JPH02274464A - Polishing device and method for semiconductor wafer - Google Patents

Polishing device and method for semiconductor wafer

Info

Publication number
JPH02274464A
JPH02274464A JP9703489A JP9703489A JPH02274464A JP H02274464 A JPH02274464 A JP H02274464A JP 9703489 A JP9703489 A JP 9703489A JP 9703489 A JP9703489 A JP 9703489A JP H02274464 A JPH02274464 A JP H02274464A
Authority
JP
Japan
Prior art keywords
surface plate
water
temperature
polishing
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9703489A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakama
坂間 弘
Yoshio Murayama
村山 吉男
Masaki Omura
大村 雅紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9703489A priority Critical patent/JPH02274464A/en
Publication of JPH02274464A publication Critical patent/JPH02274464A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To manufacture a semiconductor wafer having a very good flatness with deformation of the surface plate of a polishing device due to polishing heat extremely reduced by providing plural cooling water paths on the surface plate to measure the temperatures at plural points and controlling the temperature distribution on the surface plate to be uniform. CONSTITUTION:According to the measurement values of thermometers 3 provided on two or more places of a surface plate 1, the quantity and temperature of water flowing through two or more concentric circlelike cooling water paths 5 of the surface plate 1 is adjusted for each cooling water path 5. Thus, the temperature distribution on the surface plate 1 is kept constant to polish a semiconductor wafer.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、高度に平坦度が要求される半導体ウェハを
定盤を用いて研磨する技術に間するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a technique for polishing a semiconductor wafer, which requires a high degree of flatness, using a surface plate.

[従来技術] 半導体素子の集積度が高くなるのに伴い、ウェハの平坦
度がそれだけ厳しく要求されている。特に、ウェハ露光
が一括転写方式から縮小投影露光方式へと変遷すること
によって、その要求は一段と強くなっている。
[Prior Art] As the degree of integration of semiconductor devices increases, the flatness of wafers is increasingly required. In particular, with the shift in wafer exposure from a batch transfer method to a reduction projection exposure method, this demand has become even stronger.

ウェハの仕上げ研磨は定盤を用いて行うが、片面毎に行
う方法と両面を同時に行う方法とがあり、何れも定盤に
張り付けられた研磨布に研磨剤を供給し、ウェハとの間
に一定の研磨圧をかけた状態で、ウェハを公転且つ自転
させて行う、従来用いられている両面研磨装置の例を第
4図に示す0図で、1は上定盤、2は下定盤、3は温度
計、4は温調器、5は水路、9は太陽ギア、1゜はイン
ターナルギア、11は遊星キャリア、12はウェハ、1
3は研磨布である。上定盤1及び下定盤2には研磨布1
3が張り付けられ、互いに向き合っている。上定盤1と
下定盤2との間にウェハ12を挿んで研磨を行うが、ウ
ェハ12は遊星キャリア11に開けられた保持用の孔に
緩挿されている。そして、遊星キャリア11は太陽ギア
9の回転によって自転運動を行い、この自転によってイ
ンターナルギア上を転がるので同時に公転運動が行われ
る。定盤はウェハを平坦にするために用いられるが、上
記の研磨中の発熱により定盤の温度が変化してくる。こ
の定盤の温度変化は定盤形状を変化させ、ウェハ内の厚
さのバラツキに大きく影響するので、水で定盤を冷却す
ることにより温度調整を行う(例えば、「超精密研磨・
鏡面加工技術」、今中治、他、昭62.10.31、p
375〜383)、このため、上定盤1及び下定盤2で
はその内部に水路5を設は定盤の冷却を図ると同時に、
水量を変えることによって定盤温度を調整している。水
路5は定盤の中心部から入った水が円周部へ流れ、再び
中心部に戻って流出するように造られており、上定盤1
の下面の一定点で熱電対3により常に上定盤1の温度が
測定されている。このような装置の冷却効果については
、冷却水温度を一定にして温調器4で流量を調整するこ
とによって、定点の温度変動は±0.4℃以内に保たれ
ることが報告されている。
Final polishing of wafers is performed using a surface plate, and there are two methods: one for each side and one for both sides at the same time. Figure 4 shows an example of a conventional double-sided polishing apparatus that rotates and rotates the wafer while applying a constant polishing pressure, in which 1 is an upper surface plate, 2 is a lower surface plate, 3 is a thermometer, 4 is a temperature controller, 5 is a water channel, 9 is a sun gear, 1° is an internal gear, 11 is a planetary carrier, 12 is a wafer, 1
3 is a polishing cloth. Polishing cloth 1 is placed on the upper surface plate 1 and lower surface plate 2.
3 are attached and facing each other. A wafer 12 is inserted between the upper surface plate 1 and the lower surface plate 2 for polishing, and the wafer 12 is loosely inserted into a holding hole formed in the planetary carrier 11. The planetary carrier 11 rotates on its own axis due to the rotation of the sun gear 9, and as it rolls on the internal gear due to this rotation, it simultaneously performs a revolution. The surface plate is used to flatten the wafer, but the temperature of the surface plate changes due to the heat generated during polishing. Temperature changes in the surface plate change the shape of the surface plate and greatly affect the variation in thickness within the wafer, so the temperature is adjusted by cooling the surface plate with water (for example,
"Mirror Finishing Technology", Osamu Imanaka et al., October 31, 1982, p.
375-383), for this reason, the upper surface plate 1 and the lower surface plate 2 are provided with water channels 5 inside them to cool the surface plates, and at the same time,
The surface plate temperature is adjusted by changing the amount of water. The water channel 5 is constructed so that water enters from the center of the surface plate, flows to the circumference, returns to the center, and flows out.
The temperature of the upper surface plate 1 is constantly measured by a thermocouple 3 at a fixed point on the lower surface of the upper surface plate 1. Regarding the cooling effect of such a device, it has been reported that by keeping the cooling water temperature constant and adjusting the flow rate with the temperature controller 4, temperature fluctuations at fixed points can be kept within ±0.4°C. .

