JPH0122009B2 - - Google Patents

Info

Publication number
JPH0122009B2
JPH0122009B2 JP58194408A JP19440883A JPH0122009B2 JP H0122009 B2 JPH0122009 B2 JP H0122009B2 JP 58194408 A JP58194408 A JP 58194408A JP 19440883 A JP19440883 A JP 19440883A JP H0122009 B2 JPH0122009 B2 JP H0122009B2
Authority
JP
Japan
Prior art keywords
membrane
sulfonated
sulfonation
polysulfone
selectively permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58194408A
Other languages
Japanese (ja)
Other versions
JPS6087803A (en
Inventor
Toshio Nakao
Yasuhide Sawada
Yasuo Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP19440883A priority Critical patent/JPS6087803A/en
Publication of JPS6087803A publication Critical patent/JPS6087803A/en
Publication of JPH0122009B2 publication Critical patent/JPH0122009B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は精密過膜、限外過膜あるいは逆浸
透過膜として使用出来る選択透過膜およびその
製造方法に関する。その目的とする所は主として
機械強度の大きなスルホン化ポリスルホン選択透
過膜を提供するにある。ポリスルホンは耐熱性、
耐酸、耐アルカリ性に優れ、さらにい機械強度
があるので膜素材あるいは複合膜の支持体として
有用であるが、レジン自体の疎水性のために透水
量が少く、特に分画分子量の小さな膜とした場合
には大きな欠点となる。親水化を目的として、ポ
リスルホンをあらかじめスルホン化しておく方法
が知られているがスルホン化されたポリスルホン
は機械強度が低下し、ポリスルホンの特長の一つ
が失なわれてしまう。さらに親水性の向上ととも
に、湿式製膜時凝固が遅くなるという製膜上の問
題も生じてくる。スルホン化ポリスルホンの機械
強度保持の為にスルホン化度をスルホン化試薬の
仕込比で調整する方法が提唱されている(特開昭
51−90397号公報)。しかしスルホン化反応を制御
して均一に行なはしめるのは困難でほとんど全部
の繰返し単位がスルホン化された分子から、全く
スルホン化されない分子まで広い分布が出来、製
膜性、膜特性の安定に問題が生じる。またスルホ
ン化可能な繰り返し単位と、実質上スルホン化さ
れない繰返し単位とを共に有するポリマーをスル
ホン化する事によりスルホン化度を制御する方法
も提唱されている(特開昭55−36296号公報およ
び特開昭55−48222号公報)。この方法は特殊なレ
ジンの組合せにおいてのみ可能なだけであり、合
成工程が繁雑であり、また異なる繰返し単位を有
している事から、相分離による膜特性の不均質化
の問題が生じる。 発明者らは従来のスルホン化ポリスルホンの上
記の問題を解決せんとして研究した結果、ポリス
ルホン選択透過膜の表面のみスルホン化するだけ
で機械強度の低下をきたす事なく容易に、充分な
親水性が得られる事を見出し更にこの知見に基づ
き、種々検討を進め、本発明を完成するに至つた
ものである。 すなわち、本発明は、スルホン化試薬が無水硫
酸及び/またはクロルスルホン酸であり、スルホ
ン化試薬の貧溶媒で且つポリスルホンの非溶媒で
ある液体Aと、スルホン化試薬およびポリスルホ
ンの両方に対し良溶媒である液体Bとの混合重量
比A/Bが100/1〜100/20である混合溶媒とス
ルホン化試薬からなる溶液にポリスルホン選択透
過膜を接触させる事により表面をスルホン化する
事を特徴とする表面スルホン化ポリスルホン選択
透過膜の製造方法である。 本発明でスルホン化に用いられるポリスルホン
は、スルホン化試薬でスルホン化可能な分子構造
を有するものであればよく、例として下記の繰返
し単位をあげる事が出来る。 これらの単独またはこれらの共重合体、さらに
必要ならば他の繰り返し単位との共重合及び/ま
たは他のレジンとの混合物を用いる事も出来る。
重合度については、特に限定されるものではない
が重合体としての熱変形温度は18.6Kg/cm2荷重で
150℃以上であることが耐熱性の面から好ましい。
主鎖中の芳香環あるいはアルキル基が、一部ハロ
ゲン、水酸基、チオアルコール、アルデヒド基、
カルボキシル基、ビニル基、アリル基、アリール
基、アミノ基、アミド基、ニトロ基、酸アミド、
ケトキシム、エポキシあるいはシラノール基等の
官能基及び/またはこれらの官能基を含む化合物
で置換されたものも利用する事が出来る。またこ
れらの官能基が架橋反応に利用され、膜特性を向
上させたものも利用することができる。 本発明で用いるポリスルホン選択透過膜は、精
密過、限外過、逆浸透過、気体分離等いず
れの用途の膜でもよい。また形状について、平
膜、中空糸状膜、また他のシート基材あるいは多
孔体を支持体とする複合膜、さらにポリスルホン
膜を支持体とする複合膜のいずれも利用できる。
膜組織についても、表層が電子顕微鏡でも孔が認
められない程緻密な、いわゆるスキン層で覆われ
た膜なるいは覆われていない膜、また内部が多孔
体状であるものも指状構造であるものも用いる事
が出来る。 既に膜表面に他の官能基や化合物が結合してい
たり膜表面層上で架橋反応させたものでもよい。 本発明でスルホン化に用いられるポリスルホン
選択透過膜の製造方法は任意のものを利用する事
が出来る。例へば押し出し後延伸する製膜法ある
いはレジン溶液を流延した後乾燥工程を加へるか
又は加へないものを凝固性の液に浸漬する湿式製
膜法等をあげる事が出来る。多孔性膜を形成する
のに後工程で溶解抽出する為の物質をレジン溶液
に混入しておく方法が知られているが、スルホン
化試薬と好ましくない反応を生じない限り本発明
を利用出来る。 本発明で言う選択性透過膜の表面とは、膜の外
表面層および膜内組織の表面を意味する。 本発明の表面スルホン化ポリスルホン選択透過
膜のスルホン化度は、親水性が発現する程度必要
であり表面抵抗が1013Ω−cm以下であることが好
ましい。表面スルホン化膜の表面抵抗が1013Ω−
cm以上であれば膜の親水性に関し著るしい改善は
認められない。 本発明の方法によつて得られる選択透過膜に
は、膜の組織の全表面がスルホン化されたものだ
けでなく部分的にスルホン化されたものも含まれ
る。例へば、スキン層表面が全面スルホン化され
たもの、スキン層表面が部分的にスルホン化され
たもの、さらに膜組織内の指状あるいは多孔体状
の微細組織内表面の全面または部分的にスルホン
化されたものおよびこれらの複合体も含む。表面
が部分的にスルホン化されたものとは、ミクロン
オーダーあるいはそれ以下の10Åオーダーの微細
な海状、島状、帯状のスルホン化領域からなるも
のあるいは比較的大きなスケールで膜の表面の一
部が全面スルホン化されたものを言う。表面のス
ルホン化度が部分によつて異なるものでもよく、
またスルホン化部分のスルホン化度が連続的に変
化しているものも含まれる。 本発明の方法による表面スルホン化ポリスルホ
ン選択透過膜は、以下に示す様な多くの利点を有
している。 (1) 表面のみスルホン化されているので、従来の
スルホン化ポリスルホン選択透過膜の問題点で
あつた機械強度の低下を防ぐ事が出来る。機械
強度の保持は製膜、モジユール化工程において
も望ましいことである。 (2) あらかじめスルホン化ポリスルホンを合成す
る従来の方法に比較し、この合成工程が省略出
来る。従つて反応溶媒の使用およびその後処
理、スルホン化ポリスルホンの精製等の問題を
考慮する必要がなく、著るしい工程の簡略化と
なる。さらにスルホン化ポリスルホンは湿式製
膜時、凝固が遅くなり、製膜が困難となるがこ
の問題を考慮する必要がない。本発明の表面ス
ルホン化方法はきわめて簡単でありかつ後処理
も容易である。 (3) 部分スルホン化膜の適用範囲を拡大する事が
出来る。すなわち、従来の様に、スルホン化可
能なポリスルホンと、スルホン化されないレジ
ンとのブレンドあるいは共重合体を利用する事
で部分スルホン化膜を得るのは、相溶性の点か
ら、スルホン化度、レジンの種類、重合度、混
成比率等に制約があつた。本発明によればスル
ホン化していないポリスルホンあるいは任意の
スルホン化度にスルホン化されたポリスルホン
も利用する事が出来るので相溶性の点で制約が
大きく軽減される。スルホン化度、他のレジン
との組合せに関し、多種類の膜が可能となるの
で、従来のスルホン化ポリスルホンでは得られ
なかつた過特性、選択過性、抵血栓性、生
体適合性等の性質が期待される。 (4) 従来得られなかつたスキン層のみスルホン化
したり、あるいは内部組織のみスルホン化した
表面スルホン化ポリスルホン選択透過膜を利用
すればより度な膜性能を設計する事が出来
る。例へばスキン層のみスルホン化したものは
膜透過による酵素の失活を最小限に止めること
が出来る。また内部組織のみスルホン化したも
のは透過物の膜組織内部での付着、滞留防止が
出来る。 (5) 膜内でのスルホン化度に分布のある表面スル
ホン化ポリスルホン分離膜は、モジユールとし
た場合に以下に述べる特長があげられる。例へ
ば末端の封止部分が表面スルホン化されている
選択透過膜は、封止樹脂との親和性が向上す
る。またモジユール内でゲル層が形成し易い部
分あるいは圧力損失等により透水量が低下する
部分の膜面をスルホン化する事により、他の特
性を大きく変化させる事なくモジユール性能を
向上させる事が出来る。 (6) 本発明の表面スルホン化ポリスルホン膜の膜
表面に結合したスルホン基はさらにアルカリ金
属、アルカリ土類金属のイオンおよびそれらの
塩、その他アジリジル基等スルホン基と結合し
得る官能基を有する化合物と反応させる事が出
来る。スルホン化試薬によつては、スルホン化
反応で先づスルホニルクロライド基(−
SO2Cl)が膜表面に結合するが、その時点でア
ミン、エポキシ、水酸基等このスルホニルクロ
ライドと反応し得る官能基をもつ化合物と反応
させる事も出来る。これらの反応は、スルホン
化膜の改質、複合化に有効に利用する事が出来
る。 以下に表面スルホン化方法の一例を述べる。 表面スルホン化膜の製造には、通常知られてい
る無水硫酸、クロルスルホン酸、濃硫酸等のスル
ホン化試薬が利用され、スルホン化反応は溶液系
あるいは気体系のいずれの形で行なつてもよい。
