JPS5898105A - Fluoride type wet separation membrane and preparation thereof - Google Patents

Fluoride type wet separation membrane and preparation thereof

Info

Publication number
JPS5898105A
JPS5898105A JP56195622A JP19562281A JPS5898105A JP S5898105 A JPS5898105 A JP S5898105A JP 56195622 A JP56195622 A JP 56195622A JP 19562281 A JP19562281 A JP 19562281A JP S5898105 A JPS5898105 A JP S5898105A
Authority
JP
Japan
Prior art keywords
membrane
separation membrane
vinylidene fluoride
water
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56195622A
Other languages
Japanese (ja)
Other versions
JPH0420649B2 (en
Inventor
Shoji Nagaoka
長岡 昭二
Shigenori Takenaka
竹中 繁則
Takeshi Sonoda
苑田 毅
Kazusane Tanaka
和実 田中
Tatsuo Nogi
野木 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP56195622A priority Critical patent/JPS5898105A/en
Publication of JPS5898105A publication Critical patent/JPS5898105A/en
Publication of JPH0420649B2 publication Critical patent/JPH0420649B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a fluoride type humidity separation membrane having a network structure formed by uniform porosity and suitable for precise filtration, by a method wherein a resin based on a vinylidene fluoride polymer is dissolved in a solvent and the obtained solution is formed into a membrane in a wet state. CONSTITUTION:A resin based on a vinylidene fluoride polymer, a vinylidene fluoride/tetrafluoroethylene copolymer or one prepared by mixing both polymer and copolymer in a range of 5/95-20/80 on the wt. basis is dissolved in dimethylsulfoxide or a solvent prepared by adding 5-15wt% glycerine to dimethylsulfoxide to obtain a stock liquid and this stock liquid is formed into a film in a coagulating bath such as a water bath under a wet condition to obtain a fluoride type wet separation membrane having a network structure of which the surface and the interior are formed from uniform multiple pores with pore sizes of 0.01-1mu and water content of 30% or more when water is contained. In addition, the above stated stock liquid can be formed into a hollow yarn separation membrane by dry and wet spinnings.

Description

【発明の詳細な説明】 本発明は精密r過、限外r過 たと水系溶液の濃縮、物
質分離に適する新規な分離膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel separation membrane suitable for precision r-filtration, ultra-rip-filtration, concentration of aqueous solutions, and substance separation.

近年、廃水処理、食品工業、医療分野などの用途分野に
おいて、膜を使用する分離技術が注目され、発展が期待
されている。
In recent years, separation technology using membranes has attracted attention in application fields such as wastewater treatment, the food industry, and the medical field, and further development is expected.

この膜分離技術としては水系媒体中に浮遊、分散あるい
は溶解している物質の大きさに応じて、精密沢過、限外
r過あるいは透析などの手法がとられている。特に、医
薬、生物製剤工業あるいは医療分野に於いては、血液、
血漿、血清、菌体など生体成分を対象とした精密r過あ
るいは限外濾過膜の開発が検削されている。
As this membrane separation technology, methods such as precision filtration, ultrafiltration, or dialysis are used depending on the size of the substances suspended, dispersed, or dissolved in the aqueous medium. In particular, in the pharmaceutical, biological drug industry, or medical field, blood,
Efforts are being made to develop precision filtration or ultrafiltration membranes for biological components such as plasma, serum, and bacterial cells.

本発明膜の好ましい用途である血液浄化関連のいくつか
の具体例としては、血漿分離(血液中の有形成分と血漿
の分離)、免疫複合体などの高分子量蛋白とアルブミン
等の低分子量蛋白(細胞増殖聞書成分の除去など)など
が挙げられる。
Some specific examples related to blood purification, which are preferred applications of the membrane of the present invention, include plasma separation (separation of formed components in blood and plasma), high molecular weight proteins such as immune complexes and low molecular weight proteins such as albumin. (removal of cell proliferation signal components, etc.).

血漿分離の場合は、アルブミン、グロブリン等の血漿蛋
白は高透過率で透過し、赤血球、白血球、血小板は全く
通さず、かつ、溶血や凝血を起すことなく、血漿分離速
度が大きいことが望まれる。
In the case of plasma separation, it is desirable that plasma proteins such as albumin and globulin pass through at a high permeability, but that red blood cells, white blood cells, and platelets do not pass through at all, and that the plasma separation rate is high without causing hemolysis or coagulation. .

血漿分離速度は、血液のへマドクリット値、蛋白濃度、
血流速度、f過圧などに影響を受けるが、臨床使用を考
慮すると、血流量100me/min、  の場合で3
0〜60 ml / m i n 、程度が要望される
。この目的のだめには、アルブミンの透過率が90係以
上、好ましくは実質上完全に透過し、かつ水で測定した
透水速度(水UF几、UPBS)が2〜60t/I]r
−〜2・m m I−I g 、好壕しくは4〜30 
L/ hr −〜2−1ηm Hg付近の性能が要求さ
れる。別の表現では膜表面および内部に0.1〜08ミ
クロン付近の均ブな細孔径を有し、空孔率が高い膜が要
望が異なってくるが、一般にアルブミンの透過率が30
〜100%、好ましくは70〜100%であり、水で測
定した透水性(水UFFL)が01〜20t/1〕r−
〜2・mmHg好壕しくは1〜101/hr −m2m
mHg付近の性能カ要求される。
Plasma separation rate is determined by blood hematocrit value, protein concentration,
It is affected by blood flow velocity, f overpressure, etc., but considering clinical use, when blood flow is 100 me/min, 3
A level of 0 to 60 ml/min is desired. A container for this purpose has an albumin permeability of 90 or more, preferably substantially complete permeation, and a water permeation rate (water UF 几, UPBS) of 2 to 60 t/I]r.
−~2・mm I−I g, preferably 4 to 30
Performance in the vicinity of L/hr - 2-1 ηm Hg is required. In other words, the membrane has uniform pore diameters of around 0.1 to 0.8 microns on the membrane surface and inside, and the requirements are different for a membrane with high porosity, but generally the albumin permeability is 30.
-100%, preferably 70-100%, and the water permeability (water UFFL) measured in water is 01-20t/1]r-
~2・mmHg trench or 1~101/hr -m2m
Performance around mHg is required.

別の表現では膜表面および内部に0.01〜02ミクロ
ン付近の均一な細孔径を有し、空孔率が高い膜が要望さ
れる。
In other words, a membrane with a uniform pore diameter of around 0.01 to 0.02 microns on the membrane surface and inside, and a high porosity is desired.

現在公知の分離膜は、数多く存在するが、上記の諸性能
を満足するものは少なく、さらに、同一素材、同一製造
工程で各技術手法に適用できるような膜を得るととは困
難である。
Although there are many currently known separation membranes, there are few that satisfy the above-mentioned performances, and furthermore, it is difficult to obtain membranes that can be applied to various technical methods using the same material and the same manufacturing process.

