニリ
デン多孔性膜の製造方法。 5− (4) 良溶媒としてN−メチル−2−ピロリドン。 ジメチルホルムアミド、ジメチルアセトアミド。 ジエチルアセトアミド、ジエチルホルムアミド。 ヘキサメチルホスホルアミド、テトラメチル尿素。 ヘキサメチルホスホルアミド、ジメチルスルホキシドか
ら成盃一群から選ばれた少くとも一種を用いる特許請求
範囲第3項記載の製造方法。 (5)貧溶媒としてアセトン、メチルエチルケトン。 シクロヘキサノン、ジアセトンアルコール、トリエチル
ホスフェ−1〜、ジメチルザクシネート、γ−ブタロラ
クトン、ε−カプロラクトンから成る群から選ばれた少
くとも一種を用いる特許請求の範囲第3項記載の製造方
法。 (6)水溶性ポリマーがポリエーテル、ポリビニルピロ
リドンから成る群から選ばれた少なくとも一種を用いる
特許請求の範囲第3項記載の製造方法。 [71流延した製膜原液を大気または水蒸気を含む気体
中にて凝固相分離を進行させ、次いで洗浄浴にてポリマ
ー以外の成分を除去する特許請求の範囲第3項記載の製
造方法。 1− (8)流延した原液を凝固浴中にて凝固相分離を進行さ
せ、次いで洗浄浴にてポリマー以外の成分を除去する特
許請求の範囲第3項記載の製造方法。
FIG. 1 is a schematic diagram and a scanning electron micrograph of the surface of the porous membrane of the present invention. (a) Repeated hole group, (b
) Schematic diagram of a planar network structure. (C) Surface of Example 1a,
(d>Photograph of the front surface of Example 2a, (e) back surface of Example 8a. FIG. 2 is a schematic diagram and a scanning electron micrograph of a cross section of the continuous network structure of the porous membrane of the present invention. a) Schematic diagram in which the pores are polyhedral and interconnected. (b) Cross section of Example 1A, (C) Photograph of the cross section of Example 8 (b). Figure 3 is a polyvinylidene fluoride type crystal. (a) X-ray diffraction photograph of the Example 1b film, and (b) crystal structure diagram (
This is the above-mentioned document 2). Patent applicant Teijin Co., Ltd. (C) 1μ m9- ('a) b = 9.64 people b) Oc OF Tate 3 diagram procedural correction layer January 7, 1985? Commissioner of the Japan Patent Office 1, Indication of Case Patent Application No. 58-204960 2, Name of Invention Porous Polyvinylidene Fluoride Membrane and Method for Producing the Same 3,
Relationship with the person making the amendment Patent applicant 1-11 Minamihonmachi, Higashi-ku, Osaka-shi, Osaka (300) Teijin Limited Representative Sa Okamoto, Department 4, Agent 2-1-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo No. 5, "Claims" and "Detailed Description of the Invention" columns in the specification subject to amendment, and Drawing 6, Contents of the amendment (1) The claims of the specification are corrected as shown in the attached sheet. (2) “Boneto” on page 4, line 3 of the specification is changed to “Bone1-
” he corrected. (3) Correct "etch" in line 6 of page 4 to "etch". (4) Change l-69267J in the 5th line from the bottom of page 4 to l 69
Corrected to 627J. (5) 4 lines from the bottom of page 4 “99304J 999
Correct it to 34J. (6) In the first line from the bottom of page 4, ``kapo'' is corrected to ``zapo''. (7) On page 5, line 5, ``Goiha'' is corrected to ``Gogo ni''. (8) In the 7th line from the bottom of page 5, "plasmaization" is corrected to "crystallization." (9) On page 6, line 2, "composition" is corrected to "structure." (10) In lines 4 to 3 from the bottom of page 6, "Prepare a film-forming stock solution from" is corrected to read "Prepare a film-forming stock solution from a good solvent, a poor solvent for the polymer, and 2- a water-soluble polymer." (11) On page 7, line 5, "Oita" is corrected to "most part."・(12) "eta" in 5 lines from the bottom and 3 lines from the bottom on page 7
Correct i and J to ``et al, J, respectively. (13) Correct ``double wa'' in the 6th line from the bottom of page 8 to ``1 case wa''. (14) In the 5th line from the bottom of page 8, ``formation'' is corrected to ``1 form''. (15) In the same page 9, line 6, E's purpose is to be corrected to read 'child's purpose'. (16) On page 9, line 12, "Formula (1)?" is corrected to "Formula ga." (17) r 1,8 (gcn?) J on page 9, line 14 is 11.8g/cn? ) Correct it as J. (18) r 1.958J in the 3rd line from the bottom of page 9 [1,
Corrected to 925J. (19) On page 10, line 6, ``1 purposeful'' is corrected to ``spontaneous''. (20) In the 8th line from the bottom of page 11, change "The content is" to [It is necessary to determine the content. Furthermore, the solvent content is corrected. (21) In the 6th line from the bottom of page 12, [mutone, cyclohexanone,] heleether] is replaced with [ketone, cyclohexanone,