その内、従来知られている他のレジンにおける溶
液系の表面スルホン化は、スルホン化試薬とは反
応せずこれを溶解しかつレジンを劣化さない溶媒
に、スルホン化試薬を溶解させた溶液とレジンと
を接触させる事によつて行なわれている。この様
な溶媒としては、レジンによつて異るが例へばシ
クロヘキサンをあげる事が出来る。ところがこれ
をポリスルホンに適用した場合、スルホン化の所
用時間が長くかつスルホン化度に関し、意図せぬ
不均一が生じてしまう。この原因としてはスルホ
ン化試薬の溶解度が低く、且つスルホン化が容易
に進行するので、スルホン化試薬の濃度に不均一
が生じる事が考へられる。 発明者らは、比較的穏和な条件で安定して表面
スルホン化の出来る方法を見出すべく研究を進
め、前述の製造方法を発明するに至つた。 本発明で用いる溶媒Aの例としては前述の様に
シクロヘキサンをあげる事が出来る。また溶媒B
として例へば塩化メチレンをあげる事が出来る。
特に塩化メチレン、シクロルエタン等は、ポリス
ルホンに対しては良溶媒であるが、スルホン化ポ
リスルホンに対しては貧溶媒となるので表面だけ
がスルホン化され、それ以上内部への進行が防が
れていると考えられる。溶媒A、Bともに単一組
成でも、混合溶媒でもよい。溶媒AとBとの相溶
性については、相溶性のある場合にはスルホン化
が均一に行なわれる。 本発明で用いる溶媒AとBとの混合溶媒の混合
重量比はA/Bが100/1〜100/20好ましくは
100/3〜100/8が用いられる。100/1より小
さい溶液のスルホン化試薬濃度が低く、常温で数
分膜と接触させた程度では膜の透水量等への向上
が認められない。また100/20以上であれば膜が
劣化される。スルホン化試薬の濃度は混合溶媒の
溶解度まで任意に選択する事が出来るが、スルホ
ン化反応によつて消費された分をただちに補充出
来る様、溶解度以上のスルホン化試薬を混入して
おくのが実用的である。例へばシクロヘキサン/
塩化メチレンの混合比が94.4/5.6である混合溶
液の場合、スルホン化試薬としてクロルスルホン
酸を用いるなら3重量%、望ましくは5重量%以
上にしておく方がいスルホン化度が、速くまた
安定して得られる。スルホン化反応は膜をスルホ
ン化試薬溶液に接触させるだけで室温で数分で容
易に進行し、加熱あるいは長時間接触の必要はな
い。 上記の様に過剰のスルホン化試薬が存在する場
合、溶液は不均一系である。スルホン化試薬の
濃度に存在する相を直接選択透過膜に接触させる
と、膜の劣化をひきおこすので注意する必要があ
る。しかし濃度相は比重がく、ほとんどの溶
液系では下部に沈降するので、膜との接触を防止
するのは容易である。膜とスルホン化試薬との接
触方法は、膜の形状により適当な方法を選ぶこと
が出来る。また膜表面全体をスルホン化するか、
あるいは部分的にスルホン化するかによつても適
当な手段を選ぶことが出来る。例へば平板膜ある
いはチユーブラー膜の場合、表面スルホン化を行
なつた後、モジユール化する事も、またモジユー
ル化した後表面スルホン化を行う事も出来るが、
モジユールに金属部分のある場合には前者の方法
による方が望ましい。また中空糸状膜の場合、単
に膜をスルホン化試薬溶液に浸漬しただけでは、
特に内表面の充分な表面スルホン化が行なわれな
いので、後述の様に、先にモジユール化してお
き、これにスルホン化試薬溶液を通す方法が適当
である。膜内部組織のみスルホン化するには膜表
層面にあらかじめスルホン化試薬に溶けない物質
を塗布し、保護してからスルホン化するか、ある
いはスルホン化試薬を含まない液体に膜表層面を
接触させたまま、反対側からスルホン化試薬溶液
を浸透させる方法がある。特に選択性透過膜がス
キン層をもたない、多孔体状のものである場合に
は後者の方法が適当である。スキン層のみスルホ
ン化するには、この逆にあらかじめスルホン化試
薬を含まない液体またはスルホン化試薬溶液に溶
けない物質で膜内組織を充した後、膜とスルホン
化試薬溶液とを接触させる方法が選ばれる。スル
ホン化試薬を含まない液体としてスルホン化試薬
溶液と相溶性に貧しく且つ比重差のあるものを利
用すればより効果的である。膜表面に微細なスル
ホン化領域を作るにはスルホン化し得る繰り返し
単位をもつポリスルホンとスルホン化しないレジ
ンとの混合物あるいは共重合体を用い表面スルホ
ン化する方法が適当である。スルホン化試薬溶液
としてスルホン化試薬リツチ層とそうでない層と
が乳状に相分離したものを利用する方法もある
が、温度に対してスルホン化度の安定性を保つの
に注意を払う必要がある。膜内でスルホン化度に
分布のある表面スルホン化ポリスルホンを得るに
は、上記の方法を利用する他に、膜を部分的にス
ルホン化試薬溶液に浸漬する方法がある。特に中
空糸状膜の場合一方の入口からスルホン化試薬溶
液を、また他方の入口からはスルホン化試薬を含
まない液をそれぞれ所定の圧力で流入させる事に
より、スルホン化度に分布をもたせる事が出来
る。スルホン化膜は、スルホン基をナトリウム塩
の形に安定化処理する事が多い。それにはスルホ
ン化の後、膜をナトリウムメチラートのメタノー
ルあるいはエタノール溶液に常温で数分浸漬して
おけばよい。処理反応は穏和であるが同時にスル
ホン化試薬のナトリウム塩も出来るので、処理反
応後膜を水洗しておく必要がある。水溶性塩であ
るから、水洗は容易である。 本発明の表面のスルホン化ポリスルホン選択透
過膜の製造方法は以下の様な利点をもつ。 (1) いスルホン化度の膜が速やかに且つ安定し
て得られる。 (2) 従来得られなかつた、部分的にスルホン化さ
れた選択透過膜を作製する事が出来る。 (3) 選択透過膜の形状、分画性を間はず、多くの
種類の膜に適用可能である。 (4) 用いるスルホン化試薬は中和処理を行えば全
て毒性の低いものである。中和処理には例へば
ナトリウム塩とする方法をあげる事が出来る。
また溶媒も、通常容易に入手出来る安価なもの
が利用できるので工業的に有利である。 (5) ポリスルホン以外のレジンに対しても応用出
来る。 以下実施例によつて本発明を説明する。 実施例 1 (平膜状ポリスルホン選択透過膜) 芳香族ポリスルホンP−1700(ユニオンカーバ
イド社製)14重量部をN−メチル−2−ピロリド
ン86重量部に70℃4時間加熱溶解させ、レジン溶
液を作る。脱泡後室温にてレジン溶液をガラス板
上に流延し、さらに20℃の水に浸漬して厚さ60〜
70μの膜を得た。この膜を18℃エチルアルコール
に10分浸漬した後80℃、30分乾燥し、平膜状の乾
燥ポリスルホン選択透過膜を得た。 次に、シクロヘキサン/塩化メチレン/クロル
スルホン酸を所定の混合比率でよく撹拌したのち
静置する。クロルスルホン酸リツチ層は下部にた
だちに沈降する。18℃の上澄液に上記の乾燥膜を
5分間浸漬し、表面をスルホン化する。さらに5
重量%のナトリウムメチラートのエタノール溶液
に5分間浸漬し、ナトリウム塩とした後水に浸
漬、水洗して表面スルホン化ポリスルホン選択透
過膜を得た。 膜の表面抵抗および透水率の測定結果を第1表
に示す。 (表面抵抗の測定) 表面スルホン化ポリスルホン選択透過膜をメチ
ルアルコールに10分浸漬した後80℃、30分風乾す
る。得られた乾燥膜を気温40℃、湿度90%の条件
で96時間放置した後、膜上に同心円状に電極を設
置し、JIS規格K−6911に示される方法に準じて
表面絶縁抵抗を測定した(印加電圧DC−100V1
分)。
The present invention relates to a selectively permeable membrane that can be used as a precision membrane, an ultrafiltration membrane, or a reverse osmosis membrane, and a method for producing the same. The main objective is to provide a sulfonated polysulfone selectively permeable membrane with high mechanical strength. Polysulfone is heat resistant,
It has excellent acid resistance, alkali resistance, and high mechanical strength, making it useful as a membrane material or support for composite membranes.However, due to the hydrophobic nature of the resin itself, water permeability is low, making it especially suitable for membranes with a small molecular weight cutoff. This is a major drawback in some cases. A method is known in which polysulfone is sulfonated in advance for the purpose of making it hydrophilic, but the mechanical strength of sulfonated polysulfone decreases and one of the characteristics of polysulfone is lost. Furthermore, along with the improvement in hydrophilicity, there arises a problem in film formation that coagulation slows down during wet film formation. In order to maintain the mechanical strength of sulfonated polysulfone, a method has been proposed in which the degree of sulfonation is adjusted by the charging ratio of the sulfonation reagent (Japanese Patent Application Laid-Open No.
