JP2012139619A - Polyvinylidene fluoride porous flat membrane and method for manufacturing the same - Google Patents

Polyvinylidene fluoride porous flat membrane and method for manufacturing the same Download PDF

Info

Publication number
JP2012139619A
JP2012139619A JP2010292621A JP2010292621A JP2012139619A JP 2012139619 A JP2012139619 A JP 2012139619A JP 2010292621 A JP2010292621 A JP 2010292621A JP 2010292621 A JP2010292621 A JP 2010292621A JP 2012139619 A JP2012139619 A JP 2012139619A
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
water
gas phase
solution
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010292621A
Other languages
Japanese (ja)
Other versions
JP5722621B2 (en
Inventor
Hiroe Sato
宏衣 佐藤
Katsumi Sakamoto
克美 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2010292621A priority Critical patent/JP5722621B2/en
Publication of JP2012139619A publication Critical patent/JP2012139619A/en
Application granted granted Critical
Publication of JP5722621B2 publication Critical patent/JP5722621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyvinylidene fluoride flat membrane allowed to be manufactured by a simple process and having homogeneous and high water permeability.SOLUTION: A porous membrane composed of polyvinylidene fluoride resin is a polyvinylidene fluoride porous membrane having pores of which the average pore diameter is 0.01 to 10 μm in surface and cross-sectional directions of the porous membrane, having a pure water permeability coefficient of 1×10m/msPa and more, and including no skin layer. The polyvinylidene fluoride porous membrane is manufactured by applying a solution containing polyvinylidene fluoride resin of 5 to 35 wt.% to one side of a base material, bringing the resin solution into contact with a gas phase into which waterdrops whose average particle size is 1 to 30 μm are uniformly dispersed to semi-solidify the polyvinylidene fluoride resin, and the base material to which the resin solution is applied is dipped into water to completely solidify the polyvinylidene fluoride resin.

Description

本発明は、種々の精密濾過用途に好ましく用いられる親水性または疎水性のポリフッ化ビニリデン系樹脂を含有する多孔質平膜、及びその製造方法に関する。 The present invention relates to a porous flat membrane containing a hydrophilic or hydrophobic polyvinylidene fluoride resin preferably used for various microfiltration applications, and a method for producing the same.

近年、高分子化合物を材料とした多孔質膜に関する技術はめざましい進歩を遂げており、特に孔が連通孔の形態を有している多孔質膜は各種フィルター要素としてその利用が拡大している、中でも、ポリフッ化ビニリデン膜は、水の殺菌において広範に使用されるオゾンを含む酸化環境や、浄水処理で殺菌や膜のバイオファウリング防止の目的で用いられる次亜塩素酸ナトリウムなどの殺菌剤にも耐性を有し、更に、ほとんどの無機酸および有機酸、脂肪族および芳香族炭化水素、アルコールならびにハロゲン化溶媒による作用に対しても耐性を有する。   In recent years, technology related to porous membranes made of polymer compounds has made remarkable progress, and in particular, porous membranes having pores in the form of continuous pores have been increasingly used as various filter elements. Among these, polyvinylidene fluoride membranes are used as an oxidizing environment including ozone, which is widely used in water sterilization, and as a disinfectant such as sodium hypochlorite, which is used for the purpose of sterilization and water biofouling prevention in water purification treatment. It is also resistant to the effects of most inorganic and organic acids, aliphatic and aromatic hydrocarbons, alcohols and halogenated solvents.

ポリフッ化ビニリデン系樹脂を用いた平膜の製造方法にはいくつかの技術が開示されているが、これらのほとんどが、良溶媒に溶解したポリフッ化ビニリデン系樹脂溶液を、ガラス板上にキャストして成形した後、ポリフッ化ビニリデン系樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により多孔構造を形成させる湿式溶液法である。   Several techniques have been disclosed for producing a flat membrane using a polyvinylidene fluoride resin, but most of them are obtained by casting a polyvinylidene fluoride resin solution dissolved in a good solvent on a glass plate. And then forming a porous structure by non-solvent induced phase separation by contacting with a liquid containing a non-solvent of polyvinylidene fluoride resin.

係る従来の湿式溶液法では、水を主成分とする凝固液を使用するが、この場合には凝固液と接触した膜表面のみが急速に凝固する結果、表面にスキン層を生じ、膜の断面方向の凝固が遅れて、スキン層とサポート層からなるいわゆる非対称構造となる。スキン層は物質透過の際の抵抗となり、またサポート層には凝固時に生ずるマクロボイドが存在し機械的強度を下げる結果となっていた。   In such a conventional wet solution method, a coagulating liquid containing water as a main component is used. In this case, only the film surface in contact with the coagulating liquid rapidly solidifies, resulting in a skin layer on the surface, and a cross section of the film. Solidification in the direction is delayed, resulting in a so-called asymmetric structure consisting of a skin layer and a support layer. The skin layer becomes a resistance during permeation of the substance, and the support layer has macrovoids generated during solidification, resulting in a decrease in mechanical strength.

これらの問題を解決するものとして、例えば、特許文献1には、ポリフッ化ビニリデン樹脂と有機液状体及び無機微粉体を混合した後、溶融成形し、次いでかかる成形物より有機液状体および無機微粉体を抽出することを特徴とする多孔膜の製造方法において、機械的強度に優れた均質な多孔構造を有する多孔膜が得られることが開示されている。しかし、この方法は、成形された膜から無機微粉体を抽出させるために、長時間アルカリ溶液に浸漬する必要があるため、工程負荷が問題となる虞がある。   In order to solve these problems, for example, in Patent Document 1, a polyvinylidene fluoride resin, an organic liquid and an inorganic fine powder are mixed and then melt-molded, and then the organic liquid and the inorganic fine powder are formed from the molded product. It is disclosed that a porous film having a homogeneous porous structure excellent in mechanical strength can be obtained in the method for producing a porous film characterized by extracting the above. However, in this method, in order to extract the inorganic fine powder from the molded film, it is necessary to immerse in an alkaline solution for a long time, so that the process load may become a problem.

また、特許文献2には、ポリフッ化ビニリデン樹脂、該樹脂の良溶媒、該樹脂の貧溶媒、および親水性樹脂から成る製膜原液を流延し、大気ないし水蒸気を含む気体中にて凝固相分離を進行させ、次いで洗浄浴にてポリフッ化ビニリデン樹脂以外の成分を除去する製造方法が開示されている。該製造方法により得られた膜は、表面および組織内に空隙率の高い空孔群を有するものであり、高い透水性を有する。しかし、この方法では、相分離を誘起進行させるために、5分程度の大気ないし水蒸気との接触時間要するため、工程負荷になる虞がある。   Patent Document 2 discloses that a film-forming stock solution comprising a polyvinylidene fluoride resin, a good solvent for the resin, a poor solvent for the resin, and a hydrophilic resin is cast, and a solidified phase is formed in a gas containing air or water vapor. A manufacturing method is disclosed in which separation is advanced and then components other than the polyvinylidene fluoride resin are removed in a washing bath. The film obtained by the production method has a group of pores with a high porosity on the surface and in the structure, and has high water permeability. However, in this method, in order to induce and advance the phase separation, a contact time with the atmosphere or water vapor of about 5 minutes is required, which may cause a process load.

特開平3−215535号公報JP-A-3-215535 特開昭60―97001号公報JP 60-97001 A

本発明は上記のような問題点に鑑み、簡素なプロセスで、均質で高透水性能を有するポリフッ化ビニリデン系平膜を提供することを目的とする。   In view of the problems as described above, an object of the present invention is to provide a polyvinylidene fluoride flat membrane that is homogeneous and has high water permeability through a simple process.

上記目的を達成するための本発明は
(1)ポリフッ化ビニリデン系樹脂からなる多孔質膜において、該多孔質膜の表面及び断面方向に平均孔径が0.01〜10μmの細孔を有し、純水透過係数が1×10−9/m・s・Pa以上である、スキン層を有しないポリフッ化ビニリデン系多孔質平膜である。
また、(2)に、ポリフッ化ビニリデン系樹脂を5〜35重量%含む溶液を、基材の片面に塗布した後、平均粒子径が1〜30μmの水滴が均一に分散している気相と接触させてポリフッ化ビニリデン系樹脂を半凝固させ、次いで、該樹脂溶液を塗布した基材を水中に浸漬して完全凝固させることを特徴とする、ポリフッ化ビニリデン系多孔質平膜の製造方法である。
また、(3)に、気相との接触が、気相中に樹脂塗布面を暴露させることによって行われることを特徴とする、(2)記載のポリフッ化ビニリデン系多孔質平膜の製造方法である。
また、(4)に、気相との接触が、気相を樹脂塗布面に吹き付けることによって行われることを特徴とする(2)記載のポリフッ化ビニリデン系多孔質平膜の製造方法である。
The present invention for achieving the above object is (1) a porous membrane made of a polyvinylidene fluoride-based resin, having pores having an average pore diameter of 0.01 to 10 μm on the surface and in the cross-sectional direction of the porous membrane, This is a polyvinylidene fluoride porous flat membrane having a pure water permeability coefficient of 1 × 10 −9 m 3 / m 2 · s · Pa or more and having no skin layer.
Moreover, after apply | coating the solution containing 5-35 weight% of polyvinylidene fluoride resin to (2) on the single side | surface of a base material, the gas phase in which the water droplet whose average particle diameter is 1-30 micrometers is disperse | distributed uniformly and A method for producing a polyvinylidene fluoride-based porous flat film, characterized in that the polyvinylidene fluoride-based resin is semi-solidified by contact, and then the substrate coated with the resin solution is immersed in water and completely solidified. is there.
(3) The method for producing a polyvinylidene fluoride-based porous flat membrane according to (2), wherein the contact with the gas phase is performed by exposing the resin-coated surface in the gas phase. It is.
Further, (4) is the method for producing a polyvinylidene fluoride porous flat membrane according to (2), wherein the contact with the gas phase is performed by spraying the gas phase on the resin coating surface.