Triethyl,” he corrected. (22) On page 13, line 3, ``hydrogen'' is corrected to ``1 water system''. (23) In the third line from the bottom of page 13, ``Usage revision and darkening'' is corrected to ``1 Solubility and stability''. (24) In the 5th line from the bottom of page 14, "flow velocity" is corrected to "flux." (25) On the first line from the bottom of page 14, ``hydrogen'' is corrected to ``1 water system''. (26) On page 15, line 6, "more than" is corrected to "less than". (27) On page 15, line 10, “(○registration”) is corrected to “(registration”). (28) On page 15, line 7 from the bottom, rG, A, and FJ are corrected to [G. A, FJ. (29) "1 adjustment" in the 6th line from the bottom of page 15 is corrected as "adjustment". (30) "Adjustment" in the 4th line from the bottom of page 15 and the 2nd line of page 16 is corrected to [m1nJ. 31) “-hr” on page 16, line 5 and line 1 from the bottom of 26
・(Correct nttt HgJ to 1・hr-#Hg". (3, 2) "1B] was obtained on page 18, line 5. Result No. 1 was obtained. Result No. 2." (33) In row 1a of Table 2 on page 19, [<1.
Correct OJ to "1.0". (34) Delete lines 1 to 5 on page 20. (35) Correct 1PHJ in lines 8, 7, and 8 of page 25 to rRHJ. (36) “Blue dextran (200
10,000) Delete KJ. (37) Figure 3(b) of the drawings will be corrected as shown in the attached sheet. (Above) Claims (1) A porous membrane of a polymer mainly composed of polyvinylidene fluoride, in which aggregates of the polymer form a network structure having interconnected pores; The aggregate has a ■-type crystal structure and is substantially unoriented, and the pores on the surface of the porous membrane form a repeating group of pores or a planar network structure, and the average pore diameter is 0.05 to 0.05. A porous polyvinylidene fluoride membrane having a diameter of 10μ, the pores in the continuous network structure being polyhedral and communicating with each other, and having a porosity of 60 to 95%. (2) The pores in the communicating network are 0.05 to 10μ
2. The porous polyvinylidene fluoride membrane of claim 1, which has a substantially uniform average pore diameter of . (3) Polymer mainly composed of polyvinylidene fluoride,
14 tjL of a membrane-forming stock solution is cast and solidified from a good solvent for the polymer, a poor solvent for the polymer, and a water-soluble polymer, and then the good solvent, the poor solvent, and the water-soluble polymer are removed in a washing bath. A method for producing a porous polyvinylidene fluoride membrane, characterized by: 5- (4) N-methyl-2-pyrrolidone as a good solvent. Dimethylformamide, dimethylacetamide. Diethylacetamide, diethylformamide. Hexamethylphosphoramide, tetramethylurea. The manufacturing method according to claim 3, in which at least one selected from the group consisting of hexamethylphosphoramide and dimethyl sulfoxide is used. (5) Acetone and methyl ethyl ketone as poor solvents. 4. The manufacturing method according to claim 3, wherein at least one selected from the group consisting of cyclohexanone, diacetone alcohol, triethyl phosphate-1-, dimethyl succinate, γ-butalolactone, and ε-caprolactone is used. (6) The manufacturing method according to claim 3, wherein the water-soluble polymer is at least one selected from the group consisting of polyether and polyvinylpyrrolidone. [71] The production method according to claim 3, wherein the cast film-forming stock solution is subjected to solidification phase separation in the atmosphere or a gas containing water vapor, and then components other than the polymer are removed in a cleaning bath. 1-(8) The production method according to claim 3, wherein the cast stock solution is subjected to coagulation phase separation in a coagulation bath, and then components other than the polymer are removed in a washing bath.

