JP2005118969A - Method for stably polishing silicon wafer having high flatness - Google Patents

Method for stably polishing silicon wafer having high flatness Download PDF

Info

Publication number
JP2005118969A
JP2005118969A JP2003359081A JP2003359081A JP2005118969A JP 2005118969 A JP2005118969 A JP 2005118969A JP 2003359081 A JP2003359081 A JP 2003359081A JP 2003359081 A JP2003359081 A JP 2003359081A JP 2005118969 A JP2005118969 A JP 2005118969A
Authority
JP
Japan
Prior art keywords
polishing
temperature
processing
lower polishing
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003359081A
Other languages
Japanese (ja)
Inventor
Kenji Ieiri
健治 家入
Hiroshi Sugishita
寛 杉下
Akira Kobayashi
彰 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamai Co Ltd
Original Assignee
Hamai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamai Co Ltd filed Critical Hamai Co Ltd
Priority to JP2003359081A priority Critical patent/JP2005118969A/en
Publication of JP2005118969A publication Critical patent/JP2005118969A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably improve processing accuracy of a workpiece in a polishing device for simultaneously polising both surfaces of the workpiece such as a silicon wafer. <P>SOLUTION: A noncontact displacement gauge 26 is installed in three places of the inner periphery, the center and the outer periphery of a width of a polishing plate; to read a surface shape of pads from a shape displacement quantity of a processing surface of the upper and lower polishing pads in polishing processing, for controlling a flow rate and the temperature of cooling water for holding the temperature of the upper and lower polishing plates 21 and 20, a flow rate and the temperature of an abrasive assistively provided for the polishing processing so that upper and lower polishing pad surfaces changing in a recessed or projecting shape become a plane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、シリコンウェーハ等の半導体基板用の研磨装置の研磨パッド面の平面形状に係わるもので、特に研磨加工中のパッドの平面を常に高平坦に制御し、加工精度の安定向上を計ったものである。   The present invention relates to the planar shape of a polishing pad surface of a polishing apparatus for a semiconductor substrate such as a silicon wafer, and in particular, the surface of the pad being polished is always controlled to be highly flat to improve the stability of processing accuracy. Is.

平面研磨盤によるワークの加工は、定盤の精度をワークに転写する加工技術なので、定盤を常に高精度な平面に維持する必要がある。しかしシリコンウェーハ等の研磨加工は、上下研磨プレートの加工面に研磨布であるパッドを貼り付けた上下定盤間で、キャリアで保持されたシリコンウェーハを挟持し、PH9〜12の加工液にコロイド状シリカを混濁させた研磨剤を加工面に供給しつつメカノケミカル法と言われる化学的及び機械的複合研磨加工でおこなう。この加工の詳細は、シリコンウェーハの加工面をPH9〜12の加工液でエッチングをおこないつつコロイド状酸化珪素を加工面に固相させ、加工面に固相した酸化珪素を上下研磨プレートの加工面に貼り付けた不織布であるパッドで機械的に引き剥がすことの繰り返しによりシリコンウェーハ加工面の研磨をおこなう。この加工法はパッドとシリコンウェーハの摩擦による温度により化学的加工が促進されるのであるが、温度が高すぎると加工面がオレンジピールと称されるオレンジの表皮状態となるばかりか、パッドを貼り付けた上下研磨プレートは、研磨加工を繰り返すことによりパッドの磨耗が進行し摩擦係数が刻々と変わるため発熱量も変わりこの温度変化による上下研磨プレートパッド面の平面精度低下をきたし、加工後の高平坦なシリコンウェーハを得ることが出来ない。   Since the processing of a workpiece by a surface polishing machine is a processing technology that transfers the accuracy of the surface plate to the workpiece, it is necessary to always maintain the surface plate on a highly accurate plane. However, polishing of silicon wafers, etc. is performed by sandwiching a silicon wafer held by a carrier between upper and lower surface plates in which a pad, which is a polishing cloth, is bonded to the processing surface of the upper and lower polishing plates, and colloidal into the processing liquid of PH 9-12. This is performed by chemical and mechanical combined polishing called the mechanochemical method while supplying an abrasive made of turbid silica to the processed surface. The details of this processing are as follows. While etching the processing surface of the silicon wafer with a processing solution of PH 9-12, colloidal silicon oxide is solid-phased on the processing surface, and the silicon oxide solid-phased on the processing surface is processed on the upper and lower polishing plates. The processed surface of the silicon wafer is polished by repeating mechanical peeling with a pad which is a non-woven fabric affixed to the substrate. This processing method promotes chemical processing by the temperature caused by friction between the pad and the silicon wafer, but if the temperature is too high, the processed surface becomes an orange skin called orange peel, and the pad is attached. The attached upper and lower polishing plates are subject to repeated polishing and wear of the pad, and the friction coefficient changes every moment. A flat silicon wafer cannot be obtained.

従来からの方法では、加工前の上下研磨プレート面の平面形状を静止状態で測定していたが、研磨加工により動作状態となると軸受部等からの発熱により、上下研磨パッド面の平面精度が時々刻々変化する。   In the conventional method, the planar shape of the upper and lower polishing plate surfaces before processing was measured in a stationary state. However, when the polishing operation is activated, the planar accuracy of the upper and lower polishing pad surfaces is sometimes increased due to heat generated from the bearings. It changes every moment.

また、この加工時の上下研磨プレートの温度変化による上下研磨パッド面の平面精度低下を補正すべく、上下研磨プレートの冷却ジャケット内に供給し排出された冷却水の温度を計測又は研磨加工時の上下研磨パッド面の温度を計測し、冷却水の流量を制御するか研磨加工時に供与する研磨剤の流量又は温度を制御し上下研磨プレートの加工面の温度が予め設定された数値になるようにしていた。具体的には実公平5ー21320号公報記載の研磨装置が知られており、第2図はその構成中における温度検出部と冷却装置部についての一部を示すものである。図において11が研磨プレート、19がパッド、15、16は、冷却液を循環させるパイプ、12は、冷却液循環タンク、14は、冷却液循環ポンプであり、13は、循環タンク内の冷却液を冷却するための冷却コイルである。そしてパッド19の加工面温度は、温度センサ17によって検知され、この温度に応じて制御回路18を介して冷却液循環ポンプ14内の電動機の回転数を制御し冷却液の流量のみを制御することにより、冷却液を連続的に研磨定盤11内を循環させ温度を一定にすることにより研磨プレートのパッド16の平面を保つものである。   In addition, in order to correct the flatness deterioration of the upper and lower polishing pad surfaces due to the temperature change of the upper and lower polishing plates during this processing, the temperature of the cooling water supplied and discharged into the cooling jacket of the upper and lower polishing plates is measured or polished. Measure the temperature of the upper and lower polishing pad surfaces, and control the flow rate of cooling water or the flow rate or temperature of the polishing agent provided during polishing so that the processing surface temperature of the upper and lower polishing plates becomes a preset value. It was. Specifically, a polishing apparatus described in Japanese Utility Model Publication No. 5-21320 is known, and FIG. 2 shows a part of a temperature detecting unit and a cooling unit in the configuration. In the figure, 11 is a polishing plate, 19 is a pad, 15 and 16 are pipes for circulating a coolant, 12 is a coolant circulation tank, 14 is a coolant circulation pump, and 13 is a coolant in the circulation tank. It is a cooling coil for cooling. Then, the processing surface temperature of the pad 19 is detected by the temperature sensor 17, and the rotational speed of the electric motor in the coolant circulation pump 14 is controlled via the control circuit 18 in accordance with this temperature to control only the flow rate of the coolant. Thus, the cooling liquid is continuously circulated through the polishing platen 11 to keep the temperature constant, thereby maintaining the flat surface of the pad 16 of the polishing plate.

また、図示されていないが、回転する研磨定盤内に温度センサを埋め込み、温度信号の送信用アンテナを研磨定盤外周部に取り付け、別設置された受信用アンテナで受け制御回路で演算し冷却液循環ポンプの回転数を制御し研磨定盤の加工面の温度を一定に保つ方法もある。
実公平5ー21320号公報
Although not shown, a temperature sensor is embedded in the rotating polishing platen, a temperature signal transmitting antenna is attached to the outer periphery of the polishing platen, and the receiving control circuit is separately installed and operated by a receiving control circuit for cooling. There is also a method of keeping the temperature of the processing surface of the polishing platen constant by controlling the rotation speed of the liquid circulation pump.
No. 5-21320

しかしこの上下研磨プレートの温度を制御する方法は、研磨プレートに貼着されたパッドは、不織布に樹脂を滲浸した材料で出来ているため熱伝導率が悪く、加工時のパッドの表面温度と研磨プレートのパッド貼着表面温度とは、数度の微小な温度差を生じ、この温度差によりパッドの加工面が凹又は凸に微小変位をするため、高精度の平面を期待することは出来ない。   However, the method of controlling the temperature of the upper and lower polishing plates is that the pad attached to the polishing plate is made of a material in which a resin is infiltrated into a nonwoven fabric, so the thermal conductivity is poor, and the surface temperature of the pad during processing The surface temperature of the surface of the polishing plate where the pad is attached has a slight temperature difference of several degrees, and the processing surface of the pad is slightly displaced in a concave or convex shape due to this temperature difference, so a high-precision flat surface can be expected. Absent.

そのため研磨加工現場では、むしろ研磨剤の流量を調整してパッドの表面温度を適温と思われる一定温度に保つと言う研磨方法をとることもある。しかしながら、この研磨剤の流量を調整してパッドの温度を一定に保つ方法は、研磨剤によるメカノケミカル作用の変動により、安定した精度維持が出来ない。また、以上のような研磨剤の流量を調整することなく、加工後の安定した精度を保持するためには、荷重、研磨プレート回転数及び加工間隔等の加工条件を見つけなくてはならない。   For this reason, in the polishing process site, a polishing method may be employed in which the surface temperature of the pad is maintained at a constant temperature that seems to be an appropriate temperature by adjusting the flow rate of the abrasive. However, this method of adjusting the flow rate of the abrasive to keep the pad temperature constant cannot maintain a stable accuracy due to fluctuations in the mechanochemical action of the abrasive. Further, in order to maintain stable accuracy after processing without adjusting the flow rate of the abrasive as described above, processing conditions such as load, polishing plate rotation speed, and processing interval must be found.

そこで本発明は、加工中の研磨プレートと研磨プレートに貼着されたパッドの材質及び加工経時変化による熱変位の違いに着目し、加工後の精度に影響を及ぼすパッドの表面が常に平面を保つように研磨プレートへ給与する冷却水の温度及び流量、そして補佐的に研磨剤の流量、温度を制御すると言う複合補正の研磨方法により安定した精度維持を行う。   Therefore, the present invention pays attention to the difference between the material of the polishing plate being processed and the pad affixed to the polishing plate and the thermal displacement due to the change over time, and the surface of the pad that affects the accuracy after processing always keeps the plane. Thus, stable accuracy is maintained by a polishing method of complex correction in which the temperature and flow rate of the cooling water fed to the polishing plate and the flow rate and temperature of the abrasive are controlled in an auxiliary manner.

研磨加工中における上下研磨パッドの加工面の形状変位量を、研磨プレートの幅の内周、中央、外周の3箇所に非接触変位計を組付けてパッドの表面形状を読みとり凹又は凸に変化する上下研磨パッド面が平面になるように、上下研磨プレートの温度を保持する冷却水の流量、温度及び補佐的に研磨加工に給与する研磨剤の流量と温度を制御する。   The amount of displacement of the processed surface of the upper and lower polishing pads during polishing is changed to concave or convex by reading the surface shape of the pad by attaching non-contact displacement meters to the inner, middle and outer circumferences of the width of the polishing plate. The flow rate and temperature of the cooling water that keeps the temperature of the upper and lower polishing plates, and the flow rate and temperature of the abrasive that is supplied to the polishing process in a supplementary manner are controlled so that the upper and lower polishing pad surfaces to be flattened.