本発明の製造方法により、簡素なプロセスで均質で高透水性能を有するポリフッ化ビニリデン系平膜およびその製造方法を提供することができる。   According to the production method of the present invention, it is possible to provide a polyvinylidene fluoride flat membrane that is homogeneous and has high water permeability through a simple process and a method for producing the same.

以下、本発明の実施の形態について説明する。
本発明において、ポリフッ化ビニリデン系樹脂溶液は、ポリフッ化ビニリデン系樹脂をポリフッ化ビニリデン系樹脂の良溶媒に溶解させた溶液を用いる。
ポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数種類のフッ化ビニリデン共重合体を含有していても構わない。フッ化ビニリデン共重合体としては、フッ化ビニル、四フッ化エチレン、六フッ化プロピレンおよび三フッ化塩化エチレンからなる群から選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。このなかで製膜性、化学的耐久性、コストの点からフッ化ビニリデンホモポリマーがより好ましく用いられる。
Embodiments of the present invention will be described below.
In the present invention, as the polyvinylidene fluoride resin solution, a solution in which a polyvinylidene fluoride resin is dissolved in a good solvent for the polyvinylidene fluoride resin is used.
The polyvinylidene fluoride resin is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. Examples of the vinylidene fluoride copolymer include a copolymer of vinylidene fluoride and at least one selected from the group consisting of vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and ethylene trifluoride chloride. . Among these, vinylidene fluoride homopolymer is more preferably used from the viewpoint of film forming property, chemical durability, and cost.

ポリフッ化ビニリデン系樹脂の良溶媒としては、N−メチル−2−ピロリドン、ジエチルアセトアミド、ジエチルホルムアミド、ヘキサメチルホスホルアミド、テトラメチル尿酸、ジメチルスルホキシド等が挙げられ、これらの溶媒群の中から選ばれる少なくとも1種を用いるが、溶解力が大きく、水溶性である、N−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミドが好ましく用いられる。   Examples of the good solvent for the polyvinylidene fluoride resin include N-methyl-2-pyrrolidone, diethylacetamide, diethylformamide, hexamethylphosphoramide, tetramethyluric acid, dimethylsulfoxide, and the like. However, N-methyl-2-pyrrolidone, dimethylacetamide, and dimethylformamide, which have a large dissolving power and are water-soluble, are preferably used.

また、ポリフッ化ビニリデン系樹脂溶液には、ポリフッ化ビニリデン系樹脂の非溶媒を添加することが好ましい。非溶媒は、ポリフッ化ビニリデン系樹脂を溶解しないものであり、ポリフッ化ビニリデン系樹脂の凝固の速度を制御して孔の大きさを制御するように作用する。非溶媒としては、水や、メタノール、エタノールなどのアルコール類及びこれらの混合物を用いることができる。なかでも廃水処理や価格の点から水、メタノールが好ましい。   Moreover, it is preferable to add a non-solvent of polyvinylidene fluoride resin to the polyvinylidene fluoride resin solution. The non-solvent does not dissolve the polyvinylidene fluoride resin and acts to control the size of the pores by controlling the solidification rate of the polyvinylidene fluoride resin. As the non-solvent, water, alcohols such as methanol and ethanol, and mixtures thereof can be used. Of these, water and methanol are preferred from the viewpoint of wastewater treatment and price.

更に、ポリフッ化ビニリデン系樹脂溶液には、無機微粒子を添加することが好ましい。無機微粒子は、ポリフッ化ビニリデン系樹脂の良溶媒との親和性が高いものが好ましい。無機微粒子としては、表面が疎水化処理された炭酸カルシウム微粒子または二酸化ケイ素微粒子が好ましい。無機微粒子は、孔径5μm以上のマクロボイドの形成を抑制し、均一な孔径の孔を形成するように作用する。   Furthermore, it is preferable to add inorganic fine particles to the polyvinylidene fluoride resin solution. The inorganic fine particles preferably have a high affinity with a good solvent for the polyvinylidene fluoride resin. As the inorganic fine particles, calcium carbonate fine particles or silicon dioxide fine particles whose surface has been subjected to a hydrophobic treatment are preferable. The inorganic fine particles act to suppress formation of macrovoids having a pore diameter of 5 μm or more and to form pores having a uniform pore diameter.

無機微粒子の粒径は、平均粒径が0.01〜2μmであることが好ましく、0.15〜2μmであることがより好ましい。孔の形成には、粒径が小さいほど好ましいが、平均粒径が0.01μm未満のものは価格が高く、コストの高騰を招く虞がある。平均粒径が2μmを超えると、孔径の大きな孔が形成され、十分な濾過性能が得られない虞がある。   The average particle size of the inorganic fine particles is preferably 0.01 to 2 μm, and more preferably 0.15 to 2 μm. For the formation of the pores, the smaller the particle diameter, the better. However, those having an average particle diameter of less than 0.01 μm are expensive and may increase the cost. When the average particle diameter exceeds 2 μm, a hole having a large hole diameter is formed, and there is a possibility that sufficient filtration performance cannot be obtained.

また、ポリフッ化ビニリデン系樹脂溶液には、水溶性ポリマーを添加してもよい。水溶性ポリマーは、ポリフッ化ビニリデン系多孔質膜に親水性を付与するように作用する。本発明に用いる水溶性ポリマーは前述した良溶媒および非溶媒と混和する必要がある。該ポリマーが水溶性であることにより、水洗浄により余分な水溶性ポリマーは膜から除去されやすく、また一方、膜に残った微量の水溶性ポリマーは本発明の膜に親水性を付与する。水溶性ポリマーとしては、ポリエーテル(ポリエチレングリコール、ポリプロピレングリコール等)、ポリビニルピロリドンが好ましく、これらの水溶性ポリマーの少なくとも1種を用いるが、必要に応じては性状の異なる同種または異種のポリマーを混合して用いてもよい。なかでも、粘度などの点でポリビニルピロリドンが特に好ましく用いられる。   A water-soluble polymer may be added to the polyvinylidene fluoride resin solution. The water-soluble polymer acts to impart hydrophilicity to the polyvinylidene fluoride porous membrane. The water-soluble polymer used in the present invention must be miscible with the aforementioned good solvent and non-solvent. Since the polymer is water-soluble, excess water-soluble polymer is easily removed from the membrane by washing with water, while a trace amount of water-soluble polymer remaining in the membrane imparts hydrophilicity to the membrane of the present invention. As the water-soluble polymer, polyether (polyethylene glycol, polypropylene glycol, etc.) and polyvinyl pyrrolidone are preferable, and at least one of these water-soluble polymers is used. If necessary, the same or different polymers having different properties may be mixed. May be used. Of these, polyvinylpyrrolidone is particularly preferably used from the viewpoint of viscosity.

本発明のポリフッ化ビニリデン系樹脂溶液は、良溶媒に5〜35重量%の濃度範囲でポリフッ化ビニリデン系樹脂を溶解した樹脂溶液であり、他に非溶媒、無機微粒子を含むことが好ましい。ポリフッ化ビニリデンが5重量%未満では膜強度が弱く製膜できない虞があり、35重量%をこえると樹脂溶解性が損なわれるか、粘度が高すぎて製膜が困難である。非溶媒、無機微粒子はそれぞれ2〜10重量%の濃度範囲で添加することが好ましく、2〜5重量%であることがより好ましい。非溶媒、無機微粒子が2重量%未満では添加効果が発現されず、10重量%を超えると該樹脂溶液が相分離したり、ゲル化したりする。   The polyvinylidene fluoride resin solution of the present invention is a resin solution in which a polyvinylidene fluoride resin is dissolved in a good solvent in a concentration range of 5 to 35% by weight, and preferably contains a non-solvent and inorganic fine particles. If the polyvinylidene fluoride content is less than 5% by weight, the film strength may be weak and the film formation may not be possible. If it exceeds 35% by weight, the resin solubility is impaired, or the viscosity is too high to make the film formation difficult. The non-solvent and the inorganic fine particles are each preferably added in a concentration range of 2 to 10% by weight, and more preferably 2 to 5% by weight. If the amount of the non-solvent and inorganic fine particles is less than 2% by weight, the effect of addition is not exhibited, and if the amount exceeds 10% by weight, the resin solution undergoes phase separation or gelation.

また、添加する水溶性ポリマーの濃度範囲は、2〜30重量%の濃度範囲で添加することが好ましい。水溶性ポリマーが2重量%未満では添加効果が発現されず、30重量%を超えると該樹脂溶液が相分離したり、ゲル化したりする。また、化学的耐久性にも影響がある。   The concentration range of the water-soluble polymer to be added is preferably 2 to 30% by weight. When the water-soluble polymer is less than 2% by weight, the effect of addition is not expressed, and when it exceeds 30% by weight, the resin solution is phase-separated or gelled. It also affects chemical durability.

本発明のポリフッ化ビニリデン多孔質平膜の製造方法においては、ポリフッ化ビニリデン系樹脂溶液を調整した後、該樹脂を基材の片面に塗布し、気相中の水滴と接触させてポリフッ化ビニリデン系樹脂を半凝固させ、次いで、該樹脂溶液を塗布した基材を水中に浸漬して完全凝固させ成形するものである。   In the method for producing a polyvinylidene fluoride porous flat membrane of the present invention, after preparing a polyvinylidene fluoride-based resin solution, the resin is applied to one side of a substrate and brought into contact with water droplets in a gas phase to form polyvinylidene fluoride. The base resin is semi-solidified, and then the base material coated with the resin solution is immersed in water to be completely solidified and molded.

基材としては、ポリエステル繊維、ナイロン繊維、ポリウレタン繊維、アクリル繊維、レーヨン繊維、綿、絹など有機繊維からなる織物、編物、不織布等の多孔質基材や、ガラス繊維、金属繊維など無機繊維からなる織物、編物等の多孔質基材を用いることができる。この中でも伸縮性、コストの点から、特に有機繊維からなる多孔質基材が好ましい。   Base materials include polyester fiber, nylon fiber, polyurethane fiber, acrylic fiber, rayon fiber, woven fabric made of organic fibers such as cotton and silk, knitted fabric, non-woven fabric and other porous substrates, and glass fibers and metal fibers. A porous substrate such as a woven fabric or a knitted fabric can be used. Among these, from the viewpoint of stretchability and cost, a porous substrate made of organic fibers is particularly preferable.