Claims (1)

【特許請求の範囲】 (1) ポリフッ化ビニリデンを主体としたポリマーの
多孔性膜であって、該ポリマーの凝集体が連通した細孔
を有する網目状組織を形成していること、該凝集体が■
型結晶構成をとり実質的に無配向であること、該多孔性
膜の表面における細孔が繰返しのある孔群または平面網
目状組織を形成しその平均孔径が0.05〜10μであ
ること、および該連通網目状組織内の空孔が多面体状で
かつ互に連通しておりその空隙率が60〜95%である
ことを特徴とするポリフッ化ビニリデン多孔性膜。 (2)該連通網目状組織内の空孔が、0.05〜10μ
の平均孔径を有し実質的に均一である特許請求の範囲第
1項記載のポリフッ化ビニリデン多孔性膜。 (3) ポリフッ化ビニリデンを主体としたポリマー、
該ポリマーの良溶媒、該ポリマーの貧溶媒、および水溶
性ポリマーから製膜原液を調整し、流延し、凝固し、次
いで洗浄浴にて該良溶媒、該貧溶媒および該水溶性ポリ
マーを除去することを特徴とするポリフッ化ビニリデン
多孔性膜の製造方法。 (4) 良溶媒としてN−メチル−2−ピロリドン。 ジメチルホルムアミド、ジメチルアセトアミド。 ジエチルアセトアミド、ジエチルホルムアミド。 ヘキサメチルホスホルアミド、テトラメチル尿素。 ヘキサメチルホスホルアミド、ジメチルスルホキシドか
ら成子群から選ばれた少くとも一種を用いる特許請求範
囲第3項記載の製造方法。 (5)貧溶媒としてアセトン、メチルエチルケトン。 シクロヘキサノン、ジアセトンアルコール、トリエチル
ホスフェート、ジメチルサクシネート、γ−ブチロラク
トン、ε−カプロラクトンから成る群から選ばれた少く
とも一種を用いる特許請求の範囲第3項記載の製造方法
。 (6)水溶性ポリマーがポリエーテル、ポリビニルピロ
リドンから成る群から選ばれた少なくとも−種を用いる
特許請求の範囲第3項記載の製造方法。 (刀 流延した製膜原液を大気または水蒸気を含む気体
中にて凝固相分離を進行させ、次いで洗浄浴にてポリマ
ー以外の成分を除去する特許請求の範囲第3項記載の製
造方法。 (8)流延した原液を凝固浴中にて凝固相分離を進行さ
せ、次いで洗浄浴にてポリマー以外の成分を除去する特
許請求の範囲第3項記載の製造方法。
[Scope of Claims] (1) A porous membrane of a polymer mainly composed of polyvinylidene fluoride, wherein aggregates of the polymer form a network structure having interconnected pores; ■
It has a type crystal structure and is substantially non-oriented, and the pores on the surface of the porous membrane form a repeating pore group or a planar network structure, and the average pore diameter is 0.05 to 10 μ; and a polyvinylidene fluoride porous membrane characterized in that the pores in the continuous network structure are polyhedral and communicate with each other, and the porosity thereof is 60 to 95%. (2) The pores in the continuous network structure are 0.05 to 10μ
2. The porous polyvinylidene fluoride membrane of claim 1, which has a substantially uniform average pore diameter of . (3) Polymer mainly composed of polyvinylidene fluoride,
A membrane-forming stock solution is prepared from a good solvent for the polymer, a poor solvent for the polymer, and a water-soluble polymer, cast, and solidified, and then the good solvent, the poor solvent, and the water-soluble polymer are removed in a cleaning bath. A method for producing a porous polyvinylidene fluoride membrane, characterized by: (4) N-methyl-2-pyrrolidone as a good solvent. Dimethylformamide, dimethylacetamide. Diethylacetamide, diethylformamide. Hexamethylphosphoramide, tetramethylurea. The manufacturing method according to claim 3, in which at least one member selected from the group consisting of hexamethylphosphoramide and dimethyl sulfoxide is used. (5) Acetone and methyl ethyl ketone as poor solvents. The manufacturing method according to claim 3, in which at least one selected from the group consisting of cyclohexanone, diacetone alcohol, triethyl phosphate, dimethyl succinate, γ-butyrolactone, and ε-caprolactone is used. (6) The manufacturing method according to claim 3, wherein the water-soluble polymer is at least one species selected from the group consisting of polyether and polyvinylpyrrolidone. (The manufacturing method according to claim 3, in which the cast film-forming stock solution is allowed to undergo solidification phase separation in the atmosphere or a gas containing water vapor, and then components other than the polymer are removed in a cleaning bath. ( 8) The manufacturing method according to claim 3, wherein the cast stock solution is subjected to coagulation phase separation in a coagulation bath, and then components other than the polymer are removed in a washing bath.
JP58204960A 1983-11-02 1983-11-02 Polyvinylidene fluoride porous membrane and its preparation Pending JPS6097001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58204960A JPS6097001A (en) 1983-11-02 1983-11-02 Polyvinylidene fluoride porous membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58204960A JPS6097001A (en) 1983-11-02 1983-11-02 Polyvinylidene fluoride porous membrane and its preparation

