JPH0453671A - Thermal deformation control type double face polishing device - Google Patents

Thermal deformation control type double face polishing device

Info

Publication number
JPH0453671A
JPH0453671A JP2158682A JP15868290A JPH0453671A JP H0453671 A JPH0453671 A JP H0453671A JP 2158682 A JP2158682 A JP 2158682A JP 15868290 A JP15868290 A JP 15868290A JP H0453671 A JPH0453671 A JP H0453671A
Authority
JP
Japan
Prior art keywords
polishing
surface plate
thermal deformation
heater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2158682A
Other languages
Japanese (ja)
Inventor
Kenji Aoyanagi
青柳 健司
Koji Okuno
奥野 耕司
Kazuo Hattori
服部 一男
Masaki Omura
大村 雅紀
Hiroshi Sakama
坂間 弘
Shinji Ishii
伸治 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2158682A priority Critical patent/JPH0453671A/en
Publication of JPH0453671A publication Critical patent/JPH0453671A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

PURPOSE:To enable a thermal deformation control of good accuracy by arranging a displacement measuring device and heating device on the opposite face of at least one part of the upper/lower surface plates of a double face polishing device for wafer, and performing the control for turning a heater ON-OFF based on the displacement value of the surface plate. CONSTITUTION:A distortion gage 31 of a displacement measuring mean and heater 30 of a heating means are arranged in more than one pair at least at the specified position on the face opposite to at least one part of the polishing faces of upper/lower surface plates l, 2 of a both face polishing device, and the ON-OFF of the heater 30 are performed based on the detection quantity with the detection of the displacement. In the case of a temperature rise with the polishing face side being heated according to the progress of polishing, therefore, the face of the opposite side thereof is heated by the external heat source of a heater 30, etc., in the form of compensating this temperature rise and the temperature distributions of the upper and lower faces of the surface plate 1 are made equal. So the temperature distribution inside the surface plate becomes about symmetrical vertically and the thermal deformat ion control for minimizing the thermal deformation of the surface plate 1 is executed.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は熱変形制御型両面研磨装置に関し、特に加工
中の例えばシリコンウェーハの両面研磨装置の上・下研
磨定盤(以後上定盤、下定盤という)の熱変形を直接制
御する熱変形制御型両面研磨装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a thermal deformation-controlled double-sided polishing device, and in particular to an upper and lower polishing surface plate (hereinafter referred to as upper surface plate) of a double-sided polishing device for, for example, a silicon wafer during processing. This invention relates to a thermal deformation-controlled double-sided polishing device that directly controls the thermal deformation of a lower surface plate (referred to as a lower surface plate).

[従来の技術] 従来から、上定盤、下定盤、研磨布、遊星キャリア、太
陽歯車、及びインターナル歯車を主構成とする例えばシ
リコンウェーハの両面研磨装置において、研磨加工時に
は研磨面に熱を生じる(特に化学研磨メカノケミカルボ
リジング等では発熱量が多い)ため上・下定盤は加熱さ
れて温度分布が不均一となり変形を生じることが指摘さ
れていた。このように、研磨加工中に定盤が変形すると
ウェーハと研磨面との接触の形態が常に変化することと
なる。そして、変形の程度及び経過によっては加工後の
ウェーハの平坦度にきわめて悪い影響を与えることとな
り、例えば超LS1時代に対応して実施されてきたウェ
ーハの両面研磨による平坦度の向上目的に対して無意味
な加工となってしまうという事態を呈するようになる。
[Prior Art] Conventionally, in a double-sided polishing apparatus for, for example, a silicon wafer, which mainly consists of an upper surface plate, a lower surface plate, a polishing cloth, a planetary carrier, a sun gear, and an internal gear, heat is applied to the polished surface during polishing. It has been pointed out that the upper and lower surface plates are heated, resulting in non-uniform temperature distribution and deformation due to the heat generation (particularly in chemical polishing such as mechanochemical boring). In this way, when the surface plate deforms during the polishing process, the form of contact between the wafer and the polishing surface constantly changes. Depending on the degree and progress of deformation, this can have an extremely negative effect on the flatness of the wafer after processing. This results in a situation where the processing becomes meaningless.

したがって、定盤の熱変形の制御可能な両面研磨装置が
要望されることとなるが、一般には、定盤研磨面の温度
を計測し、これを制御の対象とすることで間接的に変形
を制御する(しているという方が適切かも知れない)方
法が対策として実施されている。ここでは、このような
装置を温度制御型両面研磨装置と呼ぶこととする。
Therefore, there is a need for a double-sided polishing device that can control the thermal deformation of the surface plate, but generally the temperature of the polishing surface of the surface plate is measured and this is used as a control target to indirectly control the deformation. Methods of controlling (perhaps it would be more appropriate to say "controlling") are being implemented as countermeasures. Here, such an apparatus will be referred to as a temperature-controlled double-sided polishing apparatus.

第4図は従来の温度制御型両面研磨装置の一例を断面で
示した模式図、第5図はその要部の平面模式図である(
超精密研磨・鏡面加工技術−総合技術資料集−1経営間
発センター出版部発行、昭和62年10月31日 P、
375−383参照)。また、第6図は第4図、第5図
の装置の動作を説明するために示した部分拡大模式図で
あり、第6図の(a)は要部断面図、(b)は平面図で
ある。上記各図において、1は水路3を有し、下面に研
磨布5が貼付けられた上定盤、2は水路3aを有し、上
面に研磨布5が貼付けられた下定盤で、両水路3.38
は管路4を介して冷却水チラー21に連結されている。
Fig. 4 is a schematic cross-sectional view of an example of a conventional temperature-controlled double-sided polishing device, and Fig. 5 is a schematic plan view of its main parts.
Ultra-precision polishing and mirror finishing technology - Comprehensive technical data collection - 1 Published by Management Intermediate Center Publishing Department, October 31, 1988, P.
375-383). 6 is a partially enlarged schematic diagram shown to explain the operation of the apparatus shown in FIGS. 4 and 5, and FIG. 6 (a) is a sectional view of the main part, and (b) is a plan view. It is. In each of the above figures, 1 is an upper surface plate having a water channel 3 and an abrasive cloth 5 attached to the lower surface, 2 is a lower surface plate having a water channel 3a and an abrasive cloth 5 attached to the upper surface, and both water channels 3 .38
is connected to a cooling water chiller 21 via a pipe line 4.

管路4には直列に流量制御ニードル弁22及び電磁弁2
3が設けられ、流量の調節又は流量のオン−オフを行う
調節機能が設けられていて冷却水が水路3.38を循環
する。6は下足l112の中心部に配設された太陽歯車
、7はシリコンウェーハ9のキャリアを兼ねた複数の遊
星キャリア、8は遊星キャリア7と噛合うインターナル
歯車で、遊星キャリア7は第6図の(b)にみられるよ
うに、太陽歯車6とインターナル歯車8との間で自転及
び公転を行う。シリコンウェーハ9は上・下定盤1.2
の間にはさまれた遊星キャリア7にセットされ、上定盤
1、下定盤2の対向面に貼付けた研磨布5間に所定の圧
力で保持されている。10は温度センサーで、上定盤1
とこれに貼付けた研磨布5との接着面の所定点に、その
感温部が研磨布5に接触するように取付けられており、
その出力信号は温度信号送信アンテナ11及び温度信号
受信アンテナ12を介して温度計及びマイコンコントロ
ーラ13に入力される。なお、14は流量制御ニードル
弁22を作動させるパルスモータで温度計及びマイコン
コントローラ13の指令により作動するようになってい
る。また、第6図の(a)ではシリコンウェーハ9、水
路3.3a及び研磨布5の図示は省略している。
A flow control needle valve 22 and a solenoid valve 2 are connected in series to the pipe line 4.
3 is provided, and an adjustment function is provided to adjust the flow rate or to turn the flow rate on and off, and the cooling water circulates through the water channel 3.38. 6 is a sun gear disposed in the center of the lower leg l112, 7 is a plurality of planetary carriers that also serve as carriers for the silicon wafer 9, 8 is an internal gear that meshes with the planetary carrier 7, and the planetary carrier 7 is the sixth As seen in (b) of the figure, rotation and revolution occur between the sun gear 6 and the internal gear 8. Silicon wafer 9 is placed on upper and lower surface plates 1.2
It is set in a planetary carrier 7 sandwiched between them, and is held under a predetermined pressure between polishing cloths 5 attached to the opposing surfaces of the upper surface plate 1 and the lower surface plate 2. 10 is a temperature sensor, upper surface plate 1
and the abrasive cloth 5 attached thereto at a predetermined point on the adhesive surface thereof, the temperature-sensing part is attached to the abrasive cloth 5,
The output signal is input to a thermometer and microcomputer controller 13 via a temperature signal transmitting antenna 11 and a temperature signal receiving antenna 12. Note that 14 is a pulse motor that operates the flow rate control needle valve 22 and is operated by a thermometer and a command from the microcomputer controller 13. Further, in FIG. 6(a), the silicon wafer 9, the water channel 3.3a, and the polishing cloth 5 are not shown.

上記の温度制御型両面研磨装置においては、上定盤1、
下定盤2、太陽歯車6、インターナル歯車8及び遊星キ
ャリア7がそれぞれ独立に回転し、シリコーンウェーハ
9と定盤(実際には研磨布5)との間に回転速度差(相
対速度)を生じさせてシリコンウェーハ9の両面を研磨
するようになっている。この場合、温度制御の手段とし
て、■定盤に水路(氷室ともいう)3.3aを設は水を
供給・循環して定盤を常に40℃以下(例えば30℃)
に冷却すること、■定盤の温度を検出して、目標温度と
の差に応じて水路3.3aに供給する水の温度、流量を
コントロールすることにより温度制御することの2点を
特徴とするものである。
In the temperature-controlled double-sided polishing apparatus described above, the upper surface plate 1,
The lower surface plate 2, sun gear 6, internal gear 8, and planetary carrier 7 rotate independently, creating a rotational speed difference (relative speed) between the silicone wafer 9 and the surface plate (actually, the polishing cloth 5). In this way, both sides of the silicon wafer 9 are polished. In this case, as a means of temperature control, a water channel (also called an ice chamber) 3.3a is installed on the surface plate to supply and circulate water to keep the surface plate constantly below 40℃ (for example, 30℃).
It is characterized by two points: (1) temperature control by detecting the temperature of the surface plate and controlling the temperature and flow rate of the water supplied to the water channel 3.3a according to the difference from the target temperature. It is something to do.

なお、第4図〜第6図に示した従来例は両面研磨装置で
あるが、他の研磨装置(例えば片面研磨装置)において
も、研磨は上述の物理的な研磨によって行われるのが一
般的である。また、前述のように研磨剤とウェーハ間で
の化学的変化を利用した化学研磨(メカノケミカルボリ
ジングなど)が加工の主体となる場合もある。特に発熱
量が多くなる化学研磨では、研磨加工時には研磨面の発
熱が大きいので、定盤は加熱されて温度分布が不均一と
なり変形が生じやすい。
The conventional examples shown in Figures 4 to 6 are double-sided polishing machines, but in other polishing machines (for example, single-sided polishing machines), polishing is generally performed by the above-mentioned physical polishing. It is. Further, as mentioned above, chemical polishing (such as mechanochemical boring) that utilizes chemical changes between the polishing agent and the wafer may be the main processing method. Particularly in chemical polishing, which generates a large amount of heat, the polishing surface generates a large amount of heat during the polishing process, so the surface plate is heated, resulting in uneven temperature distribution and deformation.

[発明が解決しようとする課題] 上記のような従来の両面研磨装置では、温度センサによ
り正確に温度を検出して、この温度にもとづいて上・下
定盤の水路に供給する所定温度の水量を調節し、定盤の
温度を制御して定盤の熱変形を最小化する配慮がなされ
ているが、依然として高精度の平坦性を有するウェーハ
を得ることは困難であった。また、間接的ながら定盤の
変形を制御するような目的の下になされた温度制御方式
の両面研磨装置においても、直接熱変形を制御する手段
を講じていないため、十分に変形を制御して平坦度の優
れたウェーハを製造することは不可能であった。
[Problems to be Solved by the Invention] In the conventional double-sided polishing apparatus as described above, the temperature is accurately detected by a temperature sensor, and the amount of water at a predetermined temperature to be supplied to the water channels of the upper and lower surface plates is determined based on this temperature. Although efforts have been made to minimize thermal deformation of the surface plate by controlling the temperature of the surface plate, it is still difficult to obtain wafers with highly accurate flatness. In addition, even in temperature-controlled double-sided polishing equipment designed to indirectly control the deformation of the surface plate, there is no means to directly control thermal deformation, so deformation cannot be adequately controlled. It has been impossible to manufacture wafers with excellent flatness.

この発明は上述のような課題を解決するためになされた
もので、直接定盤の熱変形を検出してこの検出量にもと
づいて制御する手段により、加工性の優れた両面研磨装
置を提供することを目的とするものである。
This invention was made to solve the above-mentioned problems, and provides a double-sided polishing device with excellent workability by directly detecting the thermal deformation of the surface plate and controlling it based on the detected amount. The purpose is to

[課題を解決するための手段] この発明に係る熱変形制御型両面研磨装置は、上・下定
盤、研磨布、遊星キャリア、太陽歯車及びインターナル
歯車を主構成とするウェーハの両面研磨装置において、
上・下定盤のうち少くとも一方の内部に設けられ所定温
度・所定流量の冷却水を供給する水路を有する冷却手段
と、上・下定盤のうち少くとも一方の研磨面の反対面に
設置され上・下定盤のうち少くとも一方の熱変形を検出
する変位計測手段と、この変位計測手段の検出値に基づ
いて上・下定盤のうち少くとも一方を昇温する加熱手段
と、変位計測手段の出力に基づいてウェーハの研磨加工
中に加熱手段の作動のオンオフを行い上・下定盤のうち
少くとも一方の熱変形を制御する制御装置とを有するも
のである。
[Means for Solving the Problems] A thermal deformation controlled double-sided polishing apparatus according to the present invention is a wafer double-sided polishing apparatus mainly composed of upper and lower surface plates, a polishing cloth, a planetary carrier, a sun gear, and an internal gear. ,
A cooling means provided inside at least one of the upper and lower surface plates and having a water channel for supplying cooling water at a predetermined temperature and a predetermined flow rate; and a cooling means installed on the opposite surface of the polishing surface of at least one of the upper and lower surface plates. a displacement measuring means for detecting thermal deformation of at least one of the upper and lower surface plates; a heating means for increasing the temperature of at least one of the upper and lower surface plates based on a detected value of the displacement measuring means; and a displacement measuring means. and a control device for controlling thermal deformation of at least one of the upper and lower surface plates by turning on and off the operation of the heating means during polishing of the wafer based on the output of the heating means.

[作用コ この発明においては、両面研磨装置の上・下定盤のうち
少くとも一方の研磨面とは反対の面に変位計測手段の歪
ゲージと加熱手段のヒーターとを少くとも一対以上所定
位置に配置し、変位(歪)を検知してこの検知量にもと
づいてヒータのオン−オンを行う構成を有するものであ
る。したがって、研磨面側が研磨加工が進むにつれて発
熱して温度上昇した場合、この温度上昇を補償する格好
でその反対側の面をヒーター等の外部熱源により加熱し
てやれば、定盤の上下面(研磨面及びその反対側の面)
の温度分布を等しくすることができ、そのため定盤内部
の温度分布はほぼ上下対称になり定盤の熱変形(歪)を
最小化する熱変形制御が実施される。以上が熱変形制御
の基本的な作用であるが、実際の熱変形制御系は変位(
歪)を計測してヒーターのオン−オフを行うようになっ
ていて、定盤の温度を直接制御するのではなく、上述の
ように変位(歪)を抑えるように温度分布を制御するも
のとなっている。なお、この発明の熱変形制御手段では
、定盤は上下から加熱されるが、水路に一定温度、一定
流量の冷却水を常時流してやることにより定盤の温度が
加工中に必要以上に上がらないようにしている。
[Function] In this invention, at least one pair or more of a strain gauge as a displacement measuring means and a heater as a heating means are placed at predetermined positions on at least one of the upper and lower surface plates of the double-sided polishing device, on the surface opposite to the polishing surface. It has a configuration in which displacement (strain) is detected and the heater is turned on and off based on the detected amount. Therefore, if the polishing surface side generates heat and rises in temperature as the polishing process progresses, if the opposite surface is heated with an external heat source such as a heater to compensate for this temperature rise, the