ポリフッ化ビニリデン系樹脂溶液を基材に塗布する方法としては、例えば、フローティングナイフコータ、ロールオンナイフコータ、コンマコータ、リバースコータ、リップコータ、ロールコータ、ダイコータなどを用いた方法を挙げることができる。なかでも、ポリフッ化ビニリデン系樹脂溶液を均一な厚みで安定して塗布可能であるという理由から、ロールオンナイフコータ、コンマコータを用いることが好ましい。   Examples of the method of applying the polyvinylidene fluoride resin solution to the substrate include a method using a floating knife coater, a roll-on knife coater, a comma coater, a reverse coater, a lip coater, a roll coater, a die coater, and the like. Among these, a roll-on knife coater and a comma coater are preferably used because the polyvinylidene fluoride resin solution can be stably applied with a uniform thickness.

ポリフッ化ビニリデン系多孔質膜の厚みは20〜200μmであることが好ましい。該微多孔質膜の厚みが20μm未満であると十分な強度が得られない虞があり、200μmを超えると多孔質膜が硬くなり取り扱い性を損なう虞がある。   The thickness of the polyvinylidene fluoride porous membrane is preferably 20 to 200 μm. If the thickness of the microporous film is less than 20 μm, sufficient strength may not be obtained, and if it exceeds 200 μm, the porous film may become hard and handleability may be impaired.

次いで、基材上に塗布されたポリフッ化ビニリデン系樹脂溶液を、平均粒子径が1〜30μmの水滴が均一に分散している気相と接触させる。
ここで、水滴が均一に分散している気相とは、液状の水(H2O)が平均粒子径が1〜30μmの微小な滴となって空気中に均一に分散している雰囲気をいい、水が気体、すなわち水蒸気となって空気中に分散している雰囲気とは異なるものである。このような気相は、“mist”(ミスト、霧、もや)と表現されることも多い。水滴が均一に分散している気相は飽和蒸気状態であり、さらに気化しきれない水滴が気相中に分散する状態となる。その結果、該気相は、飽和蒸気状態を超える多量の水分を保持することができる。
Next, the polyvinylidene fluoride resin solution coated on the substrate is brought into contact with a gas phase in which water droplets having an average particle diameter of 1 to 30 μm are uniformly dispersed.
Here, the gas phase in which water droplets are uniformly dispersed refers to an atmosphere in which liquid water (H 2 O) is uniformly dispersed in the air as fine droplets having an average particle diameter of 1 to 30 μm. It is different from the atmosphere where water is a gas, that is, water vapor and dispersed in the air. Such a gas phase is often expressed as “mist” (mist, fog, haze). The gas phase in which water droplets are uniformly dispersed is in a saturated vapor state, and further water droplets that cannot be vaporized are dispersed in the gas phase. As a result, the gas phase can hold a large amount of moisture exceeding the saturated vapor state.

気相中に分散している水滴の平均粒子径は、1〜30μmであることが求められ、さらには1〜20μmであることが好ましい。平均粒子径が1μm未満である水滴を、後述の好ましい温度範囲で作り出すことは困難である。平均粒子径が30μmを超えると、半凝固層の表面に水滴痕が残って、得られるポリフッ化ビニリデン系多孔質膜の品位が悪くなる虞がある。   The average particle size of water droplets dispersed in the gas phase is required to be 1 to 30 μm, and more preferably 1 to 20 μm. It is difficult to produce water droplets having an average particle diameter of less than 1 μm in a preferable temperature range described later. When the average particle diameter exceeds 30 μm, water droplet marks remain on the surface of the semi-solidified layer, and the quality of the resulting polyvinylidene fluoride porous film may be deteriorated.

なお、気相中に分散している水滴の平均粒子径は、レーザー回折原理を応用した粒度分布測定装置を用いて測定することができる。レーザー回折原理を応用した粒度分布の測定法は、粒子に光を当てたときに粒子径に応じて変化する散乱光の強度パターンを応用したものである。   In addition, the average particle diameter of the water droplets dispersed in the gas phase can be measured using a particle size distribution measuring apparatus applying the laser diffraction principle. The particle size distribution measurement method applying the laser diffraction principle applies an intensity pattern of scattered light that changes according to the particle diameter when light is applied to the particle.

前記気相は、水を霧化粒子化させて噴霧する装置を用いて調製することができる。このような装置としては、例えば、超音波式、二流体式噴霧式、遠心式などの水噴霧式加湿器を挙げることができる。なかでも、超音波振動により粒子径が小さな水滴を発生させることが可能な超音波式加湿器が好ましい。   The gas phase can be prepared using an apparatus that atomizes water and atomizes the water. As such an apparatus, for example, a water spray type humidifier such as an ultrasonic type, a two-fluid spray type, a centrifugal type, and the like can be cited. Among these, an ultrasonic humidifier capable of generating water droplets having a small particle diameter by ultrasonic vibration is preferable.

気相中に分散している水滴を所望の平均粒子径に調整するには、水噴霧式加湿器の種類と噴霧条件を調整すればよい。例えば、平均粒子径1〜10μmの水滴を発生させる場合は、超音波式噴霧器を用いることにより小粒子径の水滴を安定的に供給することができる。また、平均粒子径10〜30μmの水滴を発生させる場合は、二流体式噴霧式を用い、供給水量および圧搾空気の圧力を変化させて粒子径を調整することができる。遠心式噴霧器の場合は、水を遠心力で飛散させる回転板の回転数を調整することにより、平均粒子径10〜30μmの水滴を発生させることができる。   In order to adjust the water droplets dispersed in the gas phase to a desired average particle size, the type of water spray humidifier and the spray conditions may be adjusted. For example, when water droplets having an average particle diameter of 1 to 10 μm are generated, water droplets having a small particle diameter can be stably supplied by using an ultrasonic sprayer. When water droplets having an average particle size of 10 to 30 μm are generated, the particle size can be adjusted by using a two-fluid spray method and changing the amount of supplied water and the pressure of compressed air. In the case of a centrifugal sprayer, water droplets having an average particle diameter of 10 to 30 μm can be generated by adjusting the number of rotations of a rotating plate that scatters water by centrifugal force.

前記気相の温度は、5〜50℃であることが好ましく、5〜30℃であることがより好ましい。温度が5℃未満であると、飽和蒸気圧が低く、ポリフッ化ビニリデン系樹脂を半凝固させるのに十分な量の水分を保持できない虞がある。また、水の凝結が発生し、大きな水滴がポリフッ化ビニリデン系樹脂溶液の表面に付着することにより、水滴痕が残って、得られるポリフッ化ビニリデン系多孔質膜の品位が悪くなる虞がある。温度が50℃を超えると、ポリフッ化ビニリデン系樹脂溶液に含まれる良溶媒の気化が大きく、ポリフッ化ビニリデン系樹脂溶液の表面での凝固が不均一となり、透湿性や防水性などの性能がバラつく虞がある。   The gas phase temperature is preferably 5 to 50 ° C, more preferably 5 to 30 ° C. If the temperature is less than 5 ° C., the saturated vapor pressure is low, and there is a possibility that a sufficient amount of moisture cannot be retained for semi-solidifying the polyvinylidene fluoride resin. Further, water condensation occurs, and large water droplets adhere to the surface of the polyvinylidene fluoride resin solution, so that water droplet traces remain, and the quality of the obtained polyvinylidene fluoride porous membrane may be deteriorated. When the temperature exceeds 50 ° C., the good solvent contained in the polyvinylidene fluoride resin solution is greatly vaporized, and the coagulation on the surface of the polyvinylidene fluoride resin solution becomes uneven, and the performance such as moisture permeability and waterproofness varies. There is a risk of getting on.

本発明では、前記気相にポリフッ化ビニリデン系樹脂溶液を塗布した基材を接触させることにより、気相中に均一に分散している水滴が、ポリフッ化ビニリデン系樹脂溶液の表面(気相に接する一面をいう)全体に均一かつ速やかに付着し、ポリフッ化ビニリデン系樹脂溶液の表面でポリフッ化ビニリデン系樹脂の凝固が始まる。そして、ポリフッ化ビニリデン系樹脂溶液の表面に、短時間のうちに、凝固が不完全であって、凝固が進行しつつある状態の層が形成される。このとき、ポリフッ化ビニリデン系樹脂溶液の内部(気相に接しない部分をいう)はほとんど凝固していないと考えられる。本発明においては、このようなポリフッ化ビニリデン系樹脂あるいはポリフッ化ビニリデン系樹脂溶液の状態を半凝固と呼び、ポリフッ化ビニリデン系樹脂溶液の表面に形成される凝固が進行しつつある状態の層を半凝固層と呼ぶ。   In the present invention, by bringing the base material coated with the polyvinylidene fluoride resin solution into the gas phase, water droplets uniformly dispersed in the gas phase are allowed to adhere to the surface of the polyvinylidene fluoride resin solution (in the gas phase). The surface of the polyvinylidene fluoride resin solution starts to solidify on the surface of the polyvinylidene fluoride resin solution. And the layer of the state which coagulation | solidification is incomplete and coagulation | solidification is progressing is formed in the surface of a polyvinylidene fluoride resin solution in a short time. At this time, it is considered that the inside of the polyvinylidene fluoride resin solution (referring to a portion not in contact with the gas phase) is hardly solidified. In the present invention, such a state of the polyvinylidene fluoride-based resin or the polyvinylidene fluoride-based resin solution is called semi-solidified, and a layer in a state where solidification is progressing, which is formed on the surface of the polyvinylidene fluoride-based resin solution. Called the semi-solidified layer.