Publications (1)

Publication Number Publication Date
JPS6097001A true JPS6097001A (en) 1985-05-30

Family

ID=16499152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58204960A Pending JPS6097001A (en) 1983-11-02 1983-11-02 Polyvinylidene fluoride porous membrane and its preparation

Country Status (1)

Country Link
JP (1) JPS6097001A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227006A (en) * 1985-07-27 1987-02-05 Fuji Photo Film Co Ltd Microporous membrane
JPS6397666A (en) * 1986-10-15 1988-04-28 Toray Ind Inc Low-temperature soluble type stock solution and production thereof
US4869857A (en) * 1986-05-30 1989-09-26 Itsubishi Rayon Co., Ltd. Process for producing porous membranes
US5022990A (en) * 1989-01-12 1991-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene fluoride porous membrane and a method for producing the same
JPH03215535A (en) * 1989-01-12 1991-09-20 Asahi Chem Ind Co Ltd Porous polyvinylidene fluoride film and production thereof
WO1999047593A1 (en) * 1998-03-16 1999-09-23 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film
CN1050773C (en) * 1995-11-24 2000-03-29 天津纺织工学院膜天膜技术工程公司 Polyvinylidene fluoride hollow fibre porous membrane manufacturing method
WO2001028667A1 (en) * 1999-10-22 2001-04-26 Asahi Kasei Kabushiki Kaisha Heat-resistant microporous film
JPWO2003106545A1 (en) * 2002-06-14 2005-10-13 東レ株式会社 Porous membrane and method for producing the same
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
WO2009099396A3 (en) * 2008-02-05 2009-10-15 Institute Of Environmental Science And Engineering Pte Ltd Method for the production of an asymmetric hollow fiber membrane
KR100941175B1 (en) * 2007-08-01 2010-02-10 한국화학연구원 Polyvinylidene difluoride hollow fiber membrane having high intensity and high water permeability for water treatment
WO2011126001A1 (en) 2010-04-05 2011-10-13 三菱レイヨン株式会社 Process for production of porous membrane
JP2011236292A (en) * 2010-05-07 2011-11-24 Kri Inc Polyvinylidene fluoride porous body
JP2012139619A (en) * 2010-12-28 2012-07-26 Seiren Co Ltd Polyvinylidene fluoride porous flat membrane and method for manufacturing the same
JP2014516115A (en) * 2011-06-06 2014-07-07 アルケマ フランス Solvent for fluoropolymers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416382A (en) * 1977-05-25 1979-02-06 Millipore Corp Manufacture of micrporous membrane
JPS5566935A (en) * 1978-11-14 1980-05-20 Asahi Chem Ind Co Ltd Production of porous vinylidene fluoride resin membrane
JPS5569627A (en) * 1978-11-17 1980-05-26 Asahi Chem Ind Co Ltd Production of porous film of vinylidene fluoride resin
JPS5599934A (en) * 1979-01-26 1980-07-30 Asahi Chem Ind Co Ltd Preparation of porous vinylidene fluoride resin membrane
JPS5891732A (en) * 1981-11-27 1983-05-31 Teijin Ltd Porous polyvinylidene fluoride resin membrane and preparation thereof
JPS5898105A (en) * 1981-12-07 1983-06-10 Toray Ind Inc Fluoride type wet separation membrane and preparation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416382A (en) * 1977-05-25 1979-02-06 Millipore Corp Manufacture of micrporous membrane
JPS5566935A (en) * 1978-11-14 1980-05-20 Asahi Chem Ind Co Ltd Production of porous vinylidene fluoride resin membrane
JPS5569627A (en) * 1978-11-17 1980-05-26 Asahi Chem Ind Co Ltd Production of porous film of vinylidene fluoride resin
JPS5599934A (en) * 1979-01-26 1980-07-30 Asahi Chem Ind Co Ltd Preparation of porous vinylidene fluoride resin membrane
JPS5891732A (en) * 1981-11-27 1983-05-31 Teijin Ltd Porous polyvinylidene fluoride resin membrane and preparation thereof
JPS5898105A (en) * 1981-12-07 1983-06-10 Toray Ind Inc Fluoride type wet separation membrane and preparation thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227006A (en) * 1985-07-27 1987-02-05 Fuji Photo Film Co Ltd Microporous membrane
JPH0468966B2 (en) * 1985-07-27 1992-11-04 Fuji Photo Film Co Ltd
US4869857A (en) * 1986-05-30 1989-09-26 Itsubishi Rayon Co., Ltd. Process for producing porous membranes
JPS6397666A (en) * 1986-10-15 1988-04-28 Toray Ind Inc Low-temperature soluble type stock solution and production thereof
US5022990A (en) * 1989-01-12 1991-06-11 Asahi Kasei Kogyo Kabushiki Kaisha Polyvinylidene fluoride porous membrane and a method for producing the same
JPH03215535A (en) * 1989-01-12 1991-09-20 Asahi Chem Ind Co Ltd Porous polyvinylidene fluoride film and production thereof
CN1050773C (en) * 1995-11-24 2000-03-29 天津纺织工学院膜天膜技术工程公司 Polyvinylidene fluoride hollow fibre porous membrane manufacturing method
WO1999047593A1 (en) * 1998-03-16 1999-09-23 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film
WO2001028667A1 (en) * 1999-10-22 2001-04-26 Asahi Kasei Kabushiki Kaisha Heat-resistant microporous film
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
JPWO2003106545A1 (en) * 2002-06-14 2005-10-13 東レ株式会社 Porous membrane and method for producing the same
JP4626301B2 (en) * 2002-06-14 2011-02-09 東レ株式会社 Composite separation membrane and method for producing the same
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
KR100941175B1 (en) * 2007-08-01 2010-02-10 한국화학연구원 Polyvinylidene difluoride hollow fiber membrane having high intensity and high water permeability for water treatment
WO2009099396A3 (en) * 2008-02-05 2009-10-15 Institute Of Environmental Science And Engineering Pte Ltd Method for the production of an asymmetric hollow fiber membrane
US8512627B2 (en) 2008-02-05 2013-08-20 Nanyang Technological University Method for the production of an asymmetric hollow fiber membrane
WO2011126001A1 (en) 2010-04-05 2011-10-13 三菱レイヨン株式会社 Process for production of porous membrane
US9393530B2 (en) 2010-04-05 2016-07-19 Mitsubishi Rayon Co., Ltd. Process for production of porous membrane
JP2011236292A (en) * 2010-05-07 2011-11-24 Kri Inc Polyvinylidene fluoride porous body
JP2012139619A (en) * 2010-12-28 2012-07-26 Seiren Co Ltd Polyvinylidene fluoride porous flat membrane and method for manufacturing the same
JP2014516115A (en) * 2011-06-06 2014-07-07 アルケマ フランス Solvent for fluoropolymers
JP2016104848A (en) * 2011-06-06 2016-06-09 アルケマ フランス Fluoropolymer solvent