本発明者らは、フッ化ビニリデン重合体、フッ化ビニリ
デン−テトラフルオロエチレン共重合体を用いて、同一
製造工程で、上記の目的に応じた巾広い透過性を有する
分離膜(精密f過膜、限外1過膜が得られることを見出
し、本発明に到達した。
The present inventors used a vinylidene fluoride polymer and a vinylidene fluoride-tetrafluoroethylene copolymer to produce a separation membrane (precision f-filtration membrane) with wide permeability in accordance with the above purpose in the same manufacturing process. , it was discovered that an ultra-transparent film can be obtained, and the present invention was achieved.

即ち、本発明は、表面および内部が0.01〜1μの均
一な多数の孔によって形成された網目状組織となってお
り、かつ含水時の含水率が60係以上のフッ素系湿潤分
離膜およびその製造法に関するものである。
That is, the present invention provides a fluorine-based wet separation membrane whose surface and interior have a network structure formed by a large number of uniform pores of 0.01 to 1μ, and whose water content when hydrated is 60 coefficients or more; It concerns its manufacturing method.

本発明でいう均一な細孔径を有する膜とは、表層と内層
の区別が々い実質的に均一な多孔構造を有するものを意
味し、さらにくわしくは細孔径の最大値と最小値の比率
が5以下であり、膜の透過性を支配する最小孔径の細孔
が膜内に均一に分布した構造を有するものをいう。
In the present invention, a membrane having a uniform pore size means a membrane having a substantially uniform pore structure in which the surface layer and the inner layer are easily distinguishable. 5 or less and has a structure in which pores with the smallest pore diameter that governs membrane permeability are uniformly distributed within the membrane.

このような本発明のフッ素系湿潤分離膜は、具体的には
たとえば、フッ化ビニリデン重合体、フッ化ヒニリテン
ーテトラフルオロエチレン共重合体あるいはそれらの混
合体を、ジメチルスルホキシドを主成分とする溶媒に溶
解した原液を湿潤状態で製膜することによって得ること
ができる。
Specifically, such a fluorine-based wet separation membrane of the present invention is produced by using a vinylidene fluoride polymer, a fluorinated hynyritene-tetrafluoroethylene copolymer, or a mixture thereof, with dimethyl sulfoxide as the main component. It can be obtained by forming a film in a wet state from a stock solution dissolved in a solvent.

本発明で用いられる原料フッ素樹脂即ちフッ化ビニリデ
ン重合体およびフッ化ビニリデン−テトラフルオロエチ
レン共重合体の重量平均分子量は、製膜(紡糸を含む)
方式および膜の使用目的によって要求される機械的性質
などを考慮して変更することができるが、一般には1万
以上、好ましくは5万〜50万であることが望ましい。
The weight average molecular weight of the raw material fluororesin used in the present invention, that is, vinylidene fluoride polymer and vinylidene fluoride-tetrafluoroethylene copolymer, is
Although it can be changed in consideration of the mechanical properties required depending on the method and purpose of use of the membrane, it is generally desirable that it is 10,000 or more, preferably 50,000 to 500,000.

ここで重量平均分子量は、該樹脂のジメチルホルムアミ
ド溶液を− ゛ 。
Here, the weight average molecular weight is - ゛ for a dimethylformamide solution of the resin.

−高速 ケルパルミエーションクロマトグラフィー(opc)で
測定し、標準単分散ポリスチレンで較正することにより
算出される。また、共重合体の場合には、溶解性などの
点でフッ化ビニリデン含有率が50モル係以−ヒのもの
が好ましい。
- Calculated by measuring with high performance Kelpalmeation chromatography (OPC) and calibrating with standard monodisperse polystyrene. Further, in the case of a copolymer, one having a vinylidene fluoride content of 50 mol or more is preferable from the viewpoint of solubility and the like.

さらに、フッ化ビニリデン重合体とフッ化ビニリデン−
テトラフルオロエチレン共重合体の混合物は、均一な細
孔径を有し巾広い透過性能とすぐれた機械的性質をそな
えた分離膜を得るために特に適した原料樹脂であるが、
その組成はフッ化ビニリデン重合体/フッ化ビニリデン
−テトラフルオロエチレン共重合体の重量比で5〜95
〜20/80が好ましい。
Furthermore, vinylidene fluoride polymer and vinylidene fluoride
A mixture of tetrafluoroethylene copolymers is a particularly suitable raw material resin for obtaining a separation membrane with uniform pore size, wide permeation performance, and excellent mechanical properties.
Its composition is vinylidene fluoride polymer/vinylidene fluoride-tetrafluoroethylene copolymer in a weight ratio of 5 to 95.
~20/80 is preferred.

後述の溶媒系を用いた場合、この混合範囲領域に於いて
原料樹脂の溶液粘度は、第1図に示すように特異的に高
くなり、製膜、特に中空糸紡糸上有利となる。
When the solvent system described below is used, the solution viscosity of the raw resin in this mixing range becomes specifically high as shown in FIG. 1, which is advantageous for film formation, especially hollow fiber spinning.

これらのフッ素系樹脂の中に、他の少量のビンに単量体
を1種以上含む多元共重合体も、製膜溶媒に対して可溶
性を失わない限りにおいて本発明の膜素材として用いる
ことができる。
Among these fluororesins, other multi-component copolymers containing one or more monomers in a small amount can also be used as the membrane material of the present invention as long as they do not lose solubility in the membrane forming solvent. can.

次に本発明で好ましく用いられる溶媒の主成分であるジ
メチルホルホキンド(DMSO)は、該樹脂と適度な親
和性を有するため、製膜、製糸性が良好で、同一工程で
、製膜条件(例えば、原液濃度、温度、凝固浴温度、組
成)あるいは溶媒に対する添加剤の調整により、精密f
過膜から透析膜にいたる均一で巾広い細孔径の分離膜を
容易に得ることができる。
Next, dimethylformhokind (DMSO), which is the main component of the solvent preferably used in the present invention, has a moderate affinity with the resin, so it has good film forming and thread forming properties, and can be used in the same process under the film forming conditions. Precise f
Separation membranes ranging from permeation membranes to dialysis membranes with uniform and wide pore diameters can be easily obtained.

該樹脂に対し、DMSOより大きな親和性を示すような
溶剤、たとえばジメチルアセトアミド、N−メチルピロ
リドン、ジメチルホルムアミド、トリメチルホスフェー
トなどを溶媒主成分として用いた場合には、このような
巾広い性能の分離膜、特に細孔径が大きい限外濾過膜や
血漿分離膜を簡単に得ることは困難である。またこのよ
うな溶媒を用いると、膜表面に膜内部とは異なり0.0
1μ未満の孔径しか有しないスキン層が形成されること
が多く、巾広い透過性が得られにくい。
When a solvent that exhibits greater affinity for the resin than DMSO, such as dimethylacetamide, N-methylpyrrolidone, dimethylformamide, or trimethylphosphate, is used as the main solvent component, such a wide range of separation performance can be obtained. It is difficult to easily obtain membranes, especially ultrafiltration membranes and plasma separation membranes with large pore sizes. In addition, when such a solvent is used, there is a 0.0
A skin layer with a pore size of less than 1 μm is often formed, making it difficult to obtain wide permeability.