しかる後に、このポリフッ化ビニリデン系樹脂溶液を塗布した基材を水中に浸漬することにより、ポリフッ化ビニリデン系樹脂溶液の表面に形成された半凝固層によりポリフッ化ビニリデン系樹脂溶液内部への水の侵入、および、ポリフッ化ビニリデン系樹脂溶液に含まれる良溶媒の水中への流出が抑制される。そのため、ポリフッ化ビニリデン系樹脂の凝固速度が緩慢となり、孔径が小さな微細孔を多数有する多孔質膜の形成が可能となるのである。   After that, by immersing the substrate coated with the polyvinylidene fluoride resin solution in water, the semi-solid layer formed on the surface of the polyvinylidene fluoride resin solution causes water to enter the polyvinylidene fluoride resin solution. Intrusion and outflow of the good solvent contained in the polyvinylidene fluoride resin solution into water are suppressed. For this reason, the solidification rate of the polyvinylidene fluoride resin becomes slow, and a porous film having a large number of micropores with small pore diameters can be formed.

前記気相に代えて、水蒸気雰囲気(もしくは水が気体(水蒸気)となって分散しているだけの気相)を用いた場合は、保持できる水分量に限界があり、ポリフッ化ビニリデン系樹脂を半凝固させるのに長時間を要し、生産性が低下するため好ましくない。   When a steam atmosphere (or a gas phase in which water is dispersed as a gas (steam)) is used instead of the gas phase, there is a limit to the amount of water that can be retained, and the polyvinylidene fluoride resin It takes a long time to semi-solidify, which is not preferable because productivity is lowered.

ポリフッ化ビニリデン系樹脂溶液の表面に付着させる水滴の量は、ポリフッ化ビニリデン系樹脂溶液の組成によって異なるため一概にはいえないが、0.15〜20g/mであることが好ましく、0.25〜10g/mであることがより好ましく、0.25〜5g/mであることがさらに好ましい。
水滴量が0.15g/m未満であると、半凝固層が形成されない虞がある。水滴量が20g/mを超えると、半凝固層の表面に水滴の流水痕が発生したり、ポリフッ化ビニリデン系樹脂溶液に含まれる良溶媒が表面に滲み出して点状の跡が発生したりして、得られるポリフッ化ビニリデン系多孔質膜の品位が悪くなる虞がある。また、ポリフッ化ビニリデン系樹脂溶液の表面状態が完全に凝固してしまい、次工程において水中に浸漬した際に、ポリフッ化ビニリデン系樹脂溶液内部への水の侵入が完全に遮断されたり、表面の凝固層が剥がれて樹脂カスを発生する虞がある。
The amount of water droplets attached to the surface of the polyvinylidene fluoride-based resin solution varies depending on the composition of the polyvinylidene fluoride-based resin solution, and thus cannot be generally specified, but is preferably 0.15 to 20 g / m 2 . more preferably 25~10g / m 2, further preferably 0.25~5g / m 2.
If the water droplet amount is less than 0.15 g / m 2 , the semi-solidified layer may not be formed. When the amount of water droplets exceeds 20 g / m 2 , water marks of water droplets are generated on the surface of the semi-solidified layer, or good solvents contained in the polyvinylidene fluoride resin solution ooze out on the surface, resulting in point marks. As a result, the quality of the obtained polyvinylidene fluoride porous film may be deteriorated. In addition, the surface state of the polyvinylidene fluoride resin solution is completely solidified, and when immersed in water in the next step, water penetration into the polyvinylidene fluoride resin solution is completely blocked, There is a possibility that the solidified layer is peeled off and resin residue is generated.

前記ポリフッ化ビニリデン系樹脂溶液を塗布した基材を平均粒子径が1〜30μmの水滴が均一に分散している気相と接触させる方法としては、気相中に均一に分散している水滴がポリフッ化ビニリデン系樹脂溶液の表面全体に均一かつ速やかに付着する限り特に限定されないが、具体的には、前記気相中(平均粒子径が1〜30μmの水滴が均一に分散している雰囲気)に該ポリフッ化ビニリデン系樹脂溶液を塗布した基材を暴露する方法や、前記気相を、基材上に塗布した該ポリフッ化ビニリデン系樹脂溶液に直接吹き付ける方法が挙げられる。   As a method of bringing the substrate coated with the polyvinylidene fluoride resin solution into contact with a gas phase in which water droplets having an average particle size of 1 to 30 μm are uniformly dispersed, water droplets uniformly dispersed in the gas phase may be used. Although not particularly limited as long as it uniformly and quickly adheres to the entire surface of the polyvinylidene fluoride resin solution, specifically, in the gas phase (atmosphere in which water droplets having an average particle diameter of 1 to 30 μm are uniformly dispersed) And a method of exposing the substrate coated with the polyvinylidene fluoride-based resin solution, and a method of directly spraying the gas phase onto the polyvinylidene fluoride-based resin solution coated on the substrate.

前記気相中への暴露は、例えば、内部を所定の条件を満たす雰囲気に調整した装置(暴露用装置)の中を、上記ポリフッ化ビニリデン系樹脂溶液を塗布した基材を連続的に走行させることによって行うことができる。またその場合、付着する水滴量の調整は、基材が暴露用装置内にとどまる時間を調整することによって行うことができる。具体的には、基材が暴露用装置内を走行する速度(走行速度)を変化させて調整する。さらに、暴露用装置内の水分状態は装置容積と水噴霧式加湿器の噴霧量によっても変化するため、装置容積に応じて、装置内の水滴が安定的に浮遊するように水噴霧式加湿器の噴霧量を調整することが好ましい。   In the exposure to the gas phase, for example, a substrate coated with the polyvinylidene fluoride resin solution is continuously run in an apparatus (exposure apparatus) whose interior is adjusted to an atmosphere satisfying a predetermined condition. Can be done. In that case, the amount of water droplets attached can be adjusted by adjusting the time during which the substrate stays in the exposure apparatus. Specifically, it adjusts by changing the speed (traveling speed) at which the base material travels within the exposure apparatus. Furthermore, since the moisture state in the exposure device also changes depending on the device volume and the spray amount of the water spray type humidifier, the water spray type humidifier so that the water droplets in the device float stably according to the device volume. It is preferable to adjust the spray amount.

ポリフッ化ビニリデン系樹脂溶液を塗布した基材を前記気相中に暴露する時間は、1〜60秒間であることが好ましく、1〜30秒間であることがより好ましい。暴露時間をこの範囲とすることにより、ポリフッ化ビニリデン系樹脂溶液の表面に付着させる水滴量を上述の範囲に調整することができる。   The time for exposing the substrate coated with the polyvinylidene fluoride resin solution in the gas phase is preferably 1 to 60 seconds, and more preferably 1 to 30 seconds. By setting the exposure time within this range, the amount of water droplets attached to the surface of the polyvinylidene fluoride resin solution can be adjusted to the above range.

なお、前記気相中へ暴露する方法において、ポリフッ化ビニリデン系樹脂溶液の表面に付着した水滴量は、実際に処理する基材面に濾紙を載せた状態で暴露用装置内を走行させ、水滴付着後の濾紙の重量変化により計算することができる。   In the method of exposing to the gas phase, the amount of water droplets adhering to the surface of the polyvinylidene fluoride resin solution is determined by running the inside of the exposure apparatus with filter paper placed on the substrate surface to be actually treated. It can be calculated from the change in weight of the filter paper after adhesion.

また上述したように、本発明においては、ポリフッ化ビニリデン系樹脂溶液を塗布した基材を前記気相中に暴露する方法にかわって、ポリフッ化ビニリデン系樹脂溶液を塗布した基材に、詳しくは基材に塗布したポリフッ化ビニリデン系樹脂溶液の表面に、前記気相、すなわち、平均粒子径が1〜30μmの水滴が均一に分散している気相を吹き付けることにより、ポリフッ化ビニリデン系樹脂を半凝固させることも可能である。
この場合、暴露用装置内の雰囲気の調整に用いたのと同様の水噴霧式加湿器を用い、該水噴霧式加湿器から噴霧される前記気相を、直接、ポリフッ化ビニリデン系樹脂溶液の表面に吹き付ければよい。
かかる方法によれば、前記気相中に暴露する方法に比べ、より短時間で、ポリフッ化ビニリデン系樹脂を半凝固させるのに必要な水滴量(好ましくは0.15〜20g/m、より好ましくは0.15〜10g/m、さらに好ましくは0.25〜5g/m)をポリフッ化ビニリデン系樹脂溶液の表面に付着させることができ、もって、より短時間でポリフッ化ビニリデン系樹脂を半凝固させることができるため、生産性に優れている。
前記気相をポリフッ化ビニリデン系樹脂溶液の表面に直接吹き付ける方法においては、水噴霧式加湿器の噴霧量、ポリフッ化ビニリデン系樹脂溶液の表面からの距離、および吹き付ける時間などを調整することによって、水滴量を調整することができる。例えば、1時間あたり0.1〜5.0kgの水滴を噴霧する加湿器を用いて、ポリフッ化ビニリデン系樹脂溶液の表面から2〜50cm程度の距離から、1〜15秒間、前記気相を吹き付けることによって、所望の水滴量をポリフッ化ビニリデン系樹脂溶液の表面に付着させることができる。
As described above, in the present invention, instead of the method of exposing the substrate coated with the polyvinylidene fluoride resin solution to the gas phase, the substrate coated with the polyvinylidene fluoride resin solution is described in detail. By spraying the above-mentioned gas phase, that is, a gas phase in which water droplets having an average particle diameter of 1 to 30 μm are uniformly dispersed, on the surface of the polyvinylidene fluoride resin solution applied to the substrate, the polyvinylidene fluoride resin is obtained. Semi-solidification is also possible.
In this case, the same water spray type humidifier as that used for adjusting the atmosphere in the exposure apparatus is used, and the gas phase sprayed from the water spray type humidifier is directly added to the polyvinylidene fluoride resin solution. Just spray on the surface.
According to such a method, the amount of water droplets (preferably 0.15 to 20 g / m 2) required to semi-solidify the polyvinylidene fluoride resin in a shorter time than the method of exposing in the gas phase. 0.15 to 10 g / m 2 , and more preferably 0.25 to 5 g / m 2 ) can be adhered to the surface of the polyvinylidene fluoride resin solution, so that the polyvinylidene fluoride resin can be obtained in a shorter time. Can be semi-solidified, and is excellent in productivity.
In the method of directly spraying the vapor phase on the surface of the polyvinylidene fluoride resin solution, by adjusting the spray amount of the water spray type humidifier, the distance from the surface of the polyvinylidene fluoride resin solution, the spraying time, etc. The amount of water droplets can be adjusted. For example, using a humidifier that sprays 0.1 to 5.0 kg of water droplets per hour, the gas phase is sprayed for 1 to 15 seconds from a distance of about 2 to 50 cm from the surface of the polyvinylidene fluoride resin solution. Thus, a desired amount of water droplets can be attached to the surface of the polyvinylidene fluoride resin solution.