Similar Documents

Publication Publication Date Title
JPS6097001A (en) Polyvinylidene fluoride porous membrane and its preparation
US5232601A (en) High flux hollow fiber membrane
JPH02302449A (en) Preparation of microporous film
EA000300B1 (en) Synthetic separation diaphragm
US5240615A (en) Composite membrane composed of microporous polyvinylidene difluoride membrane laminated to porous support and process for its preparation
JP4265701B2 (en) Polysulfone porous membrane
JPS60216804A (en) Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof
JPWO2017155034A1 (en) Porous membrane, porous membrane module, method for producing porous membrane, method for producing clarified liquid, and method for producing beer
JPS5891732A (en) Porous polyvinylidene fluoride resin membrane and preparation thereof
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPS6238205A (en) Semi-permeable membrane for separation
JPH078549B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPS60142860A (en) Virus removing method
JPS61200806A (en) Polyether sulfone porous hollow yarn membrane and its production
JPH0569571B2 (en)
JPH03258330A (en) Porous hollow fiber membrane
US6979700B2 (en) Non-degradable porous materials with high surface areas
JPH078548B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPH0468010B2 (en)
JPH0470938B2 (en)
Ran et al. Polyethersulfone fiber
JPS61200805A (en) Polyether sulfone microporous hollow yarn membrane and its production
JPH11179174A (en) Hollow fiber membrane for separation and manufacture thereof