また、該樹脂に対し、DMSOより低い溶解性しかもた
ない溶剤、たとえばジオキサン、テトラヒドロフラン、
メチルエチルケトンなどを主溶媒成分とした場合には特
に製膜、製糸性に劣り、目標とする膜性能も得られにく
い。
Additionally, solvents that have a lower solubility for the resin than DMSO, such as dioxane, tetrahydrofuran,
When methyl ethyl ketone or the like is used as the main solvent component, film forming and thread forming properties are particularly poor, and it is difficult to obtain the desired film performance.

さらに、DMSOは水に無限に可溶であり、製膜、製糸
後、水洗により簡単に除去できるほか、他の溶媒に比べ
その毒性も極めて低く、作業環境上あるいは医療用途を
目的とした場合の製品の安全性などの面からみても極め
て、すぐれた性質をもつものである。
Furthermore, DMSO is infinitely soluble in water, and can be easily removed by washing with water after membrane formation and yarn spinning.It is also extremely low in toxicity compared to other solvents, making it suitable for use in working environments or for medical purposes. It has extremely excellent properties from the standpoint of product safety.

さらに、製膜原液を作製する際には、分離膜の目的に応
じて細孔径を制御するために、水、ホルムアミド、アル
コール類(ブタノール、プロノミノール、エチレングリ
コール、クリセリンなど)、尿素、塩化カルシウム等の
非溶媒を添加したり、ポリオキシエチレンエーテルラウ
リルアルコール、インオクチルフェノキシポリエトキシ
エタノール等の界面活性剤を添加することも好ましい方
法である。これらの中でも、グリセリンは、添加効果が
大きく細孔径が均一な限外濾過膜や血漿分離膜を製膜(
製糸を含む)する際に特に好ましい添加剤である。
Furthermore, when preparing the membrane forming stock solution, water, formamide, alcohols (butanol, pronominol, ethylene glycol, chrycerin, etc.), urea, calcium chloride, etc. are used to control the pore size according to the purpose of the separation membrane. It is also a preferable method to add a non-solvent, or to add a surfactant such as polyoxyethylene ether lauryl alcohol or inoctylphenoxypolyethoxyethanol. Among these, glycerin has a large addition effect and is used to form ultrafiltration membranes and plasma separation membranes with uniform pore sizes (
It is a particularly preferable additive when manufacturing (including yarn spinning).

この溶媒系における添加剤の分率は5〜15係が、DM
SOのもつ良好な製膜性を失なわずにかつ広い範囲の分
離特性を有する膜を得るだめに好ましい。
The fraction of additives in this solvent system is between 5 and 15, DM
This is preferable in order to obtain a membrane having a wide range of separation characteristics without losing the good membrane forming properties of SO.

製膜あるいは製糸原液中の該樹脂の濃度は、用いた溶媒
の種類、製膜の方法および目的とする分離膜の細孔径な
どによって異なるが、通常5〜35重量係、好ましくは
10〜60重量%の範囲である。
The concentration of the resin in the membrane forming or yarn forming stock solution varies depending on the type of solvent used, the membrane forming method, the pore diameter of the intended separation membrane, etc., but is usually 5 to 35% by weight, preferably 10 to 60% by weight. % range.

このようにして得られる製膜原液は、公知の種々の方式
によって製膜することができる。
The film-forming stock solution obtained in this way can be used to form a film by various known methods.

本発明の製膜とは平膜を製造することは勿論、中空糸等
に紡糸することも含むものであり、例えば、原液をガラ
ス板、金属板などの平板に流延したのち凝固浴に浸漬し
て固化させるか、または細長い孔をもった口金から凝固
浴中に押出して膜状に成形することができる。その際ポ
リエステルタフタなどの支持布の一ヒに塗布することも
可能である。まだ、平膜のほか同心円形の孔をもった口
金から紡糸して円筒状まだは中空糸状に成形するか、凸
面、凹面その他の不規則形状の面に広げたのち凝固させ
て種々の形状の膜を得ることができる。
The membrane production of the present invention includes not only the production of flat membranes but also spinning into hollow fibers, etc. For example, after casting a stock solution onto a flat plate such as a glass plate or metal plate, it is immersed in a coagulation bath. It can be solidified or extruded into a coagulation bath through a die with elongated holes to form a film. In this case, it is also possible to apply it to a support fabric such as polyester taffeta. In addition to flat membranes, fibers can be spun from spindles with concentric circular holes to form cylindrical or hollow fibers, or they can be spread on convex, concave, or other irregularly shaped surfaces and solidified to form various shapes. membrane can be obtained.

凝固浴としては一般に、水、脂肪族の低級アルコール類
、捷たけそれらの混合物あるいはこれら、)よms¥p
ヤ、0を添ヵ。した。。ヵ8好。
The coagulation bath is generally water, aliphatic lower alcohol, a mixture thereof, or a mixture thereof.
Ya, add 0. did. . 8 good.

しく用いられる。その際の凝固浴温度は、膜の透過性に
犬き々影響を与え、一般に高温側において高い透水性を
有する膜が得られる。
commonly used. The temperature of the coagulation bath at that time has a great influence on the permeability of the membrane, and generally a membrane having high water permeability can be obtained at a high temperature.

通常の凝固浴温度はO℃〜98℃付近で実施されるが、
細孔径の均一で大きな膜を得るためには、50℃以上が
好ましい。
The normal coagulation bath temperature is around 0°C to 98°C,
In order to obtain a membrane with uniform and large pore diameters, the temperature is preferably 50°C or higher.

本発明の膜は、凝固浴から乾燥するとと々く含水状態も
しくは湿潤状態で製膜、保存することにより、長期間に
わたって透過性能および機械的性質に大きな変化を生じ
々い。湿潤状態に保持するには、また含水グリセリンな
どの適切な湿潤剤を付着させておけば十分可能である。
When the membrane of the present invention is formed and stored in a water-containing or wet state immediately after drying from the coagulation bath, large changes in permeation performance and mechanical properties do not occur over a long period of time. It is sufficient to keep it moist by applying a suitable wetting agent such as hydrated glycerin.

湿潤剤としては上記のほかにエチレングリコール、ポリ
エチレングリコール、各種の界面活性剤などが挙げられ
る。さらに、製膜後に加熱処理に」二つて膜の透過性能
や機械的性質(寸法安定性など)を変えることも可能で
ある。加熱処理は張力下または無張力下で行々い、温度
は通常50〜110℃好ましくは70〜90℃の範囲で
ある。
In addition to the above, examples of wetting agents include ethylene glycol, polyethylene glycol, and various surfactants. Furthermore, it is also possible to change the permeation performance and mechanical properties (dimensional stability, etc.) of the membrane by heat treatment after membrane formation. The heat treatment is carried out under tension or without tension, and the temperature is usually in the range of 50 to 110°C, preferably 70 to 90°C.

このよう外方法で得られたフッ素系分離膜は、通常表面
および内部が微細で均一な多数の孔によって形成された
網目状組織と々つでいるが、特に限外p過膜や血漿分離
膜としては、その含水率がろ0%以上であることが必要
である。特に好ましい含水率は60%以上である。含水
率は製膜時の製膜条件により容易に変化させうる。
Fluorine-based separation membranes obtained by such external methods usually have a network structure formed by many fine and uniform pores on the surface and inside, but especially ultrapolar membranes and plasma separation membranes. As such, it is necessary that its moisture content be 0% or more. A particularly preferable water content is 60% or more. The water content can be easily changed by film forming conditions during film forming.

ここで含水率(W)とは下式で定義される。Here, the water content (W) is defined by the following formula.

G1:含水膜重量 、G2:乾燥膜重量含水率が30%
以下の場合には1過あるいは分離速度が小さく血液浄化
などの実用には適さない。
G1: Water-containing membrane weight, G2: Dry membrane weight, moisture content is 30%
In the following cases, the separation rate is too low for one pass or is not suitable for practical use such as blood purification.

本発明の分離膜の平均孔径は、001〜1μである。孔
径が0,01μ未満では、1過が遅くかつ目的とする蛋
白成分がρ過されない場合があり、まだ1μを越えると
血液中の有形成分、たとえば血奨板、リンパ球等がf液
に混合する場合があるため好ましくない。
The average pore diameter of the separation membrane of the present invention is 0.001 to 1 μm. If the pore size is less than 0.01 μ, the pore size may be slow and the target protein component may not be passed through. If the pore size exceeds 1 μ, organic components in the blood, such as blood cells, lymphocytes, etc., may enter the f fluid. This is not preferable because it may cause mixing.

次に、本発明の分離膜の形状の中で最も好オしい中空糸
分離膜についてより詳しく説明する。
Next, the most preferable hollow fiber separation membrane among the separation membrane shapes of the present invention will be explained in more detail.

前述の製膜原液は乾湿式紡糸により中空糸分離膜とされ
る。本発明に使用される口金は、通常の中空糸を紡糸す
るのに用いられる口金はすべて使用することができるが
、本発明の目的からすれば口金孔内に中空細管を有する
環状オリフィスからなる口金が好ましく使用される。
The above-mentioned membrane-forming stock solution is made into a hollow fiber separation membrane by dry-wet spinning. The spinneret used in the present invention can be any spinneret used for spinning ordinary hollow fibers, but for the purposes of the present invention, a spinneret consisting of an annular orifice with a hollow capillary in the spinneret hole is suitable. is preferably used.

このような口金を用いて中空糸を紡糸する方法は種々提
案されているが、本発明の目的とする混合物質の分離装
置に使われる中空糸分離膜としては断面の形状が均一か
つ真円に近いことが要求される。
Various methods have been proposed for spinning hollow fibers using such spinnerets, but the hollow fiber separation membrane used in the separation device for mixed substances, which is the object of the present invention, has a uniform cross-sectional shape and a perfect circle. Closeness is required.

本発明では、口金中央部に位置する中空管から中空糸の
内部に、紡糸原液に使用した溶媒あるいはその溶媒と水
の混合物あるいはその溶媒と多価アルコール類の混合物
を定量的に注入しつつ紡糸する。注入液は紡糸原液と接
触した際に中空糸の内壁構造の形成に関与するので重要
である。紡糸原液の性状をよく調べ、また、目的に応じ
て適切に選択し々ければならない。
In the present invention, the solvent used for the spinning stock solution, the mixture of the solvent and water, or the mixture of the solvent and polyhydric alcohol is quantitatively injected into the hollow fiber from the hollow tube located in the center of the spinneret. Spinning. The injection liquid is important because it participates in the formation of the inner wall structure of the hollow fiber when it comes into contact with the spinning dope. The properties of the spinning dope must be carefully investigated and the spinning dope must be selected appropriately depending on the purpose.

通常使用される多価アルコールとしては、グリセリン、
エチレングリコール、ジエチレングリコール、プロパン
ジオールなどがあけられるが、これに限定されるもので
は々い。これらの注入液の組成は中空糸膜の分離性能を
コントロールする一手段としても使用することができる
Commonly used polyhydric alcohols include glycerin,
Ethylene glycol, diethylene glycol, propanediol, etc. can be used, but they are not limited to these. The composition of these injection solutions can also be used as a means of controlling the separation performance of hollow fiber membranes.

本発明では、条件により中空糸の中空部に気体を導入し
て紡糸することも可能である。
In the present invention, depending on the conditions, it is also possible to introduce gas into the hollow part of the hollow fiber for spinning.

注入気体としては特に制限はないが空気または窒素など
の不活性気体が通常使用される。
The injection gas is not particularly limited, but air or an inert gas such as nitrogen is usually used.

中空糸の紡糸性は平膜の場合以」二に原液濃度特に粘度
に大きく影響される。通常、紡糸可能な原液粘度は、口
金温度で好ましくば10〜5000ボイズ、」ニリ好捷
しくは100−3000ボイズでよい。
Compared to the case of flat membranes, the spinnability of hollow fibers is greatly influenced by the concentration of the stock solution, especially the viscosity. Usually, the viscosity of the spinnable stock solution is preferably 10 to 5,000 voids, preferably 100 to 3,000 voids at the spindle temperature.

ここで紡糸原液粘度は落球粘度あるい(d回転粘度など
で測定される。
The viscosity of the spinning dope is measured by falling ball viscosity or rotational viscosity (d).

口金から紡出された中空糸状ゾルは空気中もしくは、不
活性気体中を通過しつつ凝固浴に導ひかれる。この空中
走行中の雰囲気条件は、紡糸された糸条の太さ、紡糸速
度および紡糸温度等によって変わるものであり、一般的
に規定することはできない。しかし通常好ましく採用さ
れる条件としては、口金面から凝固浴に導入されるまで
の距離は0.1 cm以」−さらに好ましくは0.2c
m以上200L:rn以下の範囲にある。その範囲外は
安定した紡糸を困難にする。さらに雰囲気の温度は通常
大気温度もしくは室内湯度をそのまま使用してもよいが
、場合によっては冷却して使用することもできる。また
適度な湿度の調節を行ない膜性能の微妙なコントロール
を行なうこともできる。
The hollow fiber sol spun from the spinneret is led to a coagulation bath while passing through air or an inert gas. The atmospheric conditions during air travel vary depending on the thickness of the spun yarn, the spinning speed, the spinning temperature, etc., and cannot be generally specified. However, as a condition that is usually preferably adopted, the distance from the mouth surface to the introduction into the coagulation bath is 0.1 cm or more - more preferably 0.2 cm.
It is in the range of m or more and 200L:rn or less. Outside this range, stable spinning becomes difficult. Furthermore, as for the temperature of the atmosphere, the atmospheric temperature or indoor hot water temperature may be used as is, but depending on the case, it may be used after being cooled. It is also possible to finely control membrane performance by adjusting the humidity appropriately.

本発明で採用される凝固浴としては、本発明の重合体の
非溶剤であってかつ紡糸原液の溶媒と相溶しうるものな
らば、単独もしくは紡糸原液の溶媒との混合液として凝
固浴に使用できる。
The coagulation bath employed in the present invention may be a non-solvent for the polymer of the present invention and is compatible with the solvent of the spinning dope, either alone or as a mixture with the solvent of the spinning dope. Can be used.

最終的に含水状態の中空繊維とするためには、紡糸原液
の溶媒に水と相溶しうるものを選び、凝固浴には水もし
くは水と紡糸原液に使用した溶媒との混合物を採用する
ことが実用的である。
In order to finally obtain a hollow fiber in a water-containing state, a solvent for the spinning dope must be selected that is compatible with water, and the coagulation bath should be water or a mixture of water and the solvent used for the spinning dope. is practical.

凝固浴の温度は膜の透水性能を左右し、一般に高温はど
透水性を高くする傾向を示すので、目的に応じて適切に
選択しなければならない。通常0〜98℃の範囲で設定
される。
The temperature of the coagulation bath affects the water permeability of the membrane, and in general, higher temperatures tend to increase water permeability, so it must be selected appropriately depending on the purpose. It is usually set in the range of 0 to 98°C.

本発明によって得られた中空糸膜は十分に水洗した後、
含水状態のままあるいは水をグリセリンあるいはエチレ
ングリコール等に置換した状態で保存されるが、場合に
よっては加熱処理によって膜の透過性能や機械的性質、
寸法安定性などを変えることも可能である。加熱処理は
張力下まだは無張力下通常50〜110℃の範囲で行な
われる。
After thoroughly washing the hollow fiber membrane obtained by the present invention with water,
It is stored in a water-containing state or in a state in which water is replaced with glycerin or ethylene glycol, but in some cases heat treatment may affect the membrane's permeability, mechanical properties, etc.
It is also possible to change the dimensional stability etc. The heat treatment is carried out under tension or without tension, usually at a temperature in the range of 50 to 110°C.

本発明で得られる中空糸膜は中空部断面が実質的に円形
であり、膜厚は約5〜500μの範囲内で一定であり、
内径は使用目的により異なるが70〜1000μの範囲
が好ましい。
The hollow fiber membrane obtained in the present invention has a substantially circular hollow section, and a constant membrane thickness within a range of about 5 to 500μ,
The inner diameter varies depending on the purpose of use, but is preferably in the range of 70 to 1000 microns.

本発明分離膜の用途は先に述べたように血液浄化関連の
医療用途に最適であるが、分離すべき微粉子が変形自在
であり、かつ全体としてサスペンションを形成した溶液
での微粒子の分離にも適し、エマルジョン油剤や油水分
離、牛乳粒子の濃縮、ラテックス液の濃縮、ビール、ブ
ドウ油、清酒、ジュースの清澄化等にも適している。捷
た無機質粒子の懸濁液の清澄li別、無菌f過、超純水
製造などにも使用可能である。
As mentioned above, the separation membrane of the present invention is most suitable for medical applications related to blood purification, but it is also suitable for separating fine particles in a solution in which the fine particles to be separated are deformable and form a suspension as a whole. It is also suitable for emulsion oils, oil/water separation, concentration of milk particles, concentration of latex liquid, clarification of beer, grape oil, sake, juice, etc. It can also be used for clarifying suspensions of ground inorganic particles, sterile filtration, and producing ultrapure water.

次に、本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained using examples.

與施例1 フッ化ビニリデン重合体(米国ペンウォルト社製、Ic
ynar 460)9部とフッ化ビニリデン−テトラフ
ルオロエチレン共重合体(ダイキン工業製、VTO60
08)51部とを混合し、これをグリセリン10係を含
むジメチルスルホキシド溶媒440部に120℃で溶解
した。(ポリマー濃度12重量%) この溶液を室温(27℃)まで冷却し、250μの厚み
のポリエステルフィルム製スペーサーを有するガラス板
上にドクタープレイドを用いて流延し、ただちに90℃
の熱水中に5分間浸漬し、その後25℃の水中にうつし
かえで平膜を作成した。どの膜の含水率は73%であっ
た。
Example 1 Vinylidene fluoride polymer (manufactured by Pennwalt, USA, Ic
ynar 460) and vinylidene fluoride-tetrafluoroethylene copolymer (Daikin Industries, Ltd., VTO60)
08) and dissolved in 440 parts of dimethyl sulfoxide solvent containing 10 parts of glycerin at 120°C. (Polymer concentration: 12% by weight) This solution was cooled to room temperature (27°C), cast using a doctor caster onto a glass plate with a 250μ thick polyester film spacer, and immediately poured at 90°C.
The membrane was immersed in hot water for 5 minutes, and then transferred to water at 25°C to form a flat membrane. The moisture content of all membranes was 73%.

この平膜の走査電顕写真を第2図、第6図に示す。写真
にみられる如く膜表面および内部には0.2〜05μの
均一な細孔径が認められ、膜表面には透過性の低下を伴
なうスキン層の形成は全くみられなかった。
Scanning electron micrographs of this flat film are shown in FIGS. 2 and 6. As seen in the photograph, uniform pore diameters of 0.2 to 0.5 microns were observed on the membrane surface and inside, and no skin layer formation accompanied by a decrease in permeability was observed on the membrane surface.

この膜の純水の透水速度UFR8は15゜8t/ l+
 r 、 y++2. mm1−1 gであり、0.2
%アルブミン水溶液の膜1過速度(MF’Ij)は9.
6 L / hr、m2・mm I−1g 、  アル
ブミン透過率は98%以」二であった。
The water permeation rate UFR8 of this membrane is 15°8t/l+
r, y++2. mm1-1 g, 0.2
% membrane 1 overrate (MF'Ij) of albumin aqueous solution is 9.
6 L/hr, m2·mm I-1g, and albumin transmittance was 98% or higher.

さらに、この膜をアミコン社薄層渦流1過装置(TOF
’2型)に組込み、兎新鮮血(ヘパリン7 U / m
l )を用い、50gmHgの加圧下、1 me/ m
 i n 、で流した際の血漿f過速度は601nl/
hr、〜2.mmHgであり、総蛋白の透過率は95係
以上であった。なお、このΔ日過血漿中への血小板や赤
血球の漏れは認められなかった。
Furthermore, this membrane was processed using Amicon's thin-layer vortex flow device (TOF).
'type 2) and fresh rabbit blood (heparin 7 U/m
l) under a pressure of 50 gmHg, 1 me/m
The plasma f overrate when flowing at i n was 601 nl/
hr, ~2. mmHg, and the total protein transmittance was 95 coefficients or higher. Note that no leakage of platelets or red blood cells into this Δ day-old plasma was observed.

比較例1 実施例1と同組成のフッ素系樹脂混合物60部を440
部のジメチルホルムアミドに120℃で溶解し実施例1
と全く同様の方法で平膜を作成した。この膜の含水率は
25%であった。
Comparative Example 1 440 parts of 60 parts of a fluororesin mixture having the same composition as Example 1
Example 1
A flat membrane was prepared in exactly the same manner. The moisture content of this membrane was 25%.

さらに実施例1と同様の方法で測定したこの膜の純水の
透過速度は0.031 / h r 、〜2. mm1
−1gであり、アルブミンの透過率は1%以下であった
。この膜を走査電顕(3000倍うで観察しだところ表
面には厚みが0.2μ程度のスキン層が形成され全く細
孔はみられず、内部に0.05〜1μの細孔がみられる
非対称膜であることがわかった。
Furthermore, the pure water permeation rate of this membrane measured by the same method as in Example 1 was 0.031/hr, ~2. mm1
-1 g, and the albumin transmittance was 1% or less. When this film was observed under a scanning electron microscope (3000x magnification), a skin layer with a thickness of about 0.2 μm was formed on the surface and no pores were observed, and pores of 0.05 to 1 μm were found inside. The membrane was found to be asymmetric.

実施例2 実施例1で用いたフッ化ビニリデンポリマ9部トフツ化
ビニリデン−テトラフルオロエチレン51部の混合体を
グリセリン12%を含むジメチルスルホキシド溶液にポ
リマー濃度15%で120℃で溶解した。この溶液を紡
糸原液とし、環状紡糸孔から口金温度60℃で中空糸の
内部に芯液として水60%を含むジメチルスルホキシド
40%からなる溶液を注入しながら紡糸し、空気中を5
副走行させた後、ジメチルスルホキシドを約10%含む
水溶液からなる約90℃の凝固浴を通して凝固させた後
、水洗浴およびグリセリン浴を通して20m/minで
中空糸を巻取った。
Example 2 A mixture of 9 parts of the vinylidene fluoride polymer used in Example 1 and 51 parts of vinylidene fluoride-tetrafluoroethylene was dissolved at 120° C. in a dimethyl sulfoxide solution containing 12% glycerin at a polymer concentration of 15%. Using this solution as a spinning stock solution, spinning was carried out while injecting a solution consisting of 40% dimethyl sulfoxide containing 60% water as a core solution into the hollow fiber through the annular spinning hole at a spinneret temperature of 60°C.
After running on the side, the hollow fiber was coagulated through a coagulation bath at about 90° C. consisting of an aqueous solution containing about 10% dimethyl sulfoxide, and then wound up at 20 m/min through a water washing bath and a glycerin bath.

であった。Met.

また、この中空糸の表面および内部には実施例1の平膜
とほぼ同様の0.2〜0.5μの均一な細孔径がみとめ
られ中空糸表面にはスキン層の形成はみられなかった。
Furthermore, uniform pore diameters of 0.2 to 0.5μ, which are almost the same as those of the flat membrane of Example 1, were observed on the surface and inside of this hollow fiber, and no skin layer was observed on the surface of the hollow fiber. .

この中空糸10本を有効要約12Crnの小型ケースに
収納し、有効面積13ctAの試験モジュールを作製し
、透過特性を試験した。
Ten of these hollow fibers were housed in a small case with an effective diameter of 12 Crn, a test module with an effective area of 13 ctA was prepared, and the permeation characteristics were tested.

この試験モジュールに50 mmHgの加圧をかけて測
定した透水性(水UFIJば4.5t/hr・〜2・m
 m I−1gであり、02%アルブミン水溶液の膜f
過速度(MFl[j)は1.5t/I】r・〜2・mm
Hg、アルブミン透過率はほぼ100%であった。
The water permeability measured by applying a pressure of 50 mmHg to this test module (4.5 t/hr・~2・m for water UFIJ)
m I-1g, membrane f of 02% albumin aqueous solution
Overspeed (MFl[j) is 1.5t/I]r・~2・mm
Hg and albumin permeability was approximately 100%.

さらにこの中空糸2500本を有効長17.5副のケー
スに収納し、有効面積0.5m2のモジュールを作製し
、12Kgの犬を用いた体外’trm流実験全実験った
Further, 2,500 of these hollow fibers were housed in a case with an effective length of 17.5 mm to create a module with an effective area of 0.5 m2, and all in vitro 'trm flow experiments were conducted using a 12 kg dog.

血液流量100 me / m i n  で20〜3
0 mm)I gの加圧下、血漿採取速度は1.8 L
 / h rから1.67/hr(3時間後)と安定し
、溶血、凝血などのトラブルも々く、その間の沢過血漿
中の総蛋白量は対応する血液から遠心分離して得られる
ものとほぼ同一であり、アルブミン、グロブリン、リボ
プロティンともに95%以上が透過していた。また、そ
の際沢過血漿中への血小板や赤血球の漏れは認められず
、体外潅流前後で、犬の血小板、白血球の減少も認めら
れなかつ、た。
Blood flow rate 100 me/min 20-3
Plasma collection rate was 1.8 L under pressure of 0 mm) I g.
/ hr to 1.67/hr (after 3 hours), and there were many problems such as hemolysis and coagulation, and the total amount of protein in the excess plasma during that period was obtained by centrifugation from the corresponding blood. , and more than 95% of albumin, globulin, and riboprotein were transmitted. Furthermore, no leakage of platelets or red blood cells into the extracorporeal plasma was observed, and no decrease in platelets or white blood cells was observed in the dogs before and after extracorporeal perfusion.

すなわち、実施例1,2の分離膜は血漿分離などの精密
沢過膜としての用途に適している。
That is, the separation membranes of Examples 1 and 2 are suitable for use as precision filtration membranes for plasma separation and the like.

実施例6 実施例1で用いたフッ化ビニリデン重合体7部フッ化ビ
ニリデン−テトラフルオロエチレン共重合体96部とを
混合し、これをグリセリン10%を含むジメチルスルホ
キシド溶媒700部に120℃で溶解した。
Example 6 7 parts of vinylidene fluoride polymer used in Example 1 and 96 parts of vinylidene fluoride-tetrafluoroethylene copolymer were mixed, and this was dissolved in 700 parts of dimethyl sulfoxide solvent containing 10% glycerin at 120°C. did.

この溶液を室温まで冷却し、250μの厚みのポリエス
テルフィルム製スペーサーヲ有スるガラス板上にドクタ
ープレイドを用いて流延し、ただちに4℃の冷水中に浸
漬し平膜を作成した。
This solution was cooled to room temperature, cast using a doctor playdough onto a glass plate having a 250 μm thick polyester film spacer, and immediately immersed in cold water at 4° C. to form a flat film.

この平膜の含水率は65q6であった。The water content of this flat membrane was 65q6.

この平膜表面および内部には、002〜0.03μの細
孔が均一に分布しているととが走査電顕観察によりみと
められた。
It was found by scanning electron microscopy that pores of 0.02 to 0.03 μm were uniformly distributed on the surface and inside of this flat membrane.