次いで、ポリフッ化ビニリデン系樹脂溶液を塗布した基材(その表面には半凝固層が形成されている)を、水中に浸漬する。この過程で、ポリフッ化ビニリデン系樹脂溶液の内部に水が浸入するとともに、ポリフッ化ビニリデン系樹脂溶液に含まれる良溶媒がほぼ完全に水と置き換わることによって、ポリフッ化ビニリデン系樹脂の凝固が完結する。この過程における半凝固層の作用効果は上述の通りであるが、水中に浸漬することにより半凝固層もまた完全に凝固した層となる。なお、凝固液は水のみでよく、他の成分の存在を要しないが、実際の製造においては、ポリフッ化ビニリデン系樹脂溶液を塗布した基材が連続して水(凝固液)中を通過することにより、水(凝固液)には良溶媒が次第に蓄積していく。本発明では、このような水(凝固液)中における良溶媒の存在を排除するものではない。   Next, the base material coated with the polyvinylidene fluoride resin solution (having a semi-solidified layer formed on the surface) is immersed in water. In this process, water enters the inside of the polyvinylidene fluoride resin solution, and the good solvent contained in the polyvinylidene fluoride resin solution is almost completely replaced with water, whereby the solidification of the polyvinylidene fluoride resin is completed. . The effects of the semi-solidified layer in this process are as described above, but the semi-solidified layer also becomes a completely solidified layer when immersed in water. Note that the coagulation liquid may be water alone and does not require the presence of other components. However, in actual production, the substrate coated with the polyvinylidene fluoride resin solution continuously passes through the water (coagulation liquid). As a result, the good solvent gradually accumulates in the water (coagulating liquid). In the present invention, the presence of such a good solvent in water (coagulating liquid) is not excluded.

凝固液の温度は、0〜70℃であることが好ましい。温度が70℃を超えると、ポリフッ化ビニリデン系樹脂の凝固が不均一となる虞がある。   The temperature of the coagulation liquid is preferably 0 to 70 ° C. When the temperature exceeds 70 ° C., there is a possibility that the solidification of the polyvinylidene fluoride resin becomes non-uniform.

浸漬時間は、30秒間〜10分間であることが好ましく、1〜5分間であることがより好ましい。浸漬時間が30秒間未満であると、ポリフッ化ビニリデン系樹脂の凝固が不完全となる虞がある。浸漬時間が10分間を超えると、生産性が低下する虞がある。   The immersion time is preferably 30 seconds to 10 minutes, and more preferably 1 to 5 minutes. If the immersion time is less than 30 seconds, the polyvinylidene fluoride resin may not be completely solidified. When immersion time exceeds 10 minutes, there exists a possibility that productivity may fall.

次いで、30〜80℃の温水中で3〜15分間洗浄して、残留する良溶媒、非溶媒、添加した親水性ポリマーを除去した後、50〜100℃で1〜10分間熱処理して乾燥する。かくして、基材上には、本発明のポリフッ化ビニリデン系多孔質平膜を得ることができる。   Next, after washing for 3 to 15 minutes in warm water at 30 to 80 ° C. to remove the remaining good solvent, non-solvent and added hydrophilic polymer, heat treatment is performed at 50 to 100 ° C. for 1 to 10 minutes and drying is performed. . Thus, the polyvinylidene fluoride porous flat membrane of the present invention can be obtained on the substrate.

本発明で得られるポリフッ化ビニリデン系多孔質平膜は、純水透過係数が1×10−9m/m・s・Pa以上であることが好ましい。この純水透過係数が1×10−9/m・s・Paに満たない時は膜の透水性が悪いことから高い圧力で運転する必要があり、運転コストが大きくなる場合がある。 The polyvinylidene fluoride porous flat membrane obtained by the present invention preferably has a pure water permeability coefficient of 1 × 10 −9 m 3 / m 2 · s · Pa or more. When this pure water permeability coefficient is less than 1 × 10 −9 m 3 / m 2 · s · Pa, it is necessary to operate at a high pressure because the water permeability of the membrane is poor, and the operating cost may increase. .

ここで、純水透過係数は、イオン交換水を温度25℃、ヘッド圧1mの条件下で直径47mmのポリフッ化ビニリデン系多孔質平膜で濾過し、下記の数式1によって求めた。評価に際し、該多孔質平膜はエタノールに15分浸漬後水中に2時間以上浸漬置換し評価に用いた。なお、純水透過係数は、ポンプ等で加圧や吸引して得た値を換算して求めても良い。
〔数式1〕
純水透過係数(m/m・s・Pa)=透過水量(m)/(膜面積(m)×透過時間(s)×評価圧力(Pa))
Here, the pure water permeation coefficient was obtained by filtering the ion-exchanged water with a polyvinylidene fluoride porous flat membrane having a diameter of 47 mm under the conditions of a temperature of 25 ° C. and a head pressure of 1 m, and was obtained by the following formula 1. In the evaluation, the porous flat membrane was immersed in ethanol for 15 minutes and then immersed in water for 2 hours or more and used for evaluation. The pure water permeability coefficient may be obtained by converting a value obtained by applying pressure or suction with a pump or the like.
[Formula 1]
Pure water permeability coefficient (m 3 / m 2 · s · Pa) = permeated water amount (m 3 ) / (membrane area (m 2 ) × permeation time (s) × evaluation pressure (Pa))

さらに、ポリフッ化ビニリデン系多孔質平膜は、平均粒子径0.15μmの微粒子の捕集率が90%以上であることが好ましい。捕集率が90%未満であると、多孔質膜内で目詰まりが起こったり、濾過差圧の上昇が起こったりし、該多孔質平膜の寿命が短くなる場合がある。   Furthermore, the polyvinylidene fluoride porous flat membrane preferably has a collection rate of fine particles having an average particle size of 0.15 μm of 90% or more. If the collection rate is less than 90%, clogging may occur in the porous membrane or the filtration differential pressure may increase, and the life of the porous flat membrane may be shortened.

ここで、微粒子捕集率は、イオン交換水に平均粒径0.15μmのポリスチレンラテックス粒子を25ppmの濃度になるよう分散させてなる評価原液を濾過し、評価原液と透過液の波長220nmの紫外線吸光度から、下記の数式2によって求めた。吸光度測定は分光光度計を用いた。
〔数式2〕
微粒子捕集率(%)=((評価原液吸光度(abs)−透過液吸光度(abs))/評価原液吸光度(abs))×100
Here, the fine particle collection rate is obtained by filtering an evaluation stock solution in which polystyrene latex particles having an average particle size of 0.15 μm are dispersed in ion-exchanged water so as to have a concentration of 25 ppm, and ultraviolet rays having a wavelength of 220 nm between the evaluation stock solution and the permeate. It calculated | required by following Numerical formula 2 from the light absorbency. The spectrophotometer was used for the absorbance measurement.
[Formula 2]
Fine particle collection rate (%) = ((Evaluation stock solution absorbance (abs) −Permeate absorbance (abs)) / Evaluation stock solution absorbance (abs)) × 100

ポリフッ化ビニリデン系多孔質平膜の膜厚および該多孔質平膜の表面、断面に形成される孔の孔径は、走査型電子顕微鏡((株)日立ハイテクノロジーズ社製「S−3000N」)を用いて、100〜5000倍の断面および表面写真を撮影し、測定した。   The thickness of the polyvinylidene fluoride-based porous membrane and the pore diameter of the pores formed on the surface and cross section of the porous membrane are measured with a scanning electron microscope ("S-3000N" manufactured by Hitachi High-Technologies Corporation). Using, 100 to 5000 times cross-section and surface photographs were taken and measured.

ポリフッ化ビニリデン系多孔質平膜は膜単独でも良いが、繊維布帛などの多孔質基材と複合させて用いることもできる。   The polyvinylidene fluoride porous flat membrane may be a single membrane, or may be used in combination with a porous substrate such as a fiber fabric.

ポリフッ化ビニリデン系多孔質平膜の表面に形成される孔の孔径は、平均孔径が0.01〜10μmであることが好ましく、0.01〜5μmであることがより好ましい。平均孔径が0.01μm未満であると十分な透水性が得られず、また10μmを超えると、捕集率の低下あるいは目詰まりによる濾過差厚の上昇が起こる場合がある。   The average pore size of the pores formed on the surface of the polyvinylidene fluoride porous flat membrane is preferably 0.01 to 10 μm, and more preferably 0.01 to 5 μm. If the average pore diameter is less than 0.01 μm, sufficient water permeability cannot be obtained, and if it exceeds 10 μm, the collection rate may decrease or the filtration differential thickness may increase due to clogging.

また、ポリフッ化ビニリデン系多孔質平膜の膜断面方向には、平均孔径0.01〜10μmの三次元網目構造を有することが好ましく、平均孔径が0.01〜5μmであることがより好ましい。平均孔径が0.01μm未満であると十分な透水性が得られず、また10μmを超えると機械的強度が低下する場合がある。   Moreover, it is preferable to have a three-dimensional network structure with an average pore diameter of 0.01 to 10 μm in the film cross-sectional direction of the polyvinylidene fluoride-based porous flat membrane, and it is more preferable that the average pore diameter is 0.01 to 5 μm. If the average pore diameter is less than 0.01 μm, sufficient water permeability cannot be obtained, and if it exceeds 10 μm, the mechanical strength may be lowered.