51-90397). However, it is difficult to control the sulfonation reaction and ensure that it is carried out uniformly, resulting in a wide distribution of molecules ranging from molecules in which almost all of the repeating units are sulfonated to molecules that are not sulfonated at all, resulting in stable film forming properties and film properties. A problem arises. In addition, a method has been proposed in which the degree of sulfonation is controlled by sulfonating a polymer that has both repeating units that can be sulfonated and repeating units that are not substantially sulfonated (Japanese Patent Laid-Open No. 55-36296 and Publication No. 55-48222). This method is only possible with a special combination of resins, the synthesis process is complicated, and the presence of different repeating units causes the problem of inhomogeneous membrane properties due to phase separation. The inventors conducted research to solve the above-mentioned problems with conventional sulfonated polysulfones, and found that sufficient hydrophilicity could be easily obtained by sulfonating only the surface of the polysulfone selectively permeable membrane without causing a decrease in mechanical strength. Based on this knowledge, we conducted various studies and completed the present invention. That is, in the present invention, the sulfonating reagent is sulfuric anhydride and/or chlorosulfonic acid, and liquid A is a poor solvent for the sulfonating reagent and a non-solvent for polysulfone, and a good solvent for both the sulfonating reagent and polysulfone. It is characterized by sulfonating the surface by bringing the polysulfone selectively permeable membrane into contact with a solution consisting of a mixed solvent and a sulfonating reagent whose mixing weight ratio A/B with liquid B is 100/1 to 100/20. This is a method for producing a surface-sulfonated polysulfone selectively permeable membrane. The polysulfone used for sulfonation in the present invention may have a molecular structure that can be sulfonated with a sulfonation reagent, and examples include the following repeating units. These monopolymers or copolymers thereof, and if necessary, copolymers with other repeating units and/or mixtures with other resins can also be used.
The degree of polymerization is not particularly limited, but the thermal deformation temperature of the polymer is 18.6Kg/ cm2 under a load.
The temperature is preferably 150°C or higher in terms of heat resistance.
Some of the aromatic rings or alkyl groups in the main chain are halogen, hydroxyl, thioalcohol, aldehyde,
carboxyl group, vinyl group, allyl group, aryl group, amino group, amide group, nitro group, acid amide,
Those substituted with functional groups such as ketoxime, epoxy or silanol groups and/or compounds containing these functional groups can also be used. Furthermore, those in which these functional groups are utilized for crosslinking reactions to improve membrane properties can also be used. The polysulfone selectively permeable membrane used in the present invention may be a membrane for any purpose such as precision filtration, ultrafiltration, reverse osmosis filtration, or gas separation. Regarding the shape, any of flat membranes, hollow fiber membranes, composite membranes using other sheet substrates or porous materials as a support, and composite membranes using a polysulfone membrane as a support can be used.
Regarding the membrane structure, membranes whose surface layer is covered with a so-called skin layer, which is so dense that no pores can be seen even under an electron microscope, or membranes which are not covered with a skin layer, and those whose interior is porous, also have a finger-like structure. You can also use some. It may be that other functional groups or compounds have already been bonded to the membrane surface, or that a crosslinking reaction has been carried out on the membrane surface layer. Any method can be used for producing the polysulfone selectively permeable membrane used for sulfonation in the present invention. Examples include a film forming method in which extrusion is followed by stretching, and a wet film forming method in which a resin solution is cast and then a drying step is added or not, and the material is immersed in a coagulating liquid. A method is known in which a substance to be dissolved and extracted in a subsequent step is mixed into a resin solution to form a porous membrane, but the present invention can be used as long as it does not cause an undesirable reaction with the sulfonation reagent. The surface of a selectively permeable membrane as used in the present invention means the outer surface layer of the membrane and the surface of the membrane's internal tissue. The degree of sulfonation of the surface-sulfonated polysulfone selectively permeable membrane of the present invention is necessary to exhibit hydrophilicity, and the surface resistance is preferably 10 13 Ω-cm or less. The surface resistance of the surface sulfonated film is 10 13 Ω−