実施例1で用いたil+M過装置で測定したこの膜の水
の透水量(’UFR8)は1.2 t/ m211r・
m m Hgであり、0.2%アルブミン水溶液の膜1
過速度(MF’lj)は0.8 t / m2・h r
 ・mmHgでアルブミン透過率は94%であり、さら
に、02係γ−グロブリン(牛、生化学工業■)生食溶
液の膜1過速度(MF’R)はり、IA/hr−m2・
mmHg、透過率は53.5%であった。
The water permeability ('UFR8) of this membrane measured with the il+M filtration device used in Example 1 was 1.2 t/m211r.
m m Hg, 0.2% albumin aqueous solution membrane 1
Overspeed (MF'lj) is 0.8 t/m2・hr
・Albumin permeability is 94% at mmHg, and membrane 1 overrate (MF'R) measurement of 02-group γ-globulin (cattle, Seikagaku Corporation ■) saline solution, IA/hr-m2・
mmHg and transmittance was 53.5%.

さらに同条件で成牛血漿をΔj過しだ際の濾過量は75
 me / h r 11rn2emml(gであり、
アルブミン対グロブリン比(A/G比)は血漿の07か
ら、沢過液の1.8と変化し、かなりのアルブミンとグ
ロブリンの分離を行い得だ。
Furthermore, the amount of filtration when adult cow plasma was Δj-filtered under the same conditions was 75
me/hr 11rn2emml (g,
The albumin to globulin ratio (A/G ratio) varies from 07 for plasma to 1.8 for the filtrate, and a considerable separation of albumin and globulin can be achieved.

実施例4 実施例1で用いたフッ化ビニリデン−テトラフルオロエ
チレン共重合体12部を、グリセリンZ5%を含むジメ
チルスルホキシド溶媒88部に110℃で溶解し実施例
1と同様の方法で流延し、約10%のジメチルスルホキ
シドを含む75℃の凝固浴中で製膜し水洗した後、グリ
セリンを付着させた平膜を作成した。この平膜の含水率
は62%であった。この膜表面および内部には0.01
〜0.03μの細孔が均一に分布しており、水の透過速
度は、1t/hr−m2・m m Hgであった。まだ
、02%アルブミン水溶液を25℃、50 mmH,g
の加圧下に入口での線速度5 cm / sec 、で
流した時の膜沢過速度(MF’R,)は0.6 t /
 h r −m2・mmHg 、  アルブミン透過率
は99%であった。
Example 4 12 parts of the vinylidene fluoride-tetrafluoroethylene copolymer used in Example 1 was dissolved in 88 parts of dimethyl sulfoxide solvent containing 5% glycerin Z at 110°C, and cast in the same manner as in Example 1. After forming a film in a 75° C. coagulation bath containing about 10% dimethyl sulfoxide and washing with water, a flat film was prepared with glycerin attached. The water content of this flat membrane was 62%. 0.01 on the surface and inside of this film
Pores of ~0.03μ were uniformly distributed, and the water permeation rate was 1 t/hr-m2·mm Hg. Still, 2% albumin aqueous solution was added at 25°C, 50 mmH, g.
When flowing at a linear velocity of 5 cm/sec at the inlet under pressure of
h r -m2·mmHg, albumin transmittance was 99%.

さらに0.2係γ−グロブリン生食溶液の膜沢過速度(
MFR)は、0.05t/hr−m2・mmHg。
Furthermore, the membrane overrate of the 0.2 coefficient γ-globulin saline solution (
MFR) is 0.05t/hr-m2·mmHg.

透過率は214%であった。The transmittance was 214%.

さらに同条件で成牛血漿を沢過しだ際の濾過量は21 
ml/ h r−m2・mmHgでありアルブミン対グ
ロブリン比(A、/G比)は血漿の0.7から、r過液
の2.5と変化した。
Furthermore, the filtration amount when adult cow plasma was filtered under the same conditions was 21
ml/hr-m2·mmHg, and the albumin-to-globulin ratio (A,/G ratio) changed from 0.7 for plasma to 2.5 for r-permeate.

実施例3,4は血漿からアルブミンとグロブリンを分離
する蛋白分離膜としての用途に適している。
Examples 3 and 4 are suitable for use as a protein separation membrane for separating albumin and globulin from plasma.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフッ化ビニIJデン重合体とフッ化ビニリデン
−テトラフルオロエチレン共重合体の混合比と粘度の関
係を示す。(ポリマ濃度10係、グリセリン/DMSO
=10/90.30℃B型回転粘度計にて測定) 第2図は、実施例1で作成した平膜表面の、第6図は同
じ膜の断面の走査型電子顕微鏡写真(倍率+3000倍
)を示す。 特許出願人 東 し 株 式 会 社 フッ化ビニリチン重量分率(%) 第  1  図
FIG. 1 shows the relationship between the mixing ratio and viscosity of vinylidene fluoride IJ polymer and vinylidene fluoride-tetrafluoroethylene copolymer. (Polymer concentration 10 parts, glycerin/DMSO
= 10/90.30°C (measured with a B-type rotational viscometer) Figure 2 is a scanning electron micrograph of the surface of the flat membrane prepared in Example 1, and Figure 6 is a scanning electron micrograph of a cross section of the same membrane (magnification +3000x). ) is shown. Patent applicant Toshi Co., Ltd. Vinyritine fluoride weight fraction (%) Figure 1

Claims (1)

【特許請求の範囲】 (1)表面および内部が[1,01〜I IIの均一な
多孔によって形成された網目状組織となっており、かつ
含水時の含水率が60%以上のフッ載のフッ素系湿潤分
離膜。 (3)  フッ化ビニリデン重合体、フッ化ビニリデン
−テトラフルオロエチレン共重合体またはそれらの混合
体を主成分とする樹脂をジメチルスルホキシドを主成分
とする溶媒に溶解した原液を湿潤状態で製膜することを
特徴とするフッ素系湿潤分離膜の製造方法。 (4)溶媒としてジメチルスルホキシドにグリセリンを
5〜15重量係添加したものを用いる特許請求の範囲第
(3)項記載のフッ素系湿潤分離膜の製造方法。 (5)樹脂として、フッ化ビニリデン重合体とフッ化ヒ
ニリデンーテトラフルオロエチレン共重合体を重量比で
5/95〜20/ 80の範囲で混合したものを用いる
特許請求の範囲第(3)項記載のフッ素系湿潤分離膜の
製造方法。
[Scope of Claims] (1) The surface and inside thereof have a network structure formed by uniform pores of [1,01 to III], and the water content when hydrated is 60% or more. Fluorine-based wet separation membrane. (3) Forming a film in a wet state using a stock solution in which a resin containing vinylidene fluoride polymer, vinylidene fluoride-tetrafluoroethylene copolymer, or a mixture thereof as a main component is dissolved in a solvent containing dimethyl sulfoxide as a main component. A method for producing a fluorine-based wet separation membrane, characterized by: (4) The method for producing a fluorine-based wet separation membrane according to claim (3), using dimethyl sulfoxide with 5 to 15 weight percentages of glycerin added as a solvent. (5) Claim (3) in which the resin is a mixture of vinylidene fluoride polymer and vinylidene fluoride-tetrafluoroethylene copolymer in a weight ratio of 5/95 to 20/80. A method for producing a fluorine-based wet separation membrane as described in .
JP56195622A 1981-12-07 1981-12-07 Fluoride type wet separation membrane and preparation thereof Granted JPS5898105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195622A JPS5898105A (en) 1981-12-07 1981-12-07 Fluoride type wet separation membrane and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195622A JPS5898105A (en) 1981-12-07 1981-12-07 Fluoride type wet separation membrane and preparation thereof

Publications (2)

Publication Number Publication Date
JPS5898105A true JPS5898105A (en) 1983-06-10
JPH0420649B2 JPH0420649B2 (en) 1992-04-06

Family

ID=16344225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195622A Granted JPS5898105A (en) 1981-12-07 1981-12-07 Fluoride type wet separation membrane and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5898105A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916503A (en) * 1982-07-20 1984-01-27 Teijin Ltd Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPS6094614A (en) * 1983-10-27 1985-05-27 Unitika Ltd Polyvinylidene fluoride based monofilament
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation
JPS6434407A (en) * 1987-07-30 1989-02-03 Toray Industries Porous membrane of polytetrafluoroethylene-base resin and production thereof
WO2003106545A1 (en) * 2002-06-14 2003-12-24 東レ株式会社 Porous membrane and method of manufacturing the porous membrane
WO2012063669A1 (en) * 2010-11-09 2012-05-18 東レ株式会社 Process for production of separation membrane
WO2012176815A1 (en) 2011-06-22 2012-12-27 ダイキン工業株式会社 Fluoropolymer, production method for fluoropolymer, and porous polymer film
JP2014516115A (en) * 2011-06-06 2014-07-07 アルケマ フランス Solvent for fluoropolymers
EP3398675A1 (en) * 2017-05-02 2018-11-07 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Macroporous or mesoporous polymer films in hollow fiber or flat sheet geometry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035265A (en) * 1973-07-29 1975-04-03
JPS5211261A (en) * 1975-07-17 1977-01-28 Sumitomo Electric Industries Method of producing porous material
JPS5226786A (en) * 1975-08-26 1977-02-28 Denki Kagaku Kogyo Kk Illuminating member
JPS5566935A (en) * 1978-11-14 1980-05-20 Asahi Chem Ind Co Ltd Production of porous vinylidene fluoride resin membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035265A (en) * 1973-07-29 1975-04-03
JPS5211261A (en) * 1975-07-17 1977-01-28 Sumitomo Electric Industries Method of producing porous material
JPS5226786A (en) * 1975-08-26 1977-02-28 Denki Kagaku Kogyo Kk Illuminating member
JPS5566935A (en) * 1978-11-14 1980-05-20 Asahi Chem Ind Co Ltd Production of porous vinylidene fluoride resin membrane

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916503A (en) * 1982-07-20 1984-01-27 Teijin Ltd Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPS6094614A (en) * 1983-10-27 1985-05-27 Unitika Ltd Polyvinylidene fluoride based monofilament
JPH0444012B2 (en) * 1983-10-27 1992-07-20 Unitika Ltd
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation
JPS6434407A (en) * 1987-07-30 1989-02-03 Toray Industries Porous membrane of polytetrafluoroethylene-base resin and production thereof
JPH0468010B2 (en) * 1987-07-30 1992-10-30 Toray Industries
JP4626301B2 (en) * 2002-06-14 2011-02-09 東レ株式会社 Composite separation membrane and method for producing the same
US7258914B2 (en) 2002-06-14 2007-08-21 Toray Industries, Inc. Porous membrane and method for manufacturing the same
US7851024B2 (en) 2002-06-14 2010-12-14 Toray Industries, Inc. Porous membrane and method for manufacturing the same
WO2003106545A1 (en) * 2002-06-14 2003-12-24 東レ株式会社 Porous membrane and method of manufacturing the porous membrane
JPWO2003106545A1 (en) * 2002-06-14 2005-10-13 東レ株式会社 Porous membrane and method for producing the same
WO2012063669A1 (en) * 2010-11-09 2012-05-18 東レ株式会社 Process for production of separation membrane
JP2014516115A (en) * 2011-06-06 2014-07-07 アルケマ フランス Solvent for fluoropolymers
JP2016104848A (en) * 2011-06-06 2016-06-09 アルケマ フランス Fluoropolymer solvent
US9180414B2 (en) 2011-06-22 2015-11-10 Daikin Industries, Ltd. Fluoropolymer, production method for fluoropolymer, and porous polymer film
WO2012176810A1 (en) 2011-06-22 2012-12-27 ダイキン工業株式会社 Porous polymer film and production method for porous polymer film
US9283525B2 (en) 2011-06-22 2016-03-15 Daikin Industries, Ltd. Porous polymer film and production method for porous polymer film
WO2012176815A1 (en) 2011-06-22 2012-12-27 ダイキン工業株式会社 Fluoropolymer, production method for fluoropolymer, and porous polymer film
EP3398675A1 (en) * 2017-05-02 2018-11-07 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Macroporous or mesoporous polymer films in hollow fiber or flat sheet geometry
WO2018202538A1 (en) * 2017-05-02 2018-11-08 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Macroporous or mesoporous polymer films in flat sheet geometry
WO2018202533A1 (en) * 2017-05-02 2018-11-08 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Macroporous or mesoporous polymer films in hollow fiber geometry
CN109475822A (en) * 2017-05-02 2019-03-15 亥姆霍兹材料研究与海岸研究盖斯特哈赫特中心 The macropore or porous polymer film of doughnut geometry
US10835872B2 (en) 2017-05-02 2020-11-17 Helmholtz-Zentrum Geesthacht Zentrum Fuer Material- Und Kuestenforschung Gmbh Macroporous or mesoporous polymer films in hollow fiber geometry

Also Published As

Publication number Publication date
JPH0420649B2 (en) 1992-04-06

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
US4439322A (en) Polymethyl methacrylate membrane
US5919370A (en) Integral, multi-asymmetric, semi-permeable membrane
US5232601A (en) High flux hollow fiber membrane
US5869174A (en) Highly asymmetric polyethersulfone filtration membranes
US4906375A (en) Asymmetrical microporous hollow fiber for hemodialysis
US5474680A (en) Polysulfone porous hollow fiber
AU710228B2 (en) Microfiltration membranes having high pore density and mixed isotropic and anisotropic structure
JPS5898105A (en) Fluoride type wet separation membrane and preparation thereof
JP2542572B2 (en) Hollow fiber
JPS61238834A (en) Porous polysulfone resin membrane
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPS63296940A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
GB2086798A (en) Microporous cellulose membrane
JPS6029282B2 (en) Semipermeable membrane and its manufacturing method
JPH02251233A (en) Polysulfone-based hollow yarn membrane and its preparation
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JP2020533166A (en) Microporous membrane and its manufacturing method
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPH0468010B2 (en)
JP2512909B2 (en) Method for producing hollow fiber porous membrane
JPS5876104A (en) Polymethyl methacrylate separation membrane and preparation thereof
JPH03254826A (en) Preparation of polysulfone semipermeable membrane