以下、本発明について実施例をあげて説明知るが、本発明は必ずしもその実施例により限定されるものではない。なお、実施例、比較例における各数値は以下の方法により測定した。
〔スキン層の有無〕
走査型電子顕微鏡((株)日立ハイテクノロジーズ社製「S−3000N」)を用いて、1000倍で断面および表面写真を撮影し、スキン層の有無を確認した。
〔厚み〕
走査型電子顕微鏡((株)日立ハイテクノロジーズ社製「S−3000N」)を用いて、100倍で断面写真を撮影し、測定した。
〔膜表面の平均孔径及び孔径10μm以上の孔の有無〕
走査型電子顕微鏡((株)日立ハイテクノロジーズ社製「S−3000N」)を用いて、5000倍で断面および表面写真を撮影し、測定した。
〔純水透過係数〕
イオン交換水を温度25℃、ヘッド圧1mの条件下で、直径47mmの、エタノールに15分浸漬後水中に2時間浸漬置換したポリフッ化ビニリデン系多孔質膜で濾過し、前記の数式1によって求めた。
〔微粒子捕集率〕
イオン交換水に平均粒径0.15μmのポリスチレンラテックス粒子を25ppmの濃度になるよう分散させてなる評価原液を濾過し、評価原液と透過液の波長220nmの紫外線吸光度から、前記の数式2によって求めた。吸光度測定は分光光度計を用いた。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not necessarily limited to the examples. In addition, each numerical value in an Example and a comparative example was measured with the following method.
[With or without skin layer]
Using a scanning electron microscope ("S-3000N" manufactured by Hitachi High-Technologies Corporation), a cross-section and a surface photograph were taken at 1000 times to confirm the presence or absence of a skin layer.
[Thickness]
Using a scanning electron microscope ("S-3000N" manufactured by Hitachi High-Technologies Corporation), a cross-sectional photograph was taken at a magnification of 100 and measured.
[Mean surface pore size and presence / absence of pores of 10 μm or more]
Using a scanning electron microscope (“S-3000N” manufactured by Hitachi High-Technologies Corporation), cross-sections and surface photographs were taken at a magnification of 5000 times and measured.
[Pure water permeability coefficient]
Ion-exchanged water was filtered through a polyvinylidene fluoride porous membrane having a diameter of 47 mm, immersed in ethanol for 15 minutes and then immersed in water for 2 hours under conditions of a temperature of 25 ° C. and a head pressure of 1 m. It was.
[Fine particle collection rate]
An evaluation stock solution in which polystyrene latex particles having an average particle size of 0.15 μm are dispersed in ion-exchanged water so as to have a concentration of 25 ppm is filtered, and is obtained from the ultraviolet light absorbance at a wavelength of 220 nm of the evaluation stock solution and the permeation solution by the above-described formula 2. It was. The spectrophotometer was used for the absorbance measurement.

〔実施例1〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径1.2μm)をそれぞれ用い、これらを下記処方1で50℃の温度で十分に撹拌、溶解して製膜原液を得た。
〔処方1〕
PVDF 11.5重量%
DMF 82.5重量%
イオン交換水 3.0重量%
疎水性シリカ 3.0重量%

次に、上記製膜原液を室温に冷却し、ポリエステル繊維織物にロールオンナイフコーターで塗布した。その後、水噴霧式加湿器(商品名「FT−161DH」、ユーキャン(株)製)を設置した暴露用装置(容積:約5.0m3、セーレン電子(株)製)中に、該合成重合体溶液を塗布した繊維布帛を設置し、平均粒子径が7μmの水滴が均一に分散している20℃の気相中に10秒間暴露して合成重合体を半凝固させた。このとき、合成重合体溶液の表面に付着した水滴量は約0.7g/m2であった。
前記合成重合体溶液を塗布した繊維布帛を25℃の水中に2分間浸漬して完全凝固させた。次いで、50℃の温水中で5分間洗浄した後、80℃で2分間熱処理して乾燥しポリフッ化ビニリデン系多孔質平膜を得た。評価結果を表1に示す。
[Example 1]
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, hydrophobic silica (average particle size 1.2 μm) were used, respectively, and the following formulation 1 The solution was sufficiently stirred and dissolved at a temperature of 50 ° C. to obtain a film forming stock solution.
[Prescription 1]
PVDF 11.5% by weight
DMF 82.5% by weight
Ion exchange water 3.0% by weight
Hydrophobic silica 3.0% by weight

Next, the film-forming stock solution was cooled to room temperature and applied to a polyester fiber fabric with a roll-on knife coater. Thereafter, in the exposure apparatus (volume: approximately 5.0 m 3 , manufactured by Seiren Electronics Co., Ltd.) in which a water spray type humidifier (trade name “FT-161DH”, manufactured by UCAN Co., Ltd.) is installed, A fiber fabric coated with the coalescence solution was placed, and exposed to a gas phase of 20 ° C. in which water droplets having an average particle diameter of 7 μm were uniformly dispersed for 10 seconds to semi-solidify the synthetic polymer. At this time, the amount of water droplets adhering to the surface of the synthetic polymer solution was about 0.7 g / m 2 .
The fiber fabric coated with the synthetic polymer solution was immersed in water at 25 ° C. for 2 minutes for complete solidification. Next, after washing in warm water of 50 ° C. for 5 minutes, heat treatment was performed at 80 ° C. for 2 minutes and drying to obtain a polyvinylidene fluoride porous flat membrane. The evaluation results are shown in Table 1.

〔実施例2〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径1.2μm)、ポリビニルピロリドン(PVP)をそれぞれ用い、これらを下記処方2で50℃の温度で十分で撹拌、溶解して製膜原液を得た。
〔処方2〕
PVDF 11.5重量%
DMF 82.5重量%
イオン交換水 3.0重量%
疎水性シリカ 3.0重量%
PVP 3.5重量%

次に、上記製膜原液を室温に冷却し、ポリエステル繊維織物にロールオンナイフコーターで塗布した。その後、水噴霧式加湿器(商品名「FT−161DH」、ユーキャン(株)製)を設置した暴露用装置(容積:約5.0m3、セーレン電子(株)製)中に、該合成重合体溶液を塗布した繊維布帛を設置し、平均粒子径が7μmの水滴が均一に分散している20℃の気相中に30秒間暴露して合成重合体を半凝固させた。このとき、合成重合体溶液の表面に付着した水滴量は約2g/m2であった。
前記合成重合体溶液を塗布した繊維布帛を25℃の水中に2分間浸漬して完全凝固させた。次いで、50℃の温水中で5分間洗浄した後、80℃で2分間熱処理して乾燥し親水性を付与したポリフッ化ビニリデン系多孔質平膜を得た。評価結果を表1に示す。
[Example 2]
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, hydrophobic silica (average particle size 1.2 μm), polyvinylpyrrolidone (PVP), respectively, These were sufficiently stirred and dissolved at a temperature of 50 ° C. according to the following formulation 2 to obtain a film-forming stock solution.
[Prescription 2]
PVDF 11.5% by weight
DMF 82.5% by weight
Ion exchange water 3.0% by weight
Hydrophobic silica 3.0% by weight
PVP 3.5 wt%

Next, the film-forming stock solution was cooled to room temperature and applied to a polyester fiber fabric with a roll-on knife coater. Thereafter, in the exposure apparatus (volume: approximately 5.0 m 3 , manufactured by Seiren Electronics Co., Ltd.) in which a water spray type humidifier (trade name “FT-161DH”, manufactured by UCAN Co., Ltd.) is installed, A fiber fabric coated with the coalescence solution was placed, and exposed to a gas phase of 20 ° C. in which water droplets having an average particle diameter of 7 μm were uniformly dispersed for 30 seconds to semi-solidify the synthetic polymer. At this time, the amount of water droplets adhering to the surface of the synthetic polymer solution was about 2 g / m 2 .
The fiber fabric coated with the synthetic polymer solution was immersed in water at 25 ° C. for 2 minutes for complete solidification. Next, after washing for 5 minutes in warm water at 50 ° C., heat treatment was performed at 80 ° C. for 2 minutes and drying to obtain a polyvinylidene fluoride porous flat membrane imparted with hydrophilicity. The evaluation results are shown in Table 1.

〔実施例3〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径0.15μm)をそれぞれ用い、これらを下記処方3で50℃の温度で十分に撹拌、溶解して製膜原液を得た。これを実施例1と同様に製膜し、ポリフッ化ビニリデン系多孔質平膜を得た。評価結果を表1に示す。
〔処方3〕
PVDF 11.5重量%
DMF 82.5重量%
イオン交換水 3.0重量%
疎水性シリカ 3.0重量%
Example 3
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, hydrophobic silica (average particle size 0.15 μm) were used, respectively. The solution was sufficiently stirred and dissolved at a temperature of 50 ° C. to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a polyvinylidene fluoride-based porous flat film. The evaluation results are shown in Table 1.
[Prescription 3]
PVDF 11.5% by weight
DMF 82.5% by weight
Ion exchange water 3.0% by weight
Hydrophobic silica 3.0% by weight

〔実施例4〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径0.15μm)をそれぞれ用い、これらを下記処方4で50℃の温度で十分に撹拌、溶解して製膜原液を得た。これを実施例1と同様に製膜し、ポリフッ化ビニリデン系多孔質平膜を得た。評価結果を表1に示す。
〔処方4〕
PVDF 8.0重量%
DMF 88.0重量%
イオン交換水 2.0重量%
疎水性シリカ 2.0重量%
Example 4
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, hydrophobic silica (average particle size 0.15 μm) were used, respectively. The solution was sufficiently stirred and dissolved at a temperature of 50 ° C. to obtain a film forming stock solution. This was formed in the same manner as in Example 1 to obtain a polyvinylidene fluoride-based porous flat film. The evaluation results are shown in Table 1.
[Prescription 4]
PVDF 8.0 wt%
DMF 88.0% by weight
Ion exchange water 2.0% by weight
Hydrophobic silica 2.0% by weight