[発明が解決しようとする課題] しかしながら、従来の研磨装置では定盤内の冷却用水路
が各定盤で一系統であり、一つの水路での定盤と冷却水
の接触面積が広く、且つ水量も多く、その上−水路を冷
却水が定盤中心部から円周部を往復する構造となってい
るので、冷却水の淀みが起こりがちである。即ち、定盤
の半径方向に温度分布が生じ易い、このような傾向があ
るにも拘らず、温度測定は一定点で行っているので、定
盤に温度分布が生じても検出が不能であり、又、水路の
構造上もこの温度分布を調整することができず、したが
って研磨中の定盤の形状変化は調整できないと言う問題
があった。
[Problems to be Solved by the Invention] However, in conventional polishing machines, each surface plate has one system of cooling water channels, and the contact area between the surface plate and the cooling water in one water channel is large, and the amount of water is small. Moreover, since the structure is such that the cooling water reciprocates from the center of the surface plate to the circumference through the water channel, stagnation of cooling water tends to occur. In other words, although there is a tendency for temperature distribution to occur in the radial direction of the surface plate, since temperature measurement is performed at a fixed point, it is impossible to detect even if a temperature distribution occurs on the surface plate. Furthermore, due to the structure of the water channel, it is not possible to adjust this temperature distribution, and therefore, there is a problem in that the change in shape of the surface plate during polishing cannot be adjusted.

即ち、研磨に用いる定盤は被研磨物を自転とともに公転
させて研磨するので一般に円形定盤が用いられるが、研
磨中の定盤の変形と半導体ウェハの平坦度の関係を調べ
ると、定盤の半径方向の変形が半導体ウェハの平坦度を
低下させている。この定盤の半径方向の研磨中の変形は
、研磨による発熱に基づきその定盤の半径方向の温度分
布の変動によって生ずる。
In other words, the surface plate used for polishing is generally a circular surface plate because the object to be polished rotates and revolves around its axis. However, when examining the relationship between the deformation of the surface plate during polishing and the flatness of the semiconductor wafer, it was found that the surface plate The radial deformation of the semiconductor wafer reduces the flatness of the semiconductor wafer. This deformation of the surface plate in the radial direction during polishing is caused by fluctuations in the temperature distribution of the surface plate in the radial direction based on heat generated by polishing.

この発明は、このような問題を解決するためになされた
もので、研磨中の発熱に起因する定盤の温度分布を検出
し、これを調整するとによって定盤形状を一定に保ち、
これによって平坦度に優れた半導体ウェハを製造する技
術の提供を目的とするものである。
This invention was made to solve such problems, and it detects the temperature distribution of the surface plate caused by heat generation during polishing, and adjusts this to keep the shape of the surface plate constant.
The purpose of this invention is to provide a technology for manufacturing semiconductor wafers with excellent flatness.

[課題を解決するための手段及び作用]この目的を達成
するための手段は、二箇以上の同心円状の冷却用水路を
有した定盤であって、同心円中心から異なった距離の二
箇所以上の地点に定盤の温度分布を測定するための温度
計を設けた定盤を研磨用定盤とし、この定盤と前記冷却
用水路の各々についてその流れる水の量を制御する流量
制御装置とを備えた半導体ウェハの研磨装置であり、又
、この研磨装置を用いて前記温度計の測定値に基づいて
前記冷却用水路に流れる水の量及び温度を各冷却用水路
について1llliL、定盤の温度分布を一定に保つこ
とによって定盤の形状を一定に確保した状態で研磨する
半導体ウェハの研磨方法である。
[Means and effects for solving the problem] The means for achieving this objective is a surface plate having two or more concentric cooling channels, and two or more points at different distances from the center of the concentric circles. A surface plate provided with a thermometer for measuring the temperature distribution of the surface plate is used as a polishing surface plate, and this surface plate and each of the cooling water channels are provided with a flow rate control device for controlling the amount of water flowing through each of the cooling water channels. The polishing apparatus is a semiconductor wafer polishing apparatus, and the polishing apparatus is used to adjust the amount and temperature of water flowing into the cooling waterways to 1lliL for each cooling waterway based on the measured value of the thermometer, and to maintain a constant temperature distribution on the surface plate. This is a method of polishing semiconductor wafers in which the shape of the surface plate is maintained constant by polishing.

定盤に二個以上の冷却用水路があると、各々の冷却用水
路に流す水の量を独立して変えることが出来る。この冷
却用水路が同心円状であると、水の流れが円周方向に一
方向となり淀みを無くすことができるので、分割により
定盤と水との接触面積を分担していることと相まって一
定した冷却効果が得られる。同時に、各水路はその半径
に応じた地帯の冷却を分担し合うことになるので、定盤
半径方向の冷却効果の調整が確実に且つ容易になる。水
の量は流量制御装置で制御するが、その制御量は温度計
によって測定された測定値に基づいてなされる。したが
って、両面研磨の研磨装置では二枚の定盤が共に前記定
盤であることが好ましこの温度計が各々定盤中心から異
なった距離の二個所以上の地点に設けられているので、
各測定値を比較することによって定盤半径方向の温度分
布が把握される。この温度分布を研磨中固定してやれば
、研磨中の定盤の変形は防止できるが、固定するには同
心円状の各冷却用水路に流れる水の量及び温度する調整
してやればよい、即ち、温度の高い部分に最も近い水路
には低温の水を流す或は増量する、更に即効を期するに
は温度の低い部分に最も近い水路には高温の水を流す或
は増量することを併用する17等である。
If there are two or more cooling channels on the surface plate, the amount of water flowing into each cooling channel can be changed independently. If this cooling water channel is concentric, the water flow will be in one direction in the circumferential direction, eliminating stagnation. This, combined with sharing the contact area between the surface plate and the water by dividing, will result in constant cooling. Effects can be obtained. At the same time, since each water channel shares the cooling of a zone according to its radius, the cooling effect in the radial direction of the surface plate can be reliably and easily adjusted. The amount of water is controlled by a flow control device, and the controlled amount is based on a measurement value taken by a thermometer. Therefore, in a polishing device for double-sided polishing, it is preferable that both of the two surface plates are the same as described above, and the thermometers are provided at two or more points at different distances from the center of each surface plate.
By comparing each measurement value, the temperature distribution in the radial direction of the surface plate can be grasped. If this temperature distribution is fixed during polishing, deformation of the surface plate during polishing can be prevented, but to fix it, the amount and temperature of water flowing into each concentric cooling channel can be adjusted. In 17, etc., flow low-temperature water or increase the amount of water in the waterway closest to the part, and for an immediate effect, flow or increase the amount of high-temperature water in the waterway closest to the low-temperature part. be.

[実施例] (実施例1) 直径1400龍の円形定盤に六個の同心円状の水路を設
け、六箇所に温度計を取り付けた定盤を作成し、流量調
整器と組み合わせ研磨装置を製作した0作成した定盤を
第1図に示す0図で(a)図は定盤の一部断面図、(b
)図は(a)図のA−A線断面図であり、6は流量制御
器である。
[Example] (Example 1) A circular surface plate with a diameter of 1,400 mm was provided with six concentric water channels, a surface plate with thermometers attached at six locations was created, and a polishing device was manufactured by combining it with a flow rate regulator. The created surface plate is shown in Figure 1. (a) is a partial cross-sectional view of the surface plate, (b)
) The figure is a sectional view taken along the line A-A in figure (a), and 6 is a flow rate controller.

水路5は定盤1の上面寄りに二個と下面寄りに四個ある
が何れも同心円状とし流入した冷却水がほぼ一周して流
出するようにした。各水路5の各々に温度計3を取り付
け、各々の測定値を調温器4へ送り、ここから流量制御
器6へ制御信号を送り各水路への流量を制御できるよう
にした。
There are two water channels 5 near the top surface of the surface plate 1 and four channels near the bottom surface, and they are all concentric circles so that the cooling water that flows in flows out after making almost a full circle. A thermometer 3 was attached to each water channel 5, and each measured value was sent to a temperature controller 4, from which a control signal was sent to a flow rate controller 6 so that the flow rate to each water channel could be controlled.

この例では、温度計は熱電対を用いたが、他の温度計例
えばサーミスタ等を用いてもよい。
In this example, a thermocouple is used as the thermometer, but other thermometers such as a thermistor may also be used.

(実施例2) 実施例1の定盤を上下に用いて画定盤の温度分布を制御
し、直径150m■のシリコン半導体ウェハの研磨を行
った。制御には温、冷二水準の温度の冷却水を用いた。
(Example 2) A silicon semiconductor wafer having a diameter of 150 m was polished using the upper and lower surface plates of Example 1 to control the temperature distribution of the surface plate. Cooling water at two levels of temperature, hot and cold, was used for control.

この制御系統を第2図に示す0図で、7は冷水器、8は
温水器である。上定盤1の六箇所の温度計及び下定盤2
の同じく六箇所の温度計からの各々の測定値を調温器4
に入力し、これに基づいて調温器4から水量制御器6へ
制御指令を出力する。水量制御器6へは、冷水器7及び
温水器8から15℃の冷水と35℃の温水が供給できる
ようにしである。水量制御器6は調温器の指令を受けて
冷水又は温水を選び、且つ、その供給量を制御する。こ
の制御は上定盤1及び下定盤2の各水路側に行われる・
、即ち、研磨中の定盤の各地点における基準温度とその
水路の最低流量基準を予め定めておく、常時は冷水量の
みを制御することによって、制御点の実際の温度と基準
温度との差が0.3℃以内に納まるが、ときに基準温度
より0.3℃以上低くなる地点が出現し、且つ、その水
路の水量が最低基準に達しているときがある。このよう
な場合その水路には温水が混ぜられやや高温の冷却水が
送られることになる。このように、定盤の温度分布を制
御して研磨を行ったが、このときの各地点での温度と基
準温度との差は0.5℃より小さかった。又、研磨後の
ウェハの平坦度は1.0μm / 150龍を超えるも
のはなかった。このことは、従来2μm/150龍の平
坦度を得ることが困難であった事実に比べると、格段の
効果が得られたことを物語る。
This control system is shown in Figure 2 in Figure 2, where 7 is a water cooler and 8 is a water heater. Thermometers at six locations on upper surface plate 1 and lower surface plate 2
The measured values from the same six thermometers are sent to temperature controller 4.
Based on this input, a control command is output from the temperature controller 4 to the water flow controller 6. The water flow controller 6 is configured to be supplied with 15°C cold water and 35°C hot water from a water cooler 7 and a water heater 8. The water amount controller 6 selects cold water or hot water in response to a command from the temperature controller, and controls the amount of water supplied. This control is performed on each waterway side of the upper surface plate 1 and lower surface plate 2.
In other words, by predetermining the reference temperature at each point on the surface plate during polishing and the minimum flow rate of the water channel, and by controlling only the amount of cold water at all times, the difference between the actual temperature at the control point and the reference temperature is determined in advance. Although the temperature is within 0.3 degrees Celsius, there are sometimes spots where the temperature is 0.3 degrees Celsius or more lower than the standard temperature, and the amount of water in the waterway reaches the minimum standard. In such a case, warm water will be mixed with the waterway and cooling water at a slightly higher temperature will be sent. Polishing was performed while controlling the temperature distribution of the surface plate in this way, but the difference between the temperature at each point and the reference temperature was smaller than 0.5°C. Moreover, the flatness of the wafer after polishing did not exceed 1.0 μm/150×. This proves that a remarkable effect has been obtained compared to the fact that conventionally it has been difficult to obtain a flatness of 2 μm/150 mm.

(実施例3) 実施例1の上定盤と従来用いられていた第4図に示した
上定盤で同じく直径1400 m+gのものとについて
、温度分布をそれぞれに適した方法で制御しながら研磨
に用い、その変形を調べ比較した。変形の様子を第3図
に示す0図は、定盤の半径についての断面図で、1−0
は同心円中心部、1−Eは外周部、ΔDは変形量である
。定盤の温度分布が不均一になると、外周部1−Hに寄
った所程変形量ΔDは大きくなる。1時間研磨を続けな
がら測定した変形量ΔDの最大値は、従来の定盤では2
50μmであったが、実施例1の定盤では20μmと非
常に小さかった。
(Example 3) The upper surface plate of Example 1 and the conventionally used upper surface plate shown in FIG. 4 with a diameter of 1400 m + g were polished while controlling the temperature distribution using a method suitable for each. The deformation was investigated and compared. The state of deformation is shown in Figure 3. Figure 0 is a cross-sectional view of the radius of the surface plate, and 1-0
is the center of the concentric circle, 1-E is the outer periphery, and ΔD is the amount of deformation. When the temperature distribution of the surface plate becomes non-uniform, the amount of deformation ΔD increases as it approaches the outer peripheral portion 1-H. The maximum value of the deformation amount ΔD measured while polishing for one hour was 2 for the conventional surface plate.
The surface plate of Example 1 had a very small diameter of 20 μm.

[発明の効果] 以上のようにこの発明によれば、定盤に複数の冷却用水
路を設は複数点の温度を測定し、定盤の温度分布が一定
になるように制御しているので、研磨熱による定盤の変
形が極めて少なく、シたがって平坦度の極めて良好な半
導体ウェハを製造することが出来る。半導体の高集積化
にはウエハの平坦度は欠く事のできない条件であり、画
期的な高平坦度を実現するこの発明の効果は誠に太きい
[Effects of the Invention] As described above, according to the present invention, a plurality of cooling channels are provided on the surface plate, the temperature is measured at multiple points, and the temperature distribution on the surface plate is controlled to be constant. Deformation of the surface plate due to polishing heat is extremely small, and therefore semiconductor wafers with extremely good flatness can be manufactured. Wafer flatness is an indispensable condition for high integration of semiconductors, and the effect of this invention, which achieves revolutionary high flatness, is truly significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための定盤の断
面図、第2図は他の実施例を説明するための定盤温度制
御系統図、第3図は定盤の変形状況を示す半径方向断面
図、第4図は従来の研磨装置の一部断面図である。 1・・・上定盤、3・・・温度計、4・・・調温器、5
・・・冷却用水路、6・・・水量制御器。
Fig. 1 is a sectional view of a surface plate for explaining one embodiment of the present invention, Fig. 2 is a temperature control system diagram of the surface plate for explaining another embodiment, and Fig. 3 is a deformation state of the surface plate. FIG. 4 is a partial sectional view of a conventional polishing device. 1... Upper surface plate, 3... Thermometer, 4... Temperature controller, 5
...Cooling water channel, 6...Water flow controller.

Claims (2)

【特許請求の範囲】[Claims] (1)二箇以上の同心円状の冷却用水路を有し、且つ、
その中心から異なった距離の二箇所以上の地点に温度計
を設けた定盤と、前記冷却用水路に流す水の流量を制御
する制御装置とを備えたことを特徴とする半導体ウェハ
の研磨装置。
(1) It has two or more concentric cooling water channels, and
A semiconductor wafer polishing apparatus comprising: a surface plate having thermometers installed at two or more points at different distances from the center; and a control device for controlling the flow rate of water flowing into the cooling water channel.
(2)定盤の二箇所以上に設けられた温度計の測定値に
基づいて、前記定盤の二箇以上の同心円状の冷却用水路
に流れる水の量及び温度を各冷却用水路について調整す
ることによって定盤温度分布を一定に保持して研磨する
ことを特徴とする半導体ウェハの研磨方法。
(2) By adjusting the amount and temperature of water flowing into two or more concentric cooling channels of the surface plate for each cooling channel based on the measured values of thermometers installed at two or more locations on the surface plate. A semiconductor wafer polishing method characterized by polishing while maintaining a constant platen temperature distribution.
JP9703489A 1989-04-17 1989-04-17 Polishing device and method for semiconductor wafer Pending JPH02274464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9703489A JPH02274464A (en) 1989-04-17 1989-04-17 Polishing device and method for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9703489A JPH02274464A (en) 1989-04-17 1989-04-17 Polishing device and method for semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH02274464A true JPH02274464A (en) 1990-11-08

Family

ID=14181220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9703489A Pending JPH02274464A (en) 1989-04-17 1989-04-17 Polishing device and method for semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH02274464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243252A (en) * 2010-05-18 2011-12-01 Asahi Glass Co Ltd Glass substrate for magnetic recording medium and manufacturing method for the same
JP2013230533A (en) * 2012-05-01 2013-11-14 Fujikoshi Mach Corp Surface machining method of surface plate for polishing machine, and surface plate for polishing machine
JP2016505394A (en) * 2012-12-18 2016-02-25 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Double-side polishing machine with controlled parallelism of platen
CN109465740A (en) * 2018-12-27 2019-03-15 西安奕斯伟硅片技术有限公司 A kind of grinding price fixing, grinding device and grinding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243252A (en) * 2010-05-18 2011-12-01 Asahi Glass Co Ltd Glass substrate for magnetic recording medium and manufacturing method for the same
JP2013230533A (en) * 2012-05-01 2013-11-14 Fujikoshi Mach Corp Surface machining method of surface plate for polishing machine, and surface plate for polishing machine
JP2016505394A (en) * 2012-12-18 2016-02-25 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Double-side polishing machine with controlled parallelism of platen
CN109465740A (en) * 2018-12-27 2019-03-15 西安奕斯伟硅片技术有限公司 A kind of grinding price fixing, grinding device and grinding method

Similar Documents

Publication Publication Date Title
KR100540774B1 (en) Polishing apparatus and polishing table therefor
KR101678081B1 (en) Substrate polishing apparatus, substrate polishing method, and apparatus for regulating temperature of polishing surface of polishing pad used in polishing apparatus
US6000997A (en) Temperature regulation in a CMP process
TWI742041B (en) Apparatus and method for regulating surface temperature of polishing pad
KR860000506B1 (en) Temperature control for wafer polishing
TWI658897B (en) Polishing method and polishing apparatus
US6736720B2 (en) Apparatus and methods for controlling wafer temperature in chemical mechanical polishing
KR20130095626A (en) Apparatus and method for temperature control during polishing
EP0894570A2 (en) Method and apparatus for polishing
JPH02274464A (en) Polishing device and method for semiconductor wafer
JP2000271857A (en) Double side machining method and device for large diameter wafer
US10593603B2 (en) Chemical mechanical polishing apparatus containing hydraulic multi-chamber bladder and method of using thereof
JP2002231672A (en) Wafer-polishing method and device
KR101937576B1 (en) Double side polishing apparatus for wafer
KR20110062352A (en) Polishing plate improved in cooling member and wafer polishing apparatus having the same
US20240181594A1 (en) Polishing method, and polishing apparatus
JP2005118969A (en) Method for stably polishing silicon wafer having high flatness
CN116262328A (en) Double-sided grinding device
CN219599095U (en) Chemical mechanical polishing equipment
JPH0453671A (en) Thermal deformation control type double face polishing device
CN117637543A (en) Silicon wafer trimming method and silicon wafer processing equipment
JPH07171759A (en) Method for controlling temperature of polishing level block
JPH10284582A (en) Temperature controller for semiconductor substrate and method for cooling semiconductor substrate
JPH03225921A (en) Method and apparatus for mirror-polishing semiconductor wafer
JP2005335047A (en) Plane polishing device and processing method