cm or more, no significant improvement in the hydrophilicity of the membrane is observed. The selectively permeable membranes obtained by the method of the present invention include not only those in which the entire surface of the membrane tissue is sulfonated, but also those in which the entire surface of the membrane structure is sulfonated. For example, the surface of the skin layer is completely sulfonated, the surface of the skin layer is partially sulfonated, and the surface of the finger-like or porous microstructure within the membrane structure is fully or partially sulfonated. It also includes complexes of these compounds. Partially sulfonated surfaces are those that consist of fine sea-like, island-like, or band-like sulfonated regions on the order of microns or less, on the order of 10 Å, or those that are part of the surface of a film on a relatively large scale. is completely sulfonated. The degree of sulfonation on the surface may vary depending on the part,
It also includes those in which the degree of sulfonation of the sulfonated moiety changes continuously. The surface-sulfonated polysulfone selectively permeable membrane produced by the method of the present invention has many advantages as shown below. (1) Since only the surface is sulfonated, it is possible to prevent a decrease in mechanical strength, which was a problem with conventional sulfonated polysulfone selectively permeable membranes. Maintaining mechanical strength is also desirable in film forming and modularization processes. (2) Compared to the conventional method of synthesizing sulfonated polysulfone in advance, this synthesis step can be omitted. Therefore, there is no need to consider problems such as the use of a reaction solvent and its subsequent treatment, and the purification of sulfonated polysulfone, resulting in a significant simplification of the process. Furthermore, sulfonated polysulfone solidifies slowly during wet film formation, making film formation difficult, but this problem does not need to be taken into account. The surface sulfonation method of the present invention is extremely simple and easy to post-process. (3) The scope of application of partially sulfonated membranes can be expanded. In other words, the conventional method of obtaining a partially sulfonated membrane by using a blend or copolymer of a sulfonable polysulfone and a non-sulfonated resin is due to the degree of sulfonation and the resin. There were restrictions on the type, degree of polymerization, mixing ratio, etc. According to the present invention, unsulfonated polysulfone or polysulfone sulfonated to an arbitrary degree of sulfonation can be used, so restrictions in terms of compatibility are greatly reduced. With regard to the degree of sulfonation and combinations with other resins, many types of membranes are possible, so properties such as hypercharacteristics, hyperselectivity, anti-thrombotic properties, and biocompatibility that were not available with conventional sulfonated polysulfones can be obtained. Be expected. (4) By using a surface-sulfonated polysulfone selectively permeable membrane in which only the skin layer is sulfonated, or only the internal tissue is sulfonated, which has not been possible in the past, it is possible to design membranes with higher performance. For example, when only the skin layer is sulfonated, enzyme deactivation due to membrane permeation can be minimized. In addition, when only the internal tissue is sulfonated, it is possible to prevent permeate from adhering to and staying inside the membrane structure. (5) A surface sulfonated polysulfone separation membrane with a distribution of degree of sulfonation within the membrane has the following features when made into a module. For example, a permselective membrane whose end sealing portion is surface-sulfonated has improved affinity with the sealing resin. Furthermore, by sulfonating the membrane surface in areas within the module where a gel layer is likely to form or where water permeability decreases due to pressure loss, etc., module performance can be improved without significantly changing other properties. (6) The sulfone groups bonded to the membrane surface of the surface-sulfonated polysulfone membrane of the present invention may further include alkali metal, alkaline earth metal ions and their salts, and other compounds having functional groups capable of bonding with sulfone groups such as aziridyl groups. You can make it react. Depending on the sulfonation reagent, the sulfonyl chloride group (-
SO 2 Cl) is bound to the membrane surface, and at that point it can be reacted with a compound having a functional group that can react with this sulfonyl chloride, such as an amine, epoxy, or hydroxyl group. These reactions can be effectively used to modify and compose sulfonated membranes. An example of the surface sulfonation method will be described below. Generally known sulfonating reagents such as sulfuric anhydride, chlorosulfonic acid, and concentrated sulfuric acid are used to produce surface sulfonated membranes, and the sulfonation reaction can be carried out in either a solution system or a gas system. good.
Among these, solution-based surface sulfonation of other conventionally known resins involves dissolving the sulfonation reagent in a solvent that does not react with the sulfonation reagent, dissolves it, and does not deteriorate the resin. This is done by contacting the resin. An example of such a solvent is cyclohexane, although it varies depending on the resin. However, when this is applied to polysulfone, the time required for sulfonation is long and unintended non-uniformity occurs in the degree of sulfonation. The reason for this is thought to be that the solubility of the sulfonating reagent is low and sulfonation proceeds easily, resulting in non-uniformity in the concentration of the sulfonating reagent. The inventors conducted research to find a method that could stably perform surface sulfonation under relatively mild conditions, and came to invent the above-mentioned production method. An example of the solvent A used in the present invention is cyclohexane, as described above. Also, solvent B
An example of this is methylene chloride.
In particular, methylene chloride, cycloethane, etc. are good solvents for polysulfone, but are poor solvents for sulfonated polysulfone, so only the surface is sulfonated and further progress into the interior is prevented. it is conceivable that. Both solvents A and B may have a single composition or may be a mixed solvent. Regarding the compatibility between solvents A and B, if they are compatible, sulfonation will be uniformly performed. The mixed weight ratio of the mixed solvent of solvents A and B used in the present invention is preferably A/B of 100/1 to 100/20.
100/3 to 100/8 is used. The concentration of the sulfonating reagent in a solution smaller than 100/1 is low, and no improvement in the water permeability of the membrane is observed even if the solution is brought into contact with the membrane for several minutes at room temperature. Moreover, if it is more than 100/20, the film will deteriorate. The concentration of the sulfonating reagent can be arbitrarily selected depending on the solubility of the mixed solvent, but it is practical to mix in a sulfonating reagent with a higher solubility so that the amount consumed by the sulfonation reaction can be immediately replenished. It is true. For example, cyclohexane/
In the case of a mixed solution in which the mixing ratio of methylene chloride is 94.4/5.6, if chlorosulfonic acid is used as the sulfonating reagent, it is better to use it at 3% by weight, preferably 5% by weight or more, as the degree of sulfonation will be faster and more stable. can be obtained. The sulfonation reaction easily proceeds in a few minutes at room temperature by simply bringing the membrane into contact with the sulfonation reagent solution, and there is no need for heating or long-term contact. When an excess of sulfonating reagent is present, as described above, the solution is heterogeneous. If the phase present at the concentration of the sulfonating reagent is brought into direct contact with the permselective membrane, it will cause deterioration of the membrane, so care must be taken. However, since the concentrated phase has a low specific gravity and settles to the bottom in most solution systems, it is easy to prevent contact with the membrane. An appropriate method for contacting the membrane with the sulfonating reagent can be selected depending on the shape of the membrane. Alternatively, the entire membrane surface may be sulfonated, or
Alternatively, appropriate means can be selected depending on whether partial sulfonation is desired. For example, in the case of a flat membrane or a tubular membrane, it is possible to perform surface sulfonation and then modularization, or modularization and then surface sulfonation.
If the module has metal parts, the former method is preferable. In addition, in the case of hollow fiber membranes, simply immersing the membrane in a sulfonating reagent solution will
In particular, since sufficient surface sulfonation of the inner surface is not carried out, it is appropriate to first form a module and pass a sulfonating reagent solution through it, as described below. To sulfonate only the internal membrane tissue, either coat the surface of the membrane with a substance that is insoluble in the sulfonation reagent to protect it before sulfonation, or bring the surface of the membrane into contact with a liquid that does not contain the sulfonation reagent. There is a method of penetrating the sulfonating reagent solution from the opposite side. The latter method is particularly suitable when the selectively permeable membrane is porous and does not have a skin layer. To sulfonate only the skin layer, the opposite method is to first fill the membrane tissue with a liquid that does not contain the sulfonating reagent or a substance that is insoluble in the sulfonating reagent solution, and then bring the membrane into contact with the sulfonating reagent solution. To be elected. It is more effective to use a liquid that does not contain a sulfonating reagent and has poor compatibility with the sulfonating reagent solution and has a different specific gravity. In order to create fine sulfonated regions on the membrane surface, it is appropriate to use a method of surface sulfonation using a mixture or copolymer of polysulfone having repeating units that can be sulfonated and a resin that does not undergo sulfonation. There is also a method of using a sulfonation reagent solution in which a sulfonation reagent-rich layer and a non-sulfonation reagent-rich layer are phase-separated into a milky state, but care must be taken to maintain the stability of the degree of sulfonation with respect to temperature. . In order to obtain surface sulfonated polysulfone with a distribution of degree of sulfonation within the membrane, in addition to the above method, there is a method of partially immersing the membrane in a sulfonation reagent solution. In particular, in the case of hollow fiber membranes, the degree of sulfonation can be distributed by flowing a sulfonating reagent solution from one inlet and a liquid containing no sulfonating reagent from the other inlet at a predetermined pressure. . In sulfonated membranes, sulfone groups are often stabilized in the form of sodium salts. This can be done by immersing the membrane in a methanol or ethanol solution of sodium methylate for several minutes at room temperature after sulfonation. Although the treatment reaction is mild, a sodium salt of the sulfonating reagent is also produced, so it is necessary to wash the membrane with water after the treatment reaction. Since it is a water-soluble salt, it is easy to wash with water. The method for producing a selectively permeable membrane with sulfonated polysulfone surface according to the present invention has the following advantages. (1) A membrane with a high degree of sulfonation can be obtained quickly and stably. (2) It is possible to produce a partially sulfonated selectively permeable membrane, which has not been previously possible. (3) The shape and fractionation properties of selectively permeable membranes can be changed and can be applied to many types of membranes. (4) All sulfonation reagents used have low toxicity if they are neutralized. An example of neutralization treatment is to use sodium salt.
Moreover, the solvent is industrially advantageous because it can be used as a solvent that is usually easily available and inexpensive. (5) It can also be applied to resins other than polysulfone. The present invention will be explained below with reference to Examples. Example 1 (Flat membrane polysulfone selectively permeable membrane) 14 parts by weight of aromatic polysulfone P-1700 (manufactured by Union Carbide) was dissolved in 86 parts by weight of N-methyl-2-pyrrolidone by heating at 70°C for 4 hours, and the resin solution was dissolved. make. After defoaming, the resin solution was cast onto a glass plate at room temperature, and then immersed in water at 20°C to a thickness of 60°C.
A 70μ membrane was obtained. This membrane was immersed in ethyl alcohol at 18°C for 10 minutes and then dried at 80°C for 30 minutes to obtain a dry polysulfone permselective membrane in the form of a flat membrane. Next, cyclohexane/methylene chloride/chlorosulfonic acid are thoroughly stirred at a predetermined mixing ratio and then left to stand. A chlorsulfonic acid rich layer immediately settles at the bottom. The above dried membrane is immersed in the supernatant liquid at 18°C for 5 minutes to sulfonate the surface. 5 more
The membrane was immersed in an ethanol solution of sodium methylate (wt%) for 5 minutes to form a sodium salt, and then immersed in water and washed with water to obtain a surface-sulfonated polysulfone selectively permeable membrane. Table 1 shows the measurement results of the surface resistance and water permeability of the membrane. (Measurement of surface resistance) The surface sulfonated polysulfone selectively permeable membrane is immersed in methyl alcohol for 10 minutes, and then air-dried at 80°C for 30 minutes. After the obtained dried film was left for 96 hours at a temperature of 40°C and a humidity of 90%, electrodes were placed concentrically on the film and the surface insulation resistance was measured according to the method shown in JIS standard K-6911. (applied voltage DC-100V1
minutes).

【表】【table】

【表】 実施例 2 (中空糸状選択透過膜) 実施例1で用いたのと同じ芳香族ポリスルホン
と、N−メチル−2−ピロリドンと硝酸リチウム
を所定量混合し、レジン溶液をを調節した。次に
水を凝固定とした通常の湿式製膜法により、透水
率が30/m2hratmのポリスルホン選択透過膜
(M1)と、透水率が100/m2hratmの膜(M2)
を得た。50本づつモジユール化し、さらにこれら
のモジユールをエチルアルコールに10分浸漬し、
80℃、30分風乾して乾燥モジユールとした。 (表面スルホン化) 実施例1と同じくシクロヘキサン/塩化メチレ
ン/クロルスルホン酸を所定の混合比率でよく撹
拌した後静置する。液が2相に分かれた後18℃で
上澄部を、モジユール化してある乾燥ポリスルホ
ン中空糸状膜の内管部に5分間循環させる。この
時、スルホン化試薬溶液が少ない場合には一旦中
空糸内を通過した液を、下層に沈降しているクロ
ルスルホン酸リツチ層に接触させ再度中空糸内を
循環させるとよい。 次にモジユールをナトリウムメチラート5重量
%エタノール溶液に浸漬し、同時に中空糸内部に
循環させる。5〜10分後にモジユールを水に浸漬
し、同様に中空糸内にも水を循環して水洗、中空
糸状表面スルホン化ポリスルホン選択透過膜を得
た。透水率の速定結果を第2表にまとめて示す。 (膜強度の測定) 選択透過膜M1、M2を、クロルスルホン酸/塩
化メチレン/シクロヘキサン=5/5/90のスル
ホン化試薬を用い、同様の方法でスルホン化、後
処理を行なつた。得られた膜の機械強度の測定結
果を第3表に示す。
[Table] Example 2 (Hollow fiber selectively permeable membrane) The same aromatic polysulfone used in Example 1, N-methyl-2-pyrrolidone, and lithium nitrate were mixed in predetermined amounts to prepare a resin solution. Next, a polysulfone selectively permeable membrane (M1) with a water permeability of 30/m 2 hratm and a membrane (M2) with a water permeability of 100/m 2 hratm were created using the normal wet membrane manufacturing method in which water is coagulated and fixed.
I got it. 50 pieces were made into modules, and these modules were soaked in ethyl alcohol for 10 minutes.
It was air-dried at 80°C for 30 minutes to form a dry module. (Surface Sulfonation) As in Example 1, cyclohexane/methylene chloride/chlorosulfonic acid were thoroughly stirred at a predetermined mixing ratio and then allowed to stand. After the liquid is separated into two phases, the supernatant is circulated at 18° C. for 5 minutes through the inner tube of a modular dry polysulfone hollow fiber membrane. At this time, if the amount of the sulfonating reagent solution is small, it is advisable to bring the liquid that has passed through the hollow fiber into contact with the chlorosulfonic acid rich layer precipitated in the lower layer and circulate it through the hollow fiber again. Next, the module is immersed in a 5% by weight sodium methylate ethanol solution, which is simultaneously circulated inside the hollow fiber. After 5 to 10 minutes, the module was immersed in water, and water was similarly circulated through the hollow fibers for washing, yielding a hollow fiber-like surface-sulfonated polysulfone selectively permeable membrane. The rapid determination results of water permeability are summarized in Table 2. (Measurement of Membrane Strength) The selectively permeable membranes M1 and M2 were sulfonated and post-treated in the same manner using a sulfonating reagent of chlorosulfonic acid/methylene chloride/cyclohexane = 5/5/90. Table 3 shows the results of measuring the mechanical strength of the obtained membrane.

【表】【table】

【表】 比較例 1 実施例1と同じ方法で平膜状の乾燥ポリスルホ
ン選択透過膜を作製し、シクロヘキサン/塩化メ
チレン/クロルスルホン酸のうち、塩化メチレ
ン、クロルスルホン酸の一方もしくは双方を含ま
ない溶液に浸漬する他は、実施例1と同様の処理
を行つた。得られた膜の透水率および表面抵抗の
測定結果を第1表にまとめて示す。この様にスル
ホン化処理により透水率が向上する事が判る。 比較例 2 実施例2と同じ方法で、中空糸状の乾燥ポリス
ルホン膜M11、M2のモジユールを作製し、シク
ロヘキサン/塩化メチレン=95/5の混合溶媒に
5分浸漬、実施例2と同様にエタノール、水の順
で中空糸内部にも循環する様注意しながら各々5
分づつ浸漬した。得られたモジユールの透水率お
よび中空糸の機械強度の測定結果を表2、表3に
それぞれまとめて示す。 比較例 3 実施例2において、クロルスルホン酸/塩化メ
チレン/シクロヘキサンの比を、5/20/75にし
た他は、同じ方法で得られたモジユールの透水率
および機械強度の測定結果を、第2表および第3
表に示す。 比較例 4 実施例1と同じポリスルホンを用い、Noshay
らの方法(J・AppL・Polym・Sci・、201885
(’76))に従つて各スルホン化度のポリスルホン
を合成した。ここで言うスルホン化度とは、ポリ
スルホンの繰り返し単位当り、何個のスルホン基
が存在するかを表わしたものである。スルホン化
度1.0のレジンは、N−メチル−2−ピロリドン
の14重量%の溶液として、実施例1と同様の製膜
を試みたが凝固が遅く良好な膜を得る事が出来な
かつた。25%とすると、製膜可能になるが、透水
率の著るしく低い膜しか得られなかつた。スルホ
ン化度の0.5のレジンは14重量%で平膜の作製は
可能であるが、実施例2と同じ方法で中空糸状膜
を作ろうとすると、やはり凝固の遅さの為に困難
をきたした。また膜の弾性率はスルホン化しない
ものと比較し、6割弱であつた。スルホン化度
0.1のレジンは、中空糸状膜の作製も可能である
が得られた透水量は同じ条件で製膜したスルホン
化していないポリスルホン中空糸膜(M1)が30
/m2hratmであるのに対し、120/m2hratm
と約4倍向上した。膜の機械強度は表3に示す様
に表面スルホン化した(M1)に比して低下して
いる。透水率は表面スルホン化したもの(M1)
は、透水は220/m2hratmで、かつ機械強度の
低下はほとんど認められない事が判る。
[Table] Comparative Example 1 A flat dry polysulfone selectively permeable membrane was prepared in the same manner as in Example 1, and one or both of methylene chloride and chlorosulfonic acid among cyclohexane/methylene chloride/chlorosulfonic acid was not included. The same treatment as in Example 1 was performed except for immersion in the solution. The measurement results of the water permeability and surface resistance of the obtained membrane are summarized in Table 1. It can thus be seen that the water permeability is improved by the sulfonation treatment. Comparative Example 2 Modules of hollow fiber dry polysulfone membranes M11 and M2 were prepared in the same manner as in Example 2, and immersed in a mixed solvent of cyclohexane/methylene chloride = 95/5 for 5 minutes. 5 each, being careful to circulate the water inside the hollow fiber in this order.
Soaked in minutes. The results of measuring the water permeability of the obtained module and the mechanical strength of the hollow fibers are summarized in Tables 2 and 3, respectively. Comparative Example 3 The results of measuring the water permeability and mechanical strength of the module obtained in the same manner as in Example 2, except that the ratio of chlorosulfonic acid/methylene chloride/cyclohexane was changed to 5/20/75, were table and third
Shown in the table. Comparative Example 4 Using the same polysulfone as in Example 1, Noshay
The method of et al. (J. AppL. Polym. Sci., 20 1885
('76)), polysulfones with various degrees of sulfonation were synthesized. The degree of sulfonation here refers to the number of sulfone groups present per repeating unit of polysulfone. Using a resin with a degree of sulfonation of 1.0, film formation was attempted in the same manner as in Example 1 using a 14% by weight solution of N-methyl-2-pyrrolidone, but coagulation was slow and a good film could not be obtained. When it is set to 25%, it becomes possible to form a film, but only a film with extremely low water permeability can be obtained. Although it is possible to fabricate a flat membrane using a resin with a degree of sulfonation of 0.5 at 14% by weight, attempts to fabricate a hollow fiber membrane using the same method as in Example 2 were still difficult due to slow coagulation. Moreover, the elastic modulus of the membrane was slightly less than 60% of that of the membrane without sulfonation. Degree of sulfonation
Although it is possible to fabricate a hollow fiber membrane using a resin with a diameter of 0.1, the water permeability obtained is 30% for a non-sulfonated polysulfone hollow fiber membrane (M1) produced under the same conditions.
/m 2 hratm, whereas 120/m 2 hratm
This is an improvement of about 4 times. As shown in Table 3, the mechanical strength of the membrane is lower than that of (M1) with surface sulfonation. Water permeability is surface sulfonated (M1)
It can be seen that the water permeability is 220/m 2 hratm, and there is almost no decrease in mechanical strength.

Claims (1)

【特許請求の範囲】[Claims] 1 スルホン化試薬が無水硫酸及び/またはクロ
ルスルホン酸であり、スルホン化試薬の貧溶媒で
且つポリスルホンの非溶媒である液体Aと、スル
ホン化試薬およびポリスルホンの両方に対し良溶
媒である液体Bとの混合重量比A/Bが100/1
〜100/20である混合溶媒とスルホン化試薬から
なる溶液にポリスルホン選択透過膜を接触させる
事により表面をスルホン化する事を特徴とする表
面スルホン化ポリスルホン選択透過膜の製造方
法。
1 Liquid A, in which the sulfonating reagent is sulfuric anhydride and/or chlorosulfonic acid, is a poor solvent for the sulfonating reagent and a non-solvent for polysulfone, and Liquid B is a good solvent for both the sulfonating reagent and polysulfone. The mixing weight ratio A/B is 100/1
A method for producing a surface sulfonated polysulfone selectively permeable membrane, characterized in that the surface is sulfonated by bringing the polysulfone selectively permeable membrane into contact with a solution consisting of a mixed solvent and a sulfonating reagent in a ratio of ~100/20.
JP19440883A 1983-10-19 1983-10-19 Polysulphone permselective film and its preparation Granted JPS6087803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19440883A JPS6087803A (en) 1983-10-19 1983-10-19 Polysulphone permselective film and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19440883A JPS6087803A (en) 1983-10-19 1983-10-19 Polysulphone permselective film and its preparation

Publications (2)

Publication Number Publication Date
JPS6087803A JPS6087803A (en) 1985-05-17
JPH0122009B2 true JPH0122009B2 (en) 1989-04-25

Family

ID=16324103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19440883A Granted JPS6087803A (en) 1983-10-19 1983-10-19 Polysulphone permselective film and its preparation

Country Status (1)

Country Link
JP (1) JPS6087803A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614505A (en) * 1984-06-15 1986-01-10 Nitto Electric Ind Co Ltd Polysulfone composite semipermeable membrane and its manufacture
JPS614506A (en) * 1984-06-15 1986-01-10 Nitto Electric Ind Co Ltd Polysulfone composite semipermeable membrane and its manufacture
JPS6219205A (en) * 1985-07-17 1987-01-28 Nok Corp Preparation of ultrafilter membrane
JPH02157026A (en) * 1988-12-08 1990-06-15 Sumitomo Bakelite Co Ltd Charge type ultrafiltration film and its manufacture
US5009678A (en) * 1989-10-31 1991-04-23 Union Carbide Industrial Gases Technology Corporation Process for recovery of ammonia from an ammonia-containing gas mixture
JPH03154625A (en) * 1989-11-09 1991-07-02 Agency Of Ind Science & Technol Manufacture of unsymmetrical membrane having high separating ability
DE60230033D1 (en) 2001-04-18 2009-01-08 Asahi Kasei Kuraray Medical Co ASYMMETRIC POROUS FILMS AND METHOD FOR THE PRODUCTION THEREOF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124851A (en) * 1974-03-20 1975-10-01
JPS58111832A (en) * 1981-12-25 1983-07-04 Asahi Chem Ind Co Ltd Preparation of hydrophilic membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124851A (en) * 1974-03-20 1975-10-01
JPS58111832A (en) * 1981-12-25 1983-07-04 Asahi Chem Ind Co Ltd Preparation of hydrophilic membrane

Also Published As

Publication number Publication date
JPS6087803A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
US5009824A (en) Process for preparing an asymmetrical macroporous membrane polymer
JPH01284303A (en) High selectivity permeable membrane having hydrophilic property rendered to surface and production thereof
JPH06254158A (en) Diaphragm and its preparation
JPH03193126A (en) Sulfonated hexafluorobisphenol-a polysulfone film and fluid separation process
JPH0711019A (en) Semipermeable membrane of homogeneously miscible polymer alloy
JPH0122009B2 (en)
JPH0757825B2 (en) Polysulfone resin porous membrane
JPS62201603A (en) Hydrophilic polysulfone membrane
JPH0675667B2 (en) Method for producing semi-permeable membrane of polysulfone resin
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JPH0220290B2 (en)
JPH0751632B2 (en) Hydrophilized polyethylene sulfone membrane
JPH022862A (en) Modified separating membrane
JPH0563209B2 (en)
JPS62269704A (en) High-selectivity permeable membrane provided with higher hydrophilic nature on surface and its production
JP3165740B2 (en) Separation membrane and method for producing the same
JPH05293345A (en) Semipermeable dual membrane
JPS62168503A (en) Separation membrane
US5221482A (en) Polyparabanic acid membrane for selective separation
JPS63258603A (en) Aromatic polymer membrane
KR0123279B1 (en) Method for semipermeable composite membrane
JPS6151925B2 (en)
JPS6329562B2 (en)
KR950007321B1 (en) Manufacturing method of osmosis membrane for components
JPH0364152B2 (en)