〔実施例5〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径1.2μm)、ポリビニルピロリドン(PVP)をそれぞれ用い、これらを下記処方5で50℃の温度で十分に撹拌、溶解して製膜原液を得た。これを実施例2と同様に製膜し、ポリフッ化ビニリデン系多孔質平膜を得た。評価結果を表1に示す。
〔処方5〕
PVDF 11.5重量%
DMF 71.5重量%
イオン交換水 3.5重量%
疎水性シリカ 2.0重量%
PVP 11.5重量%
Example 5
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, hydrophobic silica (average particle size 1.2 μm), polyvinylpyrrolidone (PVP), respectively, These were sufficiently stirred and dissolved at a temperature of 50 ° C. according to the following formulation 5 to obtain a film forming stock solution. This was formed in the same manner as in Example 2 to obtain a polyvinylidene fluoride-based porous flat film. The evaluation results are shown in Table 1.
[Prescription 5]
PVDF 11.5% by weight
DMF 71.5% by weight
Ion exchange water 3.5% by weight
Hydrophobic silica 2.0% by weight
PVP 11.5% by weight

〔実施例6〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径1.2μm)をそれぞれ用い、これらを下記処方6で50℃の温度で十分に撹拌、溶解して製膜原液を得た。
〔処方6〕
PVDF 11.5重量%
DMF 82.5重量%
イオン交換水 3.0重量%
疎水性シリカ 3.0重量%

次に、上記製膜原液を室温に冷却し、ポリエステル繊維織物にロールオンナイフコーター塗布した。その後、該合成重合体溶液を塗布した繊維布帛の表面に、水噴霧式加湿器(商品名「FT−161DH」、ユーキャン(株)製)を用いて平均粒子径が7μmの水滴が均一に分散している気相を約5cm離れた距離から5秒間吹き付けた。該合成重合体溶液を塗布した繊維布帛の表面に付着した水滴量は約1.2g/mであった。
前記合成重合体溶液を塗布した繊維布帛を25℃の水中に2分間浸漬して完全凝固させた。次いで、50℃の温水中で5分間洗浄した後、80℃で2分間熱処理して乾燥し、ポリフッ化ビニリデン系多孔質平膜を得た。評価結果を表1に示す。
Example 6
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, hydrophobic silica (average particle size 1.2 μm) were used, respectively, and the following formulation 6 The solution was sufficiently stirred and dissolved at a temperature of 50 ° C. to obtain a film forming stock solution.
[Prescription 6]
PVDF 11.5% by weight
DMF 82.5% by weight
Ion exchange water 3.0% by weight
Hydrophobic silica 3.0% by weight

Next, the film-forming stock solution was cooled to room temperature, and a roll-on knife coater was applied to a polyester fiber fabric. Thereafter, water droplets having an average particle size of 7 μm are uniformly dispersed on the surface of the fiber fabric coated with the synthetic polymer solution using a water spray type humidifier (trade name “FT-161DH”, manufactured by UCAN Co., Ltd.). The gas phase was sprayed from a distance of about 5 cm for 5 seconds. The amount of water droplets adhering to the surface of the fiber fabric coated with the synthetic polymer solution was about 1.2 g / m 2 .
The fiber fabric coated with the synthetic polymer solution was immersed in water at 25 ° C. for 2 minutes for complete solidification. Next, after washing in warm water at 50 ° C. for 5 minutes, it was heat-treated at 80 ° C. for 2 minutes and dried to obtain a polyvinylidene fluoride porous flat membrane. The evaluation results are shown in Table 1.

〔実施例7〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径1.2μm)をそれぞれ用い、これらを下記処方7で50℃の温度で十分に撹拌、溶解して製膜原液を得た。
〔処方7〕
PVDF 11.5重量%
DMF 82.5重量%
イオン交換水 3.0重量%
疎水性シリカ 3.0重量%

次に、上記製膜原液を室温に冷却し、ポリエステル繊維織物にロールオンナイフコーターで塗布した。その後、水噴霧式加湿器(商品名「FT−161DH」、ユーキャン株式会社製)を設置した暴露用装置(容積:約5.0m3、セーレン電子株式会社製)中に、該合成重合体溶液を塗布した繊維布帛を設置し、平均粒子径が7μmの水滴が均一に分散している50℃の気相中に10秒間暴露して合成重合体を半凝固させた。このとき、合成重合体溶液の表面に付着した水滴量は約0.9g/m2であった。
前記合成重合体溶液を塗布した繊維布帛を25℃の水中に2分間浸漬して完全凝固させた。次いで、50℃の温水中で5分間洗浄した後、80℃で2分間熱処理して乾燥し、ポリフッ化ビニリデン系多孔質平膜を得た。評価結果を表1に示す。
Example 7
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, and hydrophobic silica (average particle size 1.2 μm) were used, respectively. The solution was sufficiently stirred and dissolved at a temperature of 50 ° C. to obtain a film forming stock solution.
[Prescription 7]
PVDF 11.5% by weight
DMF 82.5% by weight
Ion exchange water 3.0% by weight
Hydrophobic silica 3.0% by weight

Next, the film-forming stock solution was cooled to room temperature and applied to a polyester fiber fabric with a roll-on knife coater. Thereafter, the synthetic polymer solution was placed in an exposure apparatus (volume: about 5.0 m 3 , manufactured by Seiren Electronics Co., Ltd.) in which a water spray type humidifier (trade name “FT-161DH”, manufactured by Yucan Co., Ltd.) was installed. The synthetic polymer was semi-solidified by placing it in a gas phase at 50 ° C. where water droplets having an average particle diameter of 7 μm were uniformly dispersed for 10 seconds. At this time, the amount of water droplets adhering to the surface of the synthetic polymer solution was about 0.9 g / m 2 .
The fiber fabric coated with the synthetic polymer solution was immersed in water at 25 ° C. for 2 minutes for complete solidification. Next, after washing in warm water at 50 ° C. for 5 minutes, it was heat-treated at 80 ° C. for 2 minutes and dried to obtain a polyvinylidene fluoride porous flat membrane. The evaluation results are shown in Table 1.

〔比較例1〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径1.2μm)をそれぞれ用い、これらを下記処方8で50℃の温度で十分に撹拌、溶解して製膜原液を得た。
〔処方8〕
PVDF 11.5重量%
DMF 82.5重量%
イオン交換水 3.0重量%
疎水性シリカ 3.0重量%

次に、上記製膜原液を室温に冷却し、ポリエステル繊維織物にロールオンナイフコーターで塗布した。その後、該製膜原液を塗布した繊維布帛を25℃の水中に2分間浸漬して完全凝固させた。次いで、50℃の温水中で5分間洗浄した後、80℃で2分間熱処理して乾燥し、ポリフッ化ビニリデン系多孔質平膜を得た。該膜表面にはスキン層、サポート層が形成されていた。評価結果を表1に示す。
[Comparative Example 1]
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, hydrophobic silica (average particle size 1.2 μm) were used, respectively. The solution was sufficiently stirred and dissolved at a temperature of 50 ° C. to obtain a film forming stock solution.
[Prescription 8]
PVDF 11.5% by weight
DMF 82.5% by weight
Ion exchange water 3.0% by weight
Hydrophobic silica 3.0% by weight

Next, the film-forming stock solution was cooled to room temperature and applied to a polyester fiber fabric with a roll-on knife coater. Thereafter, the fiber fabric coated with the film-forming stock solution was immersed in water at 25 ° C. for 2 minutes to be completely solidified. Next, after washing in warm water at 50 ° C. for 5 minutes, it was heat-treated at 80 ° C. for 2 minutes and dried to obtain a polyvinylidene fluoride porous flat membrane. A skin layer and a support layer were formed on the film surface. The evaluation results are shown in Table 1.

〔比較例2〕
ポリフッ化ビニリデンホモポリマー(PVDF、重量平均分子量68万)、N,N−ジメチルホルムアミド(DMF)、イオン交換水、疎水性シリカ(平均粒子径1.2μm)をそれぞれ用い、これらを下記処方9で50℃の温度で十分に撹拌、溶解して製膜原液を得た。
〔処方9〕
PVDF 11.5重量%
DMF 82.5重量%
イオン交換水 3.0重量%
疎水性シリカ 3.0重量%

次に、上記製膜原液を室温に冷却し、ポリエステル繊維織物にロールオンナイフコーターで塗布した。その後、該合成重合体溶液を塗布した繊維布帛に霧吹きを用いて10秒間加湿を行った。霧吹きから分散される水滴の粒子径は50μm〜200μmであった。
前記合成重合体溶液を塗布した繊維布帛を25℃の水中に2分間浸漬して完全凝固させた。次いで、50℃の温水中で5分間洗浄した後、80℃で2分間熱処理して乾燥し、ポリフッ化ビニリデン系多孔質平膜を得た。該膜表面にはスキン層、サポート層が形成されていた。評価結果を表1に示す。
[Comparative Example 2]
Polyvinylidene fluoride homopolymer (PVDF, weight average molecular weight 680,000), N, N-dimethylformamide (DMF), ion-exchanged water, and hydrophobic silica (average particle size 1.2 μm) were used, respectively, and the following formulation 9 The solution was sufficiently stirred and dissolved at a temperature of 50 ° C. to obtain a film forming stock solution.
[Prescription 9]
PVDF 11.5% by weight
DMF 82.5% by weight
Ion exchange water 3.0% by weight
Hydrophobic silica 3.0% by weight

Next, the film-forming stock solution was cooled to room temperature and applied to a polyester fiber fabric with a roll-on knife coater. Thereafter, the fiber fabric coated with the synthetic polymer solution was humidified for 10 seconds using a spray. The particle diameter of the water droplets dispersed from the spray was 50 μm to 200 μm.
The fiber fabric coated with the synthetic polymer solution was immersed in water at 25 ° C. for 2 minutes for complete solidification. Next, after washing in warm water at 50 ° C. for 5 minutes, it was heat-treated at 80 ° C. for 2 minutes and dried to obtain a polyvinylidene fluoride porous flat membrane. A skin layer and a support layer were formed on the film surface. The evaluation results are shown in Table 1.

