JPS61238834A - Porous polysulfone resin membrane - Google Patents

Porous polysulfone resin membrane

Info

Publication number
JPS61238834A
JPS61238834A JP8037285A JP8037285A JPS61238834A JP S61238834 A JPS61238834 A JP S61238834A JP 8037285 A JP8037285 A JP 8037285A JP 8037285 A JP8037285 A JP 8037285A JP S61238834 A JPS61238834 A JP S61238834A
Authority
JP
Japan
Prior art keywords
membrane
water
polysulfone resin
polysulfone
stock solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8037285A
Other languages
Japanese (ja)
Other versions
JPH0757825B2 (en
Inventor
Masaaki Shimakaki
昌明 島垣
Kazusane Tanaka
和実 田中
Tatsuo Nogi
野木 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60080372A priority Critical patent/JPH0757825B2/en
Publication of JPS61238834A publication Critical patent/JPS61238834A/en
Publication of JPH0757825B2 publication Critical patent/JPH0757825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:The titled porous membrane which has pores of a specified average pore diameter on both surfaces and a specified water permeability, is low in plugging and staining and does not decrease in performance even when dry, comprising a polysulfone resin containing a hydrophobic polymer. CONSTITUTION:To a solution obtained by crosslinking a polysulfone resin (A) having repeating units of formulas I and II and 3-30wt% hydrophilic polymer (B) (e.g., polyvinylpyrrolidone) in a solvent (C) for components A and B (e.g., dimethyl sulfoxide) added is at most 7wt% additive (D) (e.g., water) which is a nonsolvent for component A, is a good solvent for component B and is miscible with component C. The formed stock solution for film formation is discharged into a coagulation solution to form a membrane. After an excessive water-soluble component is removed, the membrane is heat-treated at a temperature >=150 deg.C to obtain a porous polysulfone resin membrane having pores of an average pore diameter >=500Angstrom on both surfaces and a wager permeability >=1,000ml/m<2>.hr.mmHg.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規なポリスルホン系樹脂多孔膜に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a novel polysulfone-based resin porous membrane.

〔従来の技術〕[Conventional technology]

従来、半透膜の素材としては、セルロースアセテート・
ポリアクリロニトリル・ポリメタクリル酸メチル・ポリ
アミド等多くの高分子化合物が用いられてきた。一方、
ポリスルホン系樹脂は、元来エンジニアリングプラスチ
ックスとして使用されてきたが、その耐熱安定性、耐酸
・耐アルカリ性、そして生体適合性、耐汚染性が良好で
あることから、半透膜素材として注目されている。
Conventionally, the material for semipermeable membranes has been cellulose acetate.
Many polymeric compounds such as polyacrylonitrile, polymethyl methacrylate, and polyamide have been used. on the other hand,
Polysulfone resins were originally used as engineering plastics, but due to their heat resistance, acid and alkali resistance, biocompatibility, and stain resistance, they are attracting attention as semipermeable membrane materials. There is.

ポリスルホン系樹脂の多孔膜を得る方法として従来より
例えば、ジャーナル・オブ・アプライド・ポリマー・サ
イエンス(20巻、2377〜2394頁、1976年
)及び、(同21巻、1883〜1900頁、1977
年入特開昭58−194940号公報等が提案されてい
る。しかし該樹脂は、分子間凝集力が強すぎて、表面の
孔や貫通すべき内部の孔を閉塞してしまうため孔形成の
制御が困難となる。このため、分画分子量が10万以下
と小さくかつ透水性も小さいものしか、得られていない
。特に前記特開昭58−194940号公報では、水濡
れ性が改善されているものの、表面孔径が0.01〜0
.05μmのもの以外は、何ら示唆しておらず、高い透
水性は望み得ない。
Conventional methods for obtaining porous membranes of polysulfone resins include, for example, Journal of Applied Polymer Science (Vol. 20, pp. 2377-2394, 1976) and (Vol. 21, pp. 1883-1900, 1977).
Japanese Unexamined Patent Publication No. 58-194940 published in 1988 has been proposed. However, the intermolecular cohesive force of this resin is too strong and it closes the surface pores and the internal pores that should be penetrated, making it difficult to control pore formation. For this reason, only those having a small molecular weight cut-off of 100,000 or less and low water permeability have been obtained. In particular, in JP-A-58-194940, although the water wettability is improved, the surface pore size is 0.01 to 0.
.. There is no suggestion of anything other than 0.05 μm, and high water permeability cannot be expected.

一方、近年、ポリ、スルホン系樹脂を用いた膜で、表面
に大きな孔をあける試みとして、次のような手段が提案
されている。
On the other hand, in recent years, the following methods have been proposed in an attempt to create large pores on the surface of membranes using poly or sulfone resins.

■ 異種ポリマ間のミクロ相分離を利用する方法。■ A method that utilizes microphase separation between different types of polymers.

(特公昭48−176号公報、特開昭54−14445
6号公報、同57−50506号公報、同57−505
07号公報、同57−50508号公報) ■ 製膜後、抽出・溶出操作を有する方法。(特開昭5
4−26283号公報、同57−35906号公報、同
5B−91822号公報)■ 製膜原液の準安定液体分
散状態で製膜する方法。(特開昭56−154051号
公報、同59−58041号公報、同59−18376
1号公報、同59−189903号公報) ■ 紡糸時に工夫をこらす方法(特開昭59−2280
16号公報) しかし、■の方法ではポリマー間の凝固速度の違いを利
用しているのみで、分画分子量10万以上の大きな孔を
得るに至っていない。その上、大量にブレンドするため
、ポリスルホン系樹脂の本来の良好な性能が失われやす
い。また、■の方法は、ブレンドポリマーの抽出と無機
顆粒を溶出する大きく2つの方法に分類される。前者に
おいては、ポリエチレングリコール、ポリビニルピロリ
ドンが主たるポリマーであるが、十分な孔径を得ること
や抽出操作が困難であった。後者の例では、前記特開昭
58−91822号公報で、シリカパウダーを混入して
製膜後、アルカリを用いて溶出させ、0.05μm以上
の大きな孔をあけるのに成功しているが、水濡れ性に欠
点があると記されている。■の方法は製膜原液にポリス
ルホン系樹脂の非溶媒もしくは膨潤剤を大量に混合し、
該製膜原液が相分離する直前のところで製膜するもので
ある。かかる方法では、膜の水濡れ性に欠陥がある膜し
か得ることはできない。■の方法は、製膜時に高湿度の
風を吹きつけることで、該表面での孔径拡大を実現して
いるが、該方法では片面にしかその効果はなζ、特に中
空糸膜では分画分子量は小さい範囲のものしか得られな
い。
(Japanese Patent Publication No. 48-176, Japanese Unexamined Patent Publication No. 14445/1972)
Publication No. 6, Publication No. 57-50506, Publication No. 57-505
(No. 07, No. 57-50508) (2) A method that includes extraction and elution operations after film formation. (Unexamined Japanese Patent Publication No. 5
(No. 4-26283, No. 57-35906, No. 5B-91822) (2) A method of forming a film in a metastable liquid dispersion state of a film forming stock solution. (JP-A-56-154051, JP-A No. 59-58041, JP-A No. 59-18376)
(Japanese Patent Application Laid-Open No. 59-2280)
(No. 16) However, the method (2) only utilizes the difference in coagulation rate between polymers, and has not yet achieved large pores with a molecular weight cut-off of 100,000 or more. Moreover, since a large amount is blended, the original good performance of the polysulfone resin is likely to be lost. Furthermore, method (2) is broadly classified into two methods: extraction of the blend polymer and elution of the inorganic granules. In the former, polyethylene glycol and polyvinylpyrrolidone are the main polymers, but it has been difficult to obtain a sufficient pore size and to perform extraction operations. In the latter example, in the above-mentioned Japanese Patent Application Laid-Open No. 58-91822, it was successfully made to form large pores of 0.05 μm or more by mixing silica powder and forming a film, and then eluting it with an alkali. It is noted that there is a drawback in water wettability. Method (2) involves mixing a large amount of a polysulfone resin non-solvent or swelling agent with the film-forming stock solution.
The membrane is formed immediately before the membrane forming stock solution undergoes phase separation. With such a method, only a film having defects in water wettability can be obtained. Method (2) achieves expansion of the pore size on the surface by blowing high-humidity air during membrane formation, but this method only has this effect on one sideζ, especially in hollow fiber membranes. Only a small range of molecular weights can be obtained.

これら従来のポリスルホン系樹脂多孔膜は、その製膜原
液が低温で相分離することを特徴とするものである。こ
のため製膜時に凝固浴中の非溶媒等と膜中の良溶媒との
交換速度を上げようとして凝固浴温度を上げても、製膜
原液が均−系の方へ平衡移動するため、表面に緻密層を
つくるという欠点を有している。またポリスルホン系樹
脂が疎水性のため、一度乾燥させると特別の処理をする
ことなしには、性能を回復させることができにくいとい
う欠点を有しており、これら2つを同時に満足させるも
のは存在しなかった。
These conventional polysulfone-based resin porous membranes are characterized in that their membrane-forming stock solution undergoes phase separation at low temperatures. For this reason, even if the temperature of the coagulation bath is increased in an attempt to increase the exchange rate between the non-solvent, etc. in the coagulation bath and the good solvent in the membrane during membrane formation, the membrane-forming stock solution will move toward a homogeneous system, resulting in It has the disadvantage of forming a dense layer on the surface. Furthermore, since polysulfone resin is hydrophobic, it has the disadvantage that once it is dried, it is difficult to recover its performance without special treatment, and there is no product that satisfies both of these requirements at the same time. I didn't.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、上記欠点を解析し、鋭意検討した結果本
発明に到達した。特に、目づまりや汚れ゛がおこりにく
く、乾燥しても実質的に性能低下のない、高除水性ポリ
スルホン系樹脂多孔膜を提供することを目的とする。
The present inventors analyzed the above-mentioned drawbacks, and as a result of intensive study, they arrived at the present invention. In particular, the object is to provide a highly water-repellent polysulfone-based resin porous membrane that is resistant to clogging and staining and whose performance does not substantially deteriorate even when dried.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の構成を有する。すなわち、膜の両表面に平
均孔径が500Å以上の細孔を有し、主たる膜素材がポ
リスルホン系樹脂であってかつ全量の3〜30重量%の
親水性高分子を含有し、透水性が1000ml/m2−
 hr −rnmHg以上であることを特徴とするポリ
スルホン系樹脂多孔膜である。
The present invention has the following configuration. That is, the membrane has pores with an average pore size of 500 Å or more on both surfaces, the main membrane material is polysulfone resin, contains 3 to 30% by weight of a hydrophilic polymer, and has a water permeability of 1000 ml. /m2-
The present invention is a polysulfone-based resin porous membrane characterized in that hr -rnmHg or more.

本発明のポリスルホン系樹脂多孔膜は、両表面に平均孔
径500Å以上の細孔を有する。かかる大きさの孔は、
高透水性を得るため、また大きな分画分子量を得るため
に必要なものである。平均孔径は、表面の電子顕微鏡写
真から求めたものである。両表面の細孔は均一径である
ことが望ましいが、とくに均一である必要はなく、不均
一であってもよい。平均孔径は2μm以下であることが
望ましいが、それ以上あってもよい。しかし、2μmを
越えると膜構造が、フィブリル化し、機械的強度が弱く
なるとともに、水でのバブルポイントが、0.5気圧よ
り低くなる。
The polysulfone resin porous membrane of the present invention has pores with an average pore diameter of 500 Å or more on both surfaces. A hole of such size is
It is necessary to obtain high water permeability and a large molecular weight cutoff. The average pore diameter was determined from an electron micrograph of the surface. Although it is desirable that the pores on both surfaces have a uniform diameter, they do not need to be particularly uniform and may be non-uniform. The average pore diameter is preferably 2 μm or less, but may be larger. However, if the thickness exceeds 2 μm, the membrane structure becomes fibrillated, the mechanical strength becomes weak, and the bubble point in water becomes lower than 0.5 atm.

膜の厚みは、高い透水性を得るため5〜500μmが望
ましく、10〜300μmがさらに望ましい。
The thickness of the membrane is preferably 5 to 500 μm, more preferably 10 to 300 μm, in order to obtain high water permeability.

本発明のポリスルホン系樹脂多孔膜は上記のような構造
を有するとともに、透水性が10100O/Tn2・h
r−,111T、Hg以上を示す。待に平膜においては
、数千m l / TIN”・hr−mm80以上のも
のも市販されてはいるが、同時に水濡れ性をも満足した
多孔膜というのは画期的である。特に中空糸膜形状のも
ので、透水性10100O/m2・hr−aHO以上で
かつ、水濡れ性も良いものは見あたらない。本発明のポ
リスルホン系樹脂多孔膜では、透水性が致方m1/T1
12・hr−mmHo以上のものも提供することができ
る。
The polysulfone resin porous membrane of the present invention has the above-mentioned structure and has a water permeability of 10,100 O/Tn2·h.
r-, 111T, Hg or higher. Although flat membranes with a capacity of several thousand ml/TIN"・hr-mm or more are commercially available, a porous membrane that also satisfies water wettability is revolutionary.Especially for hollow membranes. There are no membrane-shaped membranes that have a water permeability of 10,100 O/m2/hr-aHO or higher and good water wettability.The polysulfone resin porous membrane of the present invention has a water permeability of 10,100 O/m2/hr-aHO or more.
12·hr-mmHo or more can also be provided.

本発明のポリスルホン系樹脂多孔膜を製造するために用
いる製膜原液は、基本的にはポリスルホン系樹脂(I)
、親水性高分子(■)、溶媒(III)および添加剤(
IV)からなる4成分系で構成される。ここで言うポリ
スルホン系樹脂(I>は、通常式(1)、または(2) H3 の繰り返し単位からなるものであるが、官能基を含んで
いたり、アルキル系のものであってもよく、特に限定す
るものではない。
The membrane-forming stock solution used to produce the polysulfone resin porous membrane of the present invention is basically a polysulfone resin (I).
, hydrophilic polymer (■), solvent (III) and additive (
It is composed of a four-component system consisting of IV). The polysulfone resin (I> mentioned here usually consists of a repeating unit of formula (1) or (2) H3, but it may also contain a functional group or be an alkyl type resin, and in particular, It is not limited.

親水性高分子(n)は、ポリスルホン系樹脂(I)と相
溶性があり、かつ親水性を持つ高分子である。ポリビニ
ルピロリドンが最も望ましいが、伯に変性ポリビニルピ
ロリドン、共重合ポリビニルピロリドン、ポリエチレン
グリコール、ポリ酢酸ビニル等が挙げられるが、これら
に限定されるものではない。
The hydrophilic polymer (n) is a polymer that is compatible with the polysulfone resin (I) and has hydrophilic properties. Polyvinylpyrrolidone is the most preferred, but examples include, but are not limited to, modified polyvinylpyrrolidone, copolymerized polyvinylpyrrolidone, polyethylene glycol, and polyvinyl acetate.

溶媒(III)は、ポリスルホン系樹脂(I>及び親水
性高分子(n)を共に溶解する溶媒である。
The solvent (III) is a solvent that dissolves both the polysulfone resin (I>) and the hydrophilic polymer (n).

ジメチルスルホキシド、ジメチルアセトアミド、ジメチ
ルホルムアミド、N−メチル−2−ピロリドン、ジオキ
サン等、多種の溶媒が用いられるが、特にジメチルアセ
トアミド、ジメチルスルホキシド、ジメチルホルムアミ
ド、N−メチル−2−ピロリドンが望ましい。
Various solvents can be used, such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone, and dioxane, but dimethylacetamide, dimethylsulfoxide, dimethylformamide, and N-methyl-2-pyrrolidone are particularly preferred.

添加剤(IIJ)は、溶媒(II[>と相溶性を持ち、
親水性高分子(n)の良溶媒となり、がっ、ポリスルホ
ン系樹脂(1)の非溶媒又は膨潤剤となるものであれば
何でも良く、例えば、水、メタノールエタノール、イソ
プロパツール、ヘキサノール、1.4−ブタンジオール
等がある。生産コストを考えると水が最も望ましい。添
加剤(IV)は、ポリスルホン系樹脂(I>に対する凝
固性を考え合わせた上で選択すれば良い。
The additive (IIJ) is compatible with the solvent (II[>,
Anything can be used as long as it serves as a good solvent for the hydrophilic polymer (n) and as a non-solvent or swelling agent for the polysulfone resin (1), such as water, methanol, ethanol, isopropanol, hexanol, .4-butanediol, etc. Considering production costs, water is the most desirable. The additive (IV) may be selected in consideration of the coagulability with respect to the polysulfone resin (I>).

これらのおのおのの組合せは任意であり、上記の性質を
もつ組合せを考えるのは、同業者にとって容易なことで
ある。また、溶媒(III)・添加剤(IV)は、2種
類以上の化合物の混合系でも良い。
Combinations of each of these are arbitrary, and it is easy for those skilled in the art to consider combinations having the above properties. Further, the solvent (III) and the additive (IV) may be a mixture of two or more types of compounds.

かかる製膜原液は、通常の相分離挙動である低温側で相
分離するのと逆で、驚くべきことに高温側で相分離がお
こる。この原理を以下説明する。
Surprisingly, this membrane-forming stock solution undergoes phase separation on the high temperature side, contrary to the normal phase separation behavior in which phase separation occurs on the low temperature side. This principle will be explained below.

今、この製膜原液がある温度Tで均一系であるとする。Now, it is assumed that this film-forming stock solution is a homogeneous system at a certain temperature T.

この場合、添加剤(IIJ)は親水性高分子(n)によ
ってポリスルホン系樹脂(I)に対して遮蔽される形と
なり、直接ポリスルホン系樹脂(I)と相互作用するこ
となく、それゆえ、ポリスルホン系樹脂(I)は、親水
性高分子(I[>が混合されていない系においては当然
凝固し、相分離しているような濃度まで添加剤(IV)
を加えてもなお相分離することなく均一系を保っている
訳である。ここで、温度を上げると、分子の運動性が上
がることにより、特に親水性高分子(n)と添加剤(I
IJ)との結合が弱くなり、水素結合が切れ、親水性高
分子(II)と結合していない添加剤(IV)の見かけ
上の濃度が、温度Tのときより上昇し、ポリスルホン系
樹脂(I)と添加剤(111)とが相互作用することに
より、ひいては、ポリスルホン系樹脂(I)の凝固・相
分離が引きおこされることになる。即ち、該製膜原液は
、高温側で相分離をおこすことになる。さらに、この系
の添加剤(IV)の量を増加させると、前記温度Tでも
この原液系においては、もはや親水性高分子(n)の温
度Tにおける添加剤Ntll)のかかえ込み量以上の添
加剤(Illr)が加えられたことで、製膜原液は相分
離する。しかし、ざらに温度を下げると親水性高分子(
n)の分子運動性が下がり、添加剤(Illl)との結
合量が増大し、見かけの添加剤(IV)濃度が下がるこ
とで、結果的に系は再び均一系となる。再び温度を上げ
ると、系は不均一になるが、こんどは親水性高分子(n
)を添加すると、親水性高分子(n)と添加剤(IV)
が結合する伍が増え、再び系は均一になる。以上のよう
に、この製膜原液の相分離挙動は通常の逆であり、また
相転移に可逆性を有する。
In this case, the additive (IIJ) is shielded from the polysulfone resin (I) by the hydrophilic polymer (n), and does not directly interact with the polysulfone resin (I). In a system where the hydrophilic polymer (I) is not mixed, the system resin (I) naturally coagulates and the additive (IV) is added to a concentration such that phase separation occurs.
This means that even when 20% is added, a homogeneous system is maintained without phase separation. Here, when the temperature is raised, the mobility of the molecules increases, especially the hydrophilic polymer (n) and the additive (I).
The bond with IJ) becomes weaker, the hydrogen bond is broken, and the apparent concentration of the additive (IV) that is not bonded to the hydrophilic polymer (II) increases from that at temperature T, and the polysulfone resin ( The interaction between I) and the additive (111) eventually causes coagulation and phase separation of the polysulfone resin (I). That is, the membrane forming stock solution undergoes phase separation on the high temperature side. Furthermore, when the amount of the additive (IV) in this system is increased, even at the temperature T, in this stock solution system, the amount of additive (Ntll) retained by the hydrophilic polymer (n) at the temperature T is no longer exceeded. By adding (Illr), the membrane forming stock solution undergoes phase separation. However, if the temperature is lowered too much, hydrophilic polymers (
The molecular mobility of n) decreases, the amount of bonding with the additive (Ill) increases, and the apparent concentration of the additive (IV) decreases, resulting in the system becoming homogeneous again. When the temperature is raised again, the system becomes non-uniform, but this time the hydrophilic polymer (n
), hydrophilic polymer (n) and additive (IV)
The number of atoms that combine increases, and the system becomes homogeneous again. As described above, the phase separation behavior of this membrane-forming stock solution is the opposite of normal, and the phase transition is reversible.

該製膜原液の組成として、ポリスルホン系樹脂(1)は
、製膜可能でかつ膜としての特性を有する濃度範囲であ
れば良く、5〜50重量%である。
As for the composition of the membrane-forming stock solution, the polysulfone resin (1) may be in a concentration range of 5 to 50% by weight as long as it can be formed into a membrane and has properties as a membrane.

高い透水性、大きな分画分子量を得るためにはポリマー
濃度は下げるべきで、この場合望ましくは5〜20重量
%である。5重量%未満では、製膜原液の十分な粘度を
得ることができず、膜を形成できなくなる。また、50
重量%を越えると貫通孔を形成しにくくなる。親水性高
分子(n)は、特にポリビニルピロリドンの場合、GA
F社から分子量36万、16万、4万、1万のものが市
販されており、これを使うのが便利であるが、もちろん
それ以外の分子量のものを使用してもかまわない。ただ
し、親水性高分子(II)の添加の理由の1つとして増
粘効果もあるため、添加量は高分子量のものを用いるほ
ど少量で良く、かつまた相分離現象の温度依存性の逆転
も顕著になるため透水性の高い膜を得るためには有利で
ある。ポリビニルピロリドンの添加量は、1〜20重量
%、特に3〜10重量%が望ましいが、用いるポリビニ
ルピロリドンの分子量に左右される。一般に添加量が少
なすぎる場合、分子量が低すぎる場合は相分離の逆転現
象は得難く、ポリマー濃度が高く、ポリマー分子量が大
きすぎると、製膜後の洗浄が困難となる。それ故、分子
量の異なるものを混合して役割分担し用いるのも一つの
方法となる。以上(I)、(If)の高分子を溶媒(I
[I)に混合溶解する。ここへ、添加剤(IV)を添加
するが、特に水の場合、ポリスルホン系樹脂にとって凝
固性が高いため、7重量%以下、特に1〜5重量%が望
ましい。凝固性が小さな添加剤を用いるときは添加量が
多くなることは容易に推測される。添加剤(Itl)の
濃度途高くなるにつれ、製膜原液の相分離温度は低下し
てくる。相分離温度の設定は、求める膜の透水性や分画
分子量により髄意にすればよく、例えば、高い透水性・
分画分子量を得るためには製膜時に相分離を強力に促進
するため低い相分離温度を設定すれば良い。また、凝固
浴の温度を高くしても同様の効果は得られる。
In order to obtain high water permeability and a large molecular weight cut-off, the polymer concentration should be lowered, preferably 5 to 20% by weight. If it is less than 5% by weight, it will not be possible to obtain a sufficient viscosity of the film-forming stock solution, making it impossible to form a film. Also, 50
If it exceeds % by weight, it becomes difficult to form through holes. The hydrophilic polymer (n), especially in the case of polyvinylpyrrolidone, is GA
Products with molecular weights of 360,000, 160,000, 40,000, and 10,000 are commercially available from Company F, and it is convenient to use these, but of course products with other molecular weights may also be used. However, one of the reasons for adding the hydrophilic polymer (II) is its thickening effect, so the higher the molecular weight, the smaller the amount added, and the reversal of the temperature dependence of the phase separation phenomenon. This is advantageous for obtaining a membrane with high water permeability. The amount of polyvinylpyrrolidone added is preferably 1 to 20% by weight, particularly 3 to 10% by weight, but it depends on the molecular weight of the polyvinylpyrrolidone used. In general, if the amount added is too small or the molecular weight is too low, it is difficult to achieve a phase separation reversal phenomenon, and if the polymer concentration is too high and the polymer molecular weight is too large, cleaning after film formation becomes difficult. Therefore, one method is to mix substances with different molecular weights and use them in different roles. The polymers (I) and (If) above are combined with the solvent (I)
Mix and dissolve in [I). Additive (IV) is added here, but especially in the case of water, since the polysulfone resin has high coagulability, it is preferably 7% by weight or less, particularly 1 to 5% by weight. It is easily assumed that when an additive with low coagulability is used, the amount added will be large. As the concentration of the additive (Itl) increases, the phase separation temperature of the membrane forming stock solution decreases. The phase separation temperature can be set carefully depending on the desired water permeability and molecular weight of the membrane.
In order to obtain a molecular weight cutoff, a low phase separation temperature may be set to strongly promote phase separation during membrane formation. Further, the same effect can be obtained even if the temperature of the coagulation bath is increased.

以上の条件のもとてポリスルホン系樹脂多孔膜を得る。A polysulfone resin porous membrane is obtained under the above conditions.

製膜操作は、公知技術を用いれば良い。A known technique may be used for the film forming operation.

平膜については、該製膜原液を平坦な基板上に流展し、
その後凝固浴中に浸漬する。中空糸膜については、中空
形態を保つため、注入液を用いる。
For flat films, the film-forming stock solution is spread on a flat substrate,
It is then immersed in a coagulation bath. For hollow fiber membranes, an injection solution is used to maintain their hollow form.

注入液は、製膜原液に対して凝固性の高いものより、低
いものを用いた方が紡糸安定性は良いが、凝固浴温度・
相分離温度・口金温度との相関で中空糸膜内壁の平滑性
が変化するので、適宜最良組成を決めれば良い。ポリス
ルホン系樹脂に不活性なデカン・オクタン・ウンデカン
等の炭化水素を用いても良い。また、気体を注入して中
空形態を保持させてもよい。乾式長は0.1〜20cm
であり、特に0.5〜5cmが紡糸安定性も良く、ざら
に望ましい。
The spinning stability is better if the injection liquid has a lower coagulability than the one with a high coagulation property compared to the membrane forming stock solution, but the coagulation bath temperature and
Since the smoothness of the inner wall of the hollow fiber membrane changes in correlation with the phase separation temperature and the die temperature, the best composition may be determined appropriately. Hydrocarbons such as decane, octane, and undecane, which are inert to the polysulfone resin, may also be used. Alternatively, gas may be injected to maintain the hollow shape. Dry length is 0.1-20cm
In particular, a thickness of 0.5 to 5 cm has good spinning stability and is generally desirable.

かかる方法で得たポリスルホン系樹脂多孔膜は、膜中の
水溶性成分について余分な量は除去し、必要量残存させ
る必要がある。
In the polysulfone-based resin porous membrane obtained by such a method, it is necessary to remove an excess amount of the water-soluble components in the membrane and leave the required amount.

残存量は総重量に対して、3〜30重量%であり、好ま
しくは5〜25重量%、特に10〜20重量%が最も望
ましい。残存した水溶性高分子の量は、元素分析、液体
クロマトグラフィーにより定量することで確認できる。
The residual amount is 3 to 30% by weight, preferably 5 to 25% by weight, most preferably 10 to 20% by weight, based on the total weight. The amount of remaining water-soluble polymer can be confirmed by quantitative analysis using elemental analysis or liquid chromatography.

低分子量の水溶性成分についてはただ水洗するだけで余
分な量は除去されるが、分子量の高い水溶性成分につい
ては、特別に、エタノール、メタノール・水等の水溶性
成分の良溶媒で抽出操作をする必要がある。特に清水で
抽出する方法が効率的であり、膜への熱処理効果も同時
に付与することができる。熱処理効果とは、経時的に孔
径拡大からざらに長時間処理すると、逆に孔径が収縮す
る一連の効果を指す。
For water-soluble components with low molecular weight, the excess amount can be removed simply by washing with water, but for water-soluble components with high molecular weight, a special extraction operation is performed using a good solvent for water-soluble components such as ethanol, methanol, and water. It is necessary to In particular, the method of extraction with clean water is efficient and can simultaneously impart a heat treatment effect to the membrane. The heat treatment effect refers to a series of effects in which the pore diameter expands over time, but when treated for a long time, the pore diameter conversely shrinks.

孔径は、熱処理一時間程度で極大値をとり、処理時間を
コントロールすることで透水性、分画分子量も制御しう
る利点を有する。余分な水溶性高分子を除去した膜は、
極くわずかではあるが、水溶性高分子を溶出する。この
ことは、メディカル用途、食品工業用途においては望ま
しくない。不溶化のための架橋反応としては、ビニル系
の水溶性高分子ではγ線照射が有効である。特にポリビ
ニルピロリドンの場合は、加熱することでも架橋をさせ
ることができる。特に熱処理する方法が好ましい。製膜
状態での熱処理は、170℃では5時間程度、180℃
では2.5時間程度、190℃でも1.5時間程度する
必要がある。さらに温度を上げるとそれだけ処理時間は
短縮されるが、ポリスルホン系樹脂により制御される。
The pore diameter reaches its maximum value after about one hour of heat treatment, and it has the advantage that water permeability and molecular weight fraction can be controlled by controlling the treatment time. The membrane from which excess water-soluble polymers have been removed is
Although very small, water-soluble polymers are eluted. This is undesirable in medical applications and food industry applications. As a crosslinking reaction for insolubilization, gamma ray irradiation is effective for vinyl water-soluble polymers. In particular, in the case of polyvinylpyrrolidone, crosslinking can also be achieved by heating. In particular, a heat treatment method is preferred. Heat treatment in the film-formed state is approximately 5 hours at 170°C and 180°C.
In this case, it is necessary to heat for about 2.5 hours, and even at 190°C, it is necessary to heat for about 1.5 hours. As the temperature is raised further, the processing time is shortened accordingly, but this is controlled by the polysulfone resin.

150℃以下においては、処理時間が長すぎ、実用的で
はない。
At temperatures below 150°C, the processing time is too long to be practical.

なお、本発明のポリスルホン系樹脂多孔膜について、人
工臓器基準溶出物試験法に基づき、以下の評価を行なっ
た。
The polysulfone-based resin porous membrane of the present invention was evaluated as follows based on the artificial organ standard eluate test method.

膜005gを70℃温水5QCCで1時間加熱した溶液
は、波長350〜220μmにおけるUv吸収が0.2
以下、0.01 N KHnOa水溶液の消費量1゜Q
ml以下を示し、該試験に合格することができる。
A solution obtained by heating 005g of membrane with 5QCC of 70℃ hot water for 1 hour has a UV absorption of 0.2 at a wavelength of 350 to 220μm.
Below, consumption amount of 0.01 N KHnOa aqueous solution 1゜Q
ml or less and can pass the test.

〔実施例〕〔Example〕

以下の実施例によって本発明をざらに詳細な説明する。 The invention is illustrated in more detail by the following examples.

以下、用いた測定法は次のとおりである。The measurement method used is as follows.

(1)  透水性 中空糸膜の場合は、両端に還流液用の孔を備えたガラス
製のケースに該中空糸膜を挿入し、市販のポツティング
剤を用いて小型モジュールを作製し、37℃に保って中
空糸内側に水圧をかけ膜を通して外側へ透過する一定時
間の水の量と有効膜面積および膜間圧力差から算出する
方法で透水性能を測定した。
(1) In the case of a water-permeable hollow fiber membrane, the hollow fiber membrane is inserted into a glass case with holes for reflux liquid at both ends, a small module is made using a commercially available potting agent, and the membrane is heated at 37°C. The water permeability was measured by a method in which water pressure was applied to the inside of the hollow fiber while maintaining the membrane at a constant temperature, and the water permeability was calculated from the amount of water that permeated to the outside through the membrane over a certain period of time, the effective membrane area, and the pressure difference between the membranes.

平膜の場合は、攪拌円筒セルを用いて同様にして測定し
た。
In the case of a flat membrane, measurements were made in the same manner using a stirred cylindrical cell.

(2)  生血透水性および牛血漿透水性生血及び牛血
漿の透水性は牛血液(ヘマトクリット35%)及び遠心
法により得た牛血漿(共にヘパリン含有)を用いて上記
中空糸膜の場合の透水性と同様の方法で測定した。この
場合、膜間圧力差50mmHDを基準に測定した。
(2) Live blood permeability and bovine plasma water permeability The water permeability of live blood and bovine plasma was determined using bovine blood (hematocrit 35%) and bovine plasma obtained by centrifugation (both containing heparin) using the hollow fiber membrane described above. It was measured in the same way as sex. In this case, the measurement was based on a transmembrane pressure difference of 50 mmHD.

(3)蛋白透過率 蛋白透過率についてはビユレット法により測定した。(3) Protein permeability Protein permeability was measured by the Billet method.

実施例1 ポリスルホン(ニーデルP−3500>15部、ポリビ
ニルピロリドン(K2O)8部、1,4−ブタンジオー
ル7部をジメチルアセトアミド70部に加え、加熱溶解
した。この製膜原液は、70℃で相分離するように1.
4−ブタンジオールを微量加え調製した。ベーカ一式ア
プリケーターを用い、60℃保温でガラス板上に流展後
、50℃の水凝固浴で凝固させた。平均孔径約1μm1
透水性50000m1/Tr12・hr−mmHgの膜
を得た。
Example 1 Polysulfone (Needel P-3500>15 parts, polyvinylpyrrolidone (K2O) 8 parts, and 1,4-butanediol 7 parts were added to 70 parts of dimethylacetamide and dissolved by heating. This membrane forming stock solution was heated at 70°C. 1. So that the phase separates.
It was prepared by adding a trace amount of 4-butanediol. Using a baker set applicator, the mixture was spread on a glass plate while keeping the temperature at 60°C, and then coagulated in a water coagulation bath at 50°C. Average pore diameter approximately 1μm1
A membrane with a water permeability of 50,000 m1/Tr12·hr-mmHg was obtained.

実施例2 実施例1と同じ原液を用いて、原液を30℃に保って同
様に製膜した。平均孔径は、約0.7μmで、透水性は
36000ml/B2◆hr−mIIIHgであった。
Example 2 A film was formed in the same manner as in Example 1 using the same stock solution as in Example 1 while keeping the stock solution at 30°C. The average pore size was about 0.7 μm, and the water permeability was 36000 ml/B2◆hr-mIIIHg.

実施例3 実施例1と同じ組成の原液を外径1.0mm、内径0.
7n+mの環状オリフィスからなる口金孔内から注入液
としてジメチルアセトアミド/水=85/15を注入し
つつ、吐出させ、口金面から1゜QCm下方に設置した
51℃に保温した水を有する凝固浴に通過させ、通常の
方法で水洗後カセにまき取り、中空糸条膜を得た。口金
は60℃に保温した。得られた中空糸膜は、平均孔径0
.2μmで透水性1320ml/m2・hr−mmH(
lの性能を得た。
Example 3 A stock solution with the same composition as in Example 1 was prepared with an outer diameter of 1.0 mm and an inner diameter of 0.0 mm.
Dimethylacetamide/water = 85/15 was injected as an injection liquid from the mouth hole consisting of a 7n+m annular orifice, and was discharged into a coagulation bath containing water kept at 51°C, which was placed 1°QCm below the mouth face. The mixture was passed through the membrane, washed with water in the usual manner, and wound up in a skein to obtain a hollow fiber membrane. The cap was kept warm at 60°C. The obtained hollow fiber membrane has an average pore diameter of 0
.. Water permeability at 2μm: 1320ml/m2・hr-mmH (
The performance of 1 was obtained.

ポリビニルピロリドンは25重量%残存していた。25% by weight of polyvinylpyrrolidone remained.

実施例4 ポリスルホン15部、ポリビニルピロリドン(K2O)
8部、水2部をジメチルアセトアミド75部に加熱溶解
し、65°Cで相分離がおこるように水を微量加えて調
製した。注入液に、ジメチルアセトアミド/水=85/
15を用いて、実施例3と同様にして中空糸膜を得た。
Example 4 15 parts of polysulfone, polyvinylpyrrolidone (K2O)
8 parts and 2 parts of water were heated and dissolved in 75 parts of dimethylacetamide, and a small amount of water was added so that phase separation would occur at 65°C. Injection solution: dimethylacetamide/water = 85/
A hollow fiber membrane was obtained in the same manner as in Example 3 using No. 15.

凝固浴の水温は70’C1ロ金は60℃に保温して行な
った。この中空糸膜を清水中で洗浄し、そのまま170
”Cの乾熱処理をして熱架橋させた。平均孔径0.8μ
m1ポリビニルピロリドンは15重量%残存していた。
The water temperature in the coagulation bath was kept at 60°C for 70'C1 gold. This hollow fiber membrane was washed in clean water and
"C dry heat treatment to thermally crosslink. Average pore size 0.8μ
15% by weight of m1 polyvinylpyrrolidone remained.

透水性11000m1/T112・hr−mmHg、牛
血漿透水性1010m1/Tr12・hr−mmHg、
生血透水性420 ml/ m2 a hr 6 mm
H(J、蛋白透過率97%の性能を得た。溶血・血球リ
ークは認められなかつ1プ た。実施例5〜7 実施例4の製膜原液を用いて紡糸した中空糸膜の乾燥後
の水透過性能の変化を調べた。結果を表にまとめた。乾
燥は、室温真空乾燥である。第1表に示したとおり、絶
乾しても、水に浸漬するだけで性能回復している。
Water permeability 11000 m1/T112・hr-mmHg, bovine plasma water permeability 1010 m1/Tr12・hr-mmHg,
Live blood permeability 420 ml/m2 a hr 6 mm
H(J), a protein permeability of 97% was obtained. No hemolysis or blood cell leakage was observed, and the result was 1.0%. Examples 5 to 7 After drying of hollow fiber membranes spun using the membrane forming stock solution of Example 4. The results were summarized in the table.Drying was done by vacuum drying at room temperature.As shown in Table 1, even if completely dried, the performance could be recovered by simply immersing it in water. There is.

比較例1 ポリスルホン12部、ポリビニルピロリドン6部をN−
メチルピロリドン82部に加え、加熱溶解した。この原
液を50℃に保温し、実施例1と同様にして製膜した。
Comparative Example 1 12 parts of polysulfone and 6 parts of polyvinylpyrrolidone were mixed with N-
The mixture was added to 82 parts of methylpyrrolidone and dissolved by heating. This stock solution was kept warm at 50° C., and a film was formed in the same manner as in Example 1.

(凝固浴50℃)この膜の透水性は600 ml/ 1
12・hr * mmHgであり、実施例4と同じ後処
理を施した後、水濡れ性は良いものの透水性は実質上O
となった。
(Coagulation bath 50℃) The water permeability of this membrane is 600 ml/1
12·hr * mmHg, and after the same post-treatment as in Example 4, the water permeability was substantially O, although the water wettability was good.
It became.

〔発明の効果〕〔Effect of the invention〕

本発明のポリスルホン系樹脂多孔膜は、機械的強度を保
持し、かつ高い透水性、大きな分画分子量を有している
。さらに、目づまりや耐汚染性に優れる。また必ずしも
乾燥する必要性はないが、乾燥しても性能変化がないた
めハンドリングも楽である。複合膜の支持体としてもま
た十分な性能を有したものとなる。
The polysulfone resin porous membrane of the present invention maintains mechanical strength, has high water permeability, and has a large molecular weight cutoff. Furthermore, it has excellent clogging and stain resistance. Although it is not necessarily necessary to dry it, it is easy to handle because there is no change in performance even if it is dried. It also has sufficient performance as a support for a composite membrane.

本発明のポリスルホン系樹脂多孔膜は、高性能限外濾過
膜(あるいは精密濾過膜〉として、一般産業用途及びメ
ディカル分野の血液成分分離膜などに使用することがで
きる。
The polysulfone-based resin porous membrane of the present invention can be used as a high-performance ultrafiltration membrane (or microfiltration membrane), such as a blood component separation membrane for general industrial use and the medical field.

Claims (1)

【特許請求の範囲】[Claims] 膜の両表面に平均孔径が500Å以上の細孔を有し、主
たる膜素材がポリスルホン系樹脂であつてかつ全量の3
〜30重量%の親水性高分子を含有し、透水性が100
0ml/m^2・hr・mmHg以上であることを特徴
とするポリスルホン系樹脂多孔膜。
The membrane has pores with an average pore diameter of 500 Å or more on both surfaces, the main membrane material is polysulfone resin, and the total amount is 3.
Contains ~30% by weight of hydrophilic polymer and has a water permeability of 100%
A polysulfone-based resin porous membrane characterized in that it has an Hg of 0 ml/m^2·hr·mmHg or more.
JP60080372A 1985-04-17 1985-04-17 Polysulfone resin porous membrane Expired - Lifetime JPH0757825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080372A JPH0757825B2 (en) 1985-04-17 1985-04-17 Polysulfone resin porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080372A JPH0757825B2 (en) 1985-04-17 1985-04-17 Polysulfone resin porous membrane

Publications (2)

Publication Number Publication Date
JPS61238834A true JPS61238834A (en) 1986-10-24
JPH0757825B2 JPH0757825B2 (en) 1995-06-21

Family

ID=13716445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080372A Expired - Lifetime JPH0757825B2 (en) 1985-04-17 1985-04-17 Polysulfone resin porous membrane

Country Status (1)

Country Link
JP (1) JPH0757825B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970034A (en) * 1988-09-23 1990-11-13 W. R. Grace & Co.-Conn. Process for preparing isotropic microporous polysulfone membranes
US5076925A (en) * 1989-04-28 1991-12-31 X-Flow B.V. Process for preparing a microporous membrane and such a membrane
US5151227A (en) * 1991-03-18 1992-09-29 W. R. Grace & Co.-Conn. Process for continuous spinning of hollow-fiber membranes using a solvent mixture as a precipitation medium
US5938929A (en) * 1995-06-30 1999-08-17 Toray Industries, Inc. Polysulfone hollow fiber semipermeable membrane
JP2007191512A (en) * 2006-01-17 2007-08-02 Nikkiso Co Ltd Manufacturing process of porous bead
US20120305238A1 (en) * 2011-05-31 2012-12-06 Baker Hughes Incorporated High Temperature Crosslinked Polysulfones Used for Downhole Devices
WO2013147001A1 (en) 2012-03-28 2013-10-03 東レ株式会社 Polysulfone-based hollow fiber membrane and hollow fiber membrane module for purifying blood preparation
WO2014084263A1 (en) 2012-11-30 2014-06-05 東レ株式会社 Method for preparing platelet solution replaced with artificial preservation solution
JP2015013228A (en) * 2013-07-03 2015-01-22 東レ株式会社 Hollow fiber membrane and production method of the same
CN113164880A (en) * 2018-11-30 2021-07-23 富士胶片株式会社 Method for producing porous film and porous film
WO2021182608A1 (en) 2020-03-12 2021-09-16 東レ株式会社 Coating agent and medical material using same
US11155785B2 (en) 2016-09-30 2021-10-26 Toray Industries, Inc. Incubated platelet concentration module and method for producing platelet preparation using same
CN114917774A (en) * 2022-05-07 2022-08-19 大连理工大学 Preparation method of polyacrylonitrile-based thermally crosslinked membrane
CN114984767A (en) * 2022-06-06 2022-09-02 浙江大学 Intelligent shrinkage method for polymer porous membrane surface and organic solvent nanofiltration membrane product thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126407A (en) * 1980-03-10 1981-10-03 Nitto Electric Ind Co Ltd Production of semipermeable membrane
JPS588516A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Preparation of polysulfone separation membrane
JPS58104940A (en) * 1981-12-17 1983-06-22 ヘキスト・アクチエンゲゼルシヤフト Asymmetric macroporous film based on synthetic polymer and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126407A (en) * 1980-03-10 1981-10-03 Nitto Electric Ind Co Ltd Production of semipermeable membrane
JPS588516A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Preparation of polysulfone separation membrane
JPS58104940A (en) * 1981-12-17 1983-06-22 ヘキスト・アクチエンゲゼルシヤフト Asymmetric macroporous film based on synthetic polymer and manufacture

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970034A (en) * 1988-09-23 1990-11-13 W. R. Grace & Co.-Conn. Process for preparing isotropic microporous polysulfone membranes
US5076925A (en) * 1989-04-28 1991-12-31 X-Flow B.V. Process for preparing a microporous membrane and such a membrane
US5151227A (en) * 1991-03-18 1992-09-29 W. R. Grace & Co.-Conn. Process for continuous spinning of hollow-fiber membranes using a solvent mixture as a precipitation medium
US5938929A (en) * 1995-06-30 1999-08-17 Toray Industries, Inc. Polysulfone hollow fiber semipermeable membrane
US6103117A (en) * 1995-06-30 2000-08-15 Toray Industries, Inc. Polysulfone hollow fiber semipermeable membrane
JP2007191512A (en) * 2006-01-17 2007-08-02 Nikkiso Co Ltd Manufacturing process of porous bead
US20120305238A1 (en) * 2011-05-31 2012-12-06 Baker Hughes Incorporated High Temperature Crosslinked Polysulfones Used for Downhole Devices
US9687794B2 (en) 2012-03-28 2017-06-27 Toray Industries, Inc. Polysulfone-based hollow fiber membrane and hollow fiber membrane module that purifies blood preparations
WO2013147001A1 (en) 2012-03-28 2013-10-03 東レ株式会社 Polysulfone-based hollow fiber membrane and hollow fiber membrane module for purifying blood preparation
WO2014084263A1 (en) 2012-11-30 2014-06-05 東レ株式会社 Method for preparing platelet solution replaced with artificial preservation solution
US9446074B2 (en) 2012-11-30 2016-09-20 Toray Industries, Inc. Method of preparing platelet solution replaced with artificial preservation solution
JP2015013228A (en) * 2013-07-03 2015-01-22 東レ株式会社 Hollow fiber membrane and production method of the same
US11155785B2 (en) 2016-09-30 2021-10-26 Toray Industries, Inc. Incubated platelet concentration module and method for producing platelet preparation using same
CN113164880A (en) * 2018-11-30 2021-07-23 富士胶片株式会社 Method for producing porous film and porous film
WO2021182608A1 (en) 2020-03-12 2021-09-16 東レ株式会社 Coating agent and medical material using same
CN114917774A (en) * 2022-05-07 2022-08-19 大连理工大学 Preparation method of polyacrylonitrile-based thermally crosslinked membrane
CN114984767A (en) * 2022-06-06 2022-09-02 浙江大学 Intelligent shrinkage method for polymer porous membrane surface and organic solvent nanofiltration membrane product thereof
CN114984767B (en) * 2022-06-06 2023-10-13 浙江大学 Intelligent shrinkage cavity method for polymer porous membrane surface and organic solvent nanofiltration membrane product thereof

Also Published As

Publication number Publication date
JPH0757825B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US4810384A (en) Hydrophilic PVDF semipermeable membrane
US4220543A (en) Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same
US5151193A (en) Polymer membranes on the basis of polyvinylidene fluoride, a process for the production thereof and their use
US4439322A (en) Polymethyl methacrylate membrane
US4612119A (en) Hollow fiber filter medium and process for preparing the same
JP3200095B2 (en) Hydrophilic heat-resistant film and method for producing the same
JPH03293023A (en) Unsymmetrical semi-permeable membrane, and making thereof
JPS61238834A (en) Porous polysulfone resin membrane
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
JPH0628705B2 (en) Method for producing semipermeable hollow fiber membrane
JPH04310223A (en) Polyfluorovinylidene resin membrane and method for production thereof
JPH053331B2 (en)
JPS61238306A (en) Preparation of semipermeable membrane made of polysulfone resin
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JPS6238205A (en) Semi-permeable membrane for separation
JP7305621B2 (en) MICROPOROUS MEMBRANE AND METHOD FOR MAKING THE SAME
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JPS5898105A (en) Fluoride type wet separation membrane and preparation thereof
US4678581A (en) Polymethyl methacrylate hollow fiber type ultrafiltration membrane and process for preparation of the same
JP2505428B2 (en) Low-temperature dissolving stock solution and method for producing the same
EP3500357B1 (en) Method for the production of positively charged membranes
JPS63130103A (en) Polyacrylonitrile-base semipermeable membrane and manufacturing thereof
US20070102350A1 (en) Method for producing polymeric membranes with high-recovery rate
JPH06339620A (en) Method for treating polysulfone resin semipermeable membrane
JPS6399325A (en) Hollow yarn membrane of polysulfone resin and production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term