以上述べたように、研磨加工中に発生するパッドとシリコンウェーハの摩擦及び研磨装置周囲より発生する熱量の変化による上下研磨パッド面の凹又は凸に変位する面形状を非接触変位計にて常時検知し、上下研磨パッド面を平面に保持する温度とするために、研磨プレートに給与する冷却水の流量と温度を即刻制御するので、上下研磨パッドの加工面が常に平面に維持されるため、高平坦度のシリコンウェーハを安定して研磨することが出来る。   As described above, the surface shape of the upper and lower polishing pad surfaces that are displaced concavely or convexly due to the friction between the pad and silicon wafer generated during polishing and the change in the amount of heat generated around the polishing apparatus is constantly measured with a non-contact displacement meter. Since the flow rate and temperature of the cooling water fed to the polishing plate are controlled immediately in order to detect and maintain the temperature to hold the upper and lower polishing pad surfaces flat, the processing surface of the upper and lower polishing pads is always maintained flat, Highly flat silicon wafers can be polished stably.

以下、本発明に係る平面研磨装置について図面を参照しながら説明する。 Hereinafter, a planar polishing apparatus according to the present invention will be described with reference to the drawings.

図1は、本発明の実施形態の要部を示す断面図であり、25は下研磨パッドであり、20下研磨プレートに貼着されている。また24は上研磨パッドであり、21上研磨プレートに貼着されている。20下研磨プレート及び21上研磨プレートに把持されている治具である27キャリアは、ワークであるシリコンウェーハ28を保持し、27キャリアは、23中心ギア及び22内歯車に噛合して自転しながら公転する遊星運動をおこなう。研磨加工により発生した熱による24上研磨パッドと25下研磨パッドの間隔を21上研磨プレート幅の内周、中側、外周に取付けられた26非接触変位計で各位置のパッド間の隙間を測定し、制御回路にデータを送り、制御回路では、演算し14冷却液循環ポンプ及び冷却液の温度制御をおこなう32冷却温度制御装置へ指令出す。このように研磨加工及び周囲の温度変化により発生した24上研磨パッドと25下研磨パッドの間隔を即刻検出し、内、中、外の非接触変位計の測定値が常に等しくなるような面形状を保持させる。   FIG. 1 is a cross-sectional view showing a main part of an embodiment of the present invention, in which 25 is a lower polishing pad and is attached to a 20 lower polishing plate. Reference numeral 24 denotes an upper polishing pad, which is attached to the 21 upper polishing plate. The 27 carrier, which is a jig held by the 20 lower polishing plate and the 21 upper polishing plate, holds the silicon wafer 28 as a work, and the 27 carrier rotates while meshing with the 23 central gear and the 22 internal gear. Perform a revolving planetary motion. The clearance between the 24 upper polishing pad and the 25 lower polishing pad due to the heat generated by the polishing process is set to 26. The clearance between the pads at each position is determined by 26 non-contact displacement meters attached to the inner periphery, middle side, and outer periphery of the upper polishing plate width. Measure and send data to the control circuit. The control circuit computes and issues a command to the 14 cooling liquid circulation pump and the 32 cooling temperature control device that controls the temperature of the cooling liquid. Thus, the surface shape that immediately detects the interval between the 24 upper polishing pad and the 25 lower polishing pad generated by the polishing process and the ambient temperature change, and the measured values of the inner, inner and outer non-contact displacement meters are always equal. Hold.

図3は、21上研磨プレートの中位置に26非接触変位計を組込だ要部断面図である。25は下研磨パッドであり、20下研磨プレートに貼着されている。また24は上研磨パッドであり、21上研磨プレートに貼着されている。26非接触変位計でパッド間の隙間を測定し18制御回路にデータを搬送する。   FIG. 3 is a cross-sectional view of a main part in which a 26 non-contact displacement meter is incorporated in the middle position of the 21 upper polishing plate. Reference numeral 25 denotes a lower polishing pad, which is attached to a lower 20 polishing plate. Reference numeral 24 denotes an upper polishing pad, which is attached to the 21 upper polishing plate. The gap between the pads is measured with a 26 non-contact displacement meter, and the data is transferred to the 18 control circuit.

本発明による一実施例を示す要部の断面図である。It is sectional drawing of the principal part which shows one Example by this invention. 従来の研磨プレートの温度制御方法を示す断面斜視図。The cross-sectional perspective view which shows the temperature control method of the conventional grinding | polishing plate. 研磨プレートの中位置に組込だ非接触変位計の断面図。Sectional drawing of the non-contact displacement meter incorporated in the middle position of the polishing plate.

符号の説明Explanation of symbols

11 研磨定盤
12 冷却液循環タンク
13 冷却コイル
14 冷却液循環ポンプ
15 冷却液送り循環パイプ
16 冷却液戻り循環パイプ
17 温度センサ
18 制御回路
19 パッド
20 下研磨プレート
21 上研磨プレート
22 内歯車
23 中心歯車
24 上研磨パッド
25 下研磨パッド
26 非接触変位計
27 キャリア
28 シリコンウェーハ
29 研磨剤トレイ
30 研磨剤
31 研磨剤分配パイプ
32 冷却温度制御装置
33 研磨剤タンク
34 研磨剤送りパイプ
35 研磨剤戻りパイプ
36 研磨剤ポンプ
DESCRIPTION OF SYMBOLS 11 Polishing surface plate 12 Coolant circulation tank 13 Cooling coil 14 Coolant circulation pump 15 Coolant feed circulation pipe 16 Coolant return circulation pipe 17 Temperature sensor 18 Control circuit 19 Pad 20 Lower polishing plate 21 Upper polishing plate 22 Internal gear 23 Center Gear 24 Upper polishing pad 25 Lower polishing pad 26 Non-contact displacement meter 27 Carrier 28 Silicon wafer 29 Abrasive tray 30 Abrasive 31 Abrasive distribution pipe 32 Cooling temperature control device 33 Abrasive tank 34 Abrasive feed pipe 35 Abrasive return pipe 35 36 Abrasive pump

Claims (2)

水平面内に組み込まれた太陽歯車と内歯車の間に、被加工物を保持する複数個のキャリアを等間隔に配置させて被加工物であるシリコンウェーハを挿入した後、上研磨定盤を下降させて下研磨定盤と挟み込んだ状態で、PH9〜12研磨液にコロイド状シリカを混濁させた研磨剤を供給しつつキャリアの自転及び公転させる遊星運動と上下研磨定盤の相対的な回転運動を同時に行う平行平面研磨装置において、シリコンウェーハを研磨加工することにより発生する加工熱による上下研磨定盤加工面の平面精度の低下を補正するため、上下研磨定盤の形状変位量を非接触変位計にて読みとり凹又は凸に変化する上下研磨定盤の加工面が平面を維持するように上下研磨定盤の温度を保持する冷却水の流量、温度及び研磨剤の流量、温度を自動制御する研磨方法。   A plurality of carriers that hold the work piece are arranged at equal intervals between the sun gear and the internal gear incorporated in the horizontal plane, and after inserting the silicon wafer as the work piece, the upper polishing platen is lowered. The planetary motion that rotates and revolves the carrier while supplying the abrasive in which the colloidal silica is turbid to the PH9-12 polishing liquid while being sandwiched between the lower polishing surface plate and the relative rotational motion of the upper and lower polishing surface plates In a parallel flat polishing machine that performs simultaneous polishing, the shape displacement of the upper and lower polishing surface plate is non-contact displacement in order to compensate for the deterioration of the plane accuracy of the upper and lower polishing surface plate due to the processing heat generated by polishing the silicon wafer. The flow of cooling water, the temperature of the upper and lower polishing surface plate, and the flow rate and temperature of the abrasive are automatically controlled so that the processing surface of the upper and lower polishing surface plate that changes to concave or convex is maintained flat. Polishing method that. 前記請求項1において、ウェーハを加工することによる研磨装置周辺から発生する熱に対応して上下研磨定盤加工面の平面精度低下を補正する研磨装置の温度制御方法。   2. The temperature control method for a polishing apparatus according to claim 1, wherein a decrease in planar accuracy of the processed surface of the upper and lower polishing surface plate is corrected in response to heat generated from the periphery of the polishing apparatus by processing the wafer.
JP2003359081A 2003-10-20 2003-10-20 Method for stably polishing silicon wafer having high flatness Pending JP2005118969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359081A JP2005118969A (en) 2003-10-20 2003-10-20 Method for stably polishing silicon wafer having high flatness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359081A JP2005118969A (en) 2003-10-20 2003-10-20 Method for stably polishing silicon wafer having high flatness

Publications (1)

Publication Number Publication Date
JP2005118969A true JP2005118969A (en) 2005-05-12

Family

ID=34615418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359081A Pending JP2005118969A (en) 2003-10-20 2003-10-20 Method for stably polishing silicon wafer having high flatness

Country Status (1)

Country Link
JP (1) JP2005118969A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098484A (en) * 2005-09-30 2007-04-19 Hoya Corp Glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2007168009A (en) * 2005-12-21 2007-07-05 Showa Denko Kk Nozzle for abrasive liquid supply and supply device of abrasive liquid
JP2011248984A (en) * 2010-05-31 2011-12-08 Asahi Glass Co Ltd Glass substrate for magnetic recording medium and manufacturing method of the same
CN104084877A (en) * 2014-06-24 2014-10-08 北京微纳精密机械有限公司 Spiral cooling structure of polishing disk of annular polishing machine
CN104625940A (en) * 2013-11-12 2015-05-20 昆山科尼电子器材有限公司 Silicon wafer grinding and optical polishing system and machining technology thereof
CN111230741A (en) * 2020-03-17 2020-06-05 西安奕斯伟硅片技术有限公司 Polishing disk cooling structure, polishing disk and polishing machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098484A (en) * 2005-09-30 2007-04-19 Hoya Corp Glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2007168009A (en) * 2005-12-21 2007-07-05 Showa Denko Kk Nozzle for abrasive liquid supply and supply device of abrasive liquid
JP2011248984A (en) * 2010-05-31 2011-12-08 Asahi Glass Co Ltd Glass substrate for magnetic recording medium and manufacturing method of the same
CN104625940A (en) * 2013-11-12 2015-05-20 昆山科尼电子器材有限公司 Silicon wafer grinding and optical polishing system and machining technology thereof
CN104084877A (en) * 2014-06-24 2014-10-08 北京微纳精密机械有限公司 Spiral cooling structure of polishing disk of annular polishing machine
CN111230741A (en) * 2020-03-17 2020-06-05 西安奕斯伟硅片技术有限公司 Polishing disk cooling structure, polishing disk and polishing machine
CN111230741B (en) * 2020-03-17 2021-09-14 西安奕斯伟硅片技术有限公司 Polishing disk cooling structure, polishing disk and polishing machine

Similar Documents

Publication Publication Date Title
US8292691B2 (en) Use of pad conditioning in temperature controlled CMP
JP5547472B2 (en) Substrate polishing apparatus, substrate polishing method, and polishing pad surface temperature control apparatus for substrate polishing apparatus
US6776692B1 (en) Closed-loop control of wafer polishing in a chemical mechanical polishing system
JP4094743B2 (en) Chemical mechanical polishing method and apparatus
US20140020829A1 (en) Sensors in Carrier Head of a CMP System
EP0894570B1 (en) Method and apparatus for polishing
JP2005026453A (en) Substrate polishing apparatus and method therefor
GB2347102A (en) Wafer grinder and method of detecting grinding amount
JP2005118969A (en) Method for stably polishing silicon wafer having high flatness
TWI652140B (en) Thermal deformation preventive apparatus of static pressure pads in double disk surface grinder and double disk surface grinder
JPH0659624B2 (en) Polishing equipment
JP4943800B2 (en) Polishing status monitor system
JP2006272498A (en) Dresser device for abrasive cloth for double-disk polishing
EP1052061A2 (en) System for chemical mechanical planarization
JPH0659623B2 (en) Wafer mechanochemical polishing method and apparatus
US10593603B2 (en) Chemical mechanical polishing apparatus containing hydraulic multi-chamber bladder and method of using thereof
JP3045232B2 (en) Wafer polishing apparatus and polishing amount detection method
JP2002231672A (en) Wafer-polishing method and device
US6402597B1 (en) Polishing apparatus and method
JP2005005317A (en) Method and apparatus for polishing semiconductor wafer
JP2005335047A (en) Plane polishing device and processing method
US20210394331A1 (en) Semiconductor substrate polishing with polishing pad temperature control
CN215147989U (en) Polishing machine
US6872662B1 (en) Method for detecting the endpoint of a chemical mechanical polishing (CMP) process
JP5699783B2 (en) Work polishing method and polishing apparatus