Figure 2012139619
Figure 2012139619

Claims (4)

ポリフッ化ビニリデン系樹脂からなる多孔質膜において、該多孔質膜の表面及び断面方向に平均孔径が0.01〜10μmの細孔を有し、純水透過係数が1×10−9/m・s・Pa以上である、スキン層を有しないポリフッ化ビニリデン系多孔質平膜。 A porous membrane made of a polyvinylidene fluoride resin has pores having an average pore diameter of 0.01 to 10 μm on the surface and cross-sectional direction of the porous membrane, and a pure water permeability coefficient of 1 × 10 −9 m 3 / A polyvinylidene fluoride-based porous flat membrane having a skin layer of m 2 · s · Pa or more. ポリフッ化ビニリデン系樹脂を5〜35重量%含む溶液を、基材の片面に塗布した後、平均粒子径が1〜30μmの水滴が均一に分散している気相と接触させてポリフッ化ビニリデン系樹脂を半凝固させ、次いで、該樹脂溶液を塗布した基材を水中に浸漬して完全凝固させることを特徴とする、ポリフッ化ビニリデン系多孔質平膜の製造方法。 After a solution containing 5 to 35% by weight of a polyvinylidene fluoride resin is applied to one side of a substrate, it is brought into contact with a gas phase in which water droplets having an average particle diameter of 1 to 30 μm are uniformly dispersed to make a polyvinylidene fluoride system A method for producing a polyvinylidene fluoride porous flat membrane, characterized by semi-solidifying a resin and then completely solidifying the substrate coated with the resin solution by immersing it in water. 気相との接触が、気相中に樹脂塗布面を暴露させることによって行われることを特徴とする、請求項2記載のポリフッ化ビニリデン系多孔質平膜の製造方法。 3. The method for producing a polyvinylidene fluoride porous flat membrane according to claim 2, wherein the contact with the gas phase is performed by exposing the resin-coated surface in the gas phase. 気相との接触が、気相を樹脂塗布面に吹き付けることによって行われることを特徴とする請求項2記載のポリフッ化ビニリデン系多孔質膜の製造方法である。 3. The method for producing a polyvinylidene fluoride porous membrane according to claim 2, wherein the contact with the gas phase is performed by spraying the gas phase on the resin coating surface.
JP2010292621A 2010-12-28 2010-12-28 Polyvinylidene fluoride porous flat membrane and method for producing the same Expired - Fee Related JP5722621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010292621A JP5722621B2 (en) 2010-12-28 2010-12-28 Polyvinylidene fluoride porous flat membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010292621A JP5722621B2 (en) 2010-12-28 2010-12-28 Polyvinylidene fluoride porous flat membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012139619A true JP2012139619A (en) 2012-07-26
JP5722621B2 JP5722621B2 (en) 2015-05-27

Family

ID=46676472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010292621A Expired - Fee Related JP5722621B2 (en) 2010-12-28 2010-12-28 Polyvinylidene fluoride porous flat membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP5722621B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774457A (en) * 2019-11-01 2021-05-11 中国石油化工股份有限公司 Polymer microfiltration membrane and preparation method and application thereof
CN112973451A (en) * 2019-12-12 2021-06-18 中国石油化工股份有限公司 Polymer microfiltration membrane with micro-nano composite network pore structure and preparation method and application thereof
WO2021230819A1 (en) * 2020-05-13 2021-11-18 National University Of Singapore A semi-crystalline polymer membrane
CN114426700A (en) * 2020-09-25 2022-05-03 中国石油化工股份有限公司 Moisture-permeable composite film and preparation method and application thereof
CN114797484A (en) * 2021-01-19 2022-07-29 中国石油化工股份有限公司 Porous separation membrane with adsorption performance and preparation method and application thereof
CN115006993A (en) * 2021-03-03 2022-09-06 中国石油化工股份有限公司 Catalytic oxidation formaldehyde-removing porous separation membrane and preparation method and application thereof
CN115105968A (en) * 2021-03-22 2022-09-27 中国石油化工股份有限公司 Formaldehyde-removing porous separation membrane with micro-nano structure and preparation method and application thereof
CN115245755A (en) * 2021-04-25 2022-10-28 中国石油化工股份有限公司 Internal pressure type hollow fiber ultrafiltration membrane and preparation method and application thereof
CN115245754A (en) * 2021-04-26 2022-10-28 中国石油化工股份有限公司 Biodegradable polymer separation membrane for adsorbing heavy metals and preparation method and application thereof
CN115253710A (en) * 2021-04-30 2022-11-01 中国石油化工股份有限公司 Hollow fiber membrane and preparation method and application thereof
CN115253704A (en) * 2021-04-29 2022-11-01 中国石油化工股份有限公司 Hydrophobic polymer microfiltration membrane and preparation method and application thereof
EP4052782A4 (en) * 2019-11-01 2024-01-03 China Petroleum & Chem Corp Polymer-based film, preparation method therefor, and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation
JPS63267406A (en) * 1986-05-30 1988-11-04 Mitsubishi Rayon Co Ltd Manufacture of porous film
JPH03254807A (en) * 1990-03-01 1991-11-13 Hitachi Ltd Membrane unit
JP2000505719A (en) * 1996-01-22 2000-05-16 メムテック アメリカ コーポレイション Highly porous polyvinylidene difluoride membrane
JP2008212847A (en) * 2007-03-05 2008-09-18 Hitachi Plant Technologies Ltd Wet electrostatic dust precipitator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation
JPS63267406A (en) * 1986-05-30 1988-11-04 Mitsubishi Rayon Co Ltd Manufacture of porous film
JPH03254807A (en) * 1990-03-01 1991-11-13 Hitachi Ltd Membrane unit
JP2000505719A (en) * 1996-01-22 2000-05-16 メムテック アメリカ コーポレイション Highly porous polyvinylidene difluoride membrane
JP2008212847A (en) * 2007-03-05 2008-09-18 Hitachi Plant Technologies Ltd Wet electrostatic dust precipitator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774457A (en) * 2019-11-01 2021-05-11 中国石油化工股份有限公司 Polymer microfiltration membrane and preparation method and application thereof
EP4052782A4 (en) * 2019-11-01 2024-01-03 China Petroleum & Chem Corp Polymer-based film, preparation method therefor, and use thereof
CN112973451A (en) * 2019-12-12 2021-06-18 中国石油化工股份有限公司 Polymer microfiltration membrane with micro-nano composite network pore structure and preparation method and application thereof
WO2021230819A1 (en) * 2020-05-13 2021-11-18 National University Of Singapore A semi-crystalline polymer membrane
CN114426700A (en) * 2020-09-25 2022-05-03 中国石油化工股份有限公司 Moisture-permeable composite film and preparation method and application thereof
CN114797484A (en) * 2021-01-19 2022-07-29 中国石油化工股份有限公司 Porous separation membrane with adsorption performance and preparation method and application thereof
CN115006993B (en) * 2021-03-03 2023-07-21 中国石油化工股份有限公司 Porous separation membrane for removing formaldehyde through catalytic oxidation and preparation method and application thereof
CN115006993A (en) * 2021-03-03 2022-09-06 中国石油化工股份有限公司 Catalytic oxidation formaldehyde-removing porous separation membrane and preparation method and application thereof
CN115105968B (en) * 2021-03-22 2023-07-21 中国石油化工股份有限公司 Formaldehyde-removing porous separation membrane with micro-nano structure, and preparation method and application thereof
CN115105968A (en) * 2021-03-22 2022-09-27 中国石油化工股份有限公司 Formaldehyde-removing porous separation membrane with micro-nano structure and preparation method and application thereof
CN115245755A (en) * 2021-04-25 2022-10-28 中国石油化工股份有限公司 Internal pressure type hollow fiber ultrafiltration membrane and preparation method and application thereof
CN115245755B (en) * 2021-04-25 2024-02-13 中国石油化工股份有限公司 Internal pressure type hollow fiber ultrafiltration membrane and preparation method and application thereof
CN115245754A (en) * 2021-04-26 2022-10-28 中国石油化工股份有限公司 Biodegradable polymer separation membrane for adsorbing heavy metals and preparation method and application thereof
CN115253704A (en) * 2021-04-29 2022-11-01 中国石油化工股份有限公司 Hydrophobic polymer microfiltration membrane and preparation method and application thereof
CN115253704B (en) * 2021-04-29 2023-07-21 中国石油化工股份有限公司 Hydrophobic polymer microfiltration membrane and preparation method and application thereof
CN115253710A (en) * 2021-04-30 2022-11-01 中国石油化工股份有限公司 Hollow fiber membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP5722621B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5722621B2 (en) Polyvinylidene fluoride porous flat membrane and method for producing the same
EP2913096B1 (en) Porous polymeric membrane with high void volume
WO2013047398A1 (en) Composite semipermeable membrane
US10406487B2 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
JPS6214905A (en) Process of manufacturing microporous
KR20130090906A (en) Method for manufacturing sheet-shaped separation membrane
CN112657343A (en) Polyamide hollow fiber composite separation membrane and preparation method thereof
KR101869799B1 (en) manufacturing method of forward osmosis filter using carbon nano-material
CN104248915B (en) A kind of preparation method improving hydrophilic enhancement mode plate compounding microporous barrier
KR20090049122A (en) Manufacturing method of polyethersulfone membrane with highly asymmetric structure and its product
KR101305798B1 (en) Porous Separation Membrane and Preparation Method thereof
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
KR101230842B1 (en) Manufacturing method of porous asymmetric membrane with various pore size and its product manufactured thereby
JP4284767B2 (en) Composite semipermeable membrane, water production method using the same, and fluid separation element
KR101198646B1 (en) Manufacturing method of asymmetric porous membrane and asymmetric porous membrane thereby
JP2013031832A (en) Method for manufacturing porous membrane, and microfiltration membrane
JP2010075851A (en) Porous film and method for manufacturing the same
KR20130035628A (en) Manufacturing method of porous asymmetric polysulfonated membrane and membrane manufactured thereby
JP4502324B2 (en) Method for producing porous membrane
CN114716725B (en) Preparation method of polyurethane film with adjustable micropore size
JPS62160109A (en) Manufacture of microporous filter membrane
KR102280869B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20130040623A (en) The preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
JPS63278944A (en) Porous membrane
KR102155930B1 (en) Water treatment membrane and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150326

R150 Certificate of patent or registration of utility model

Ref document number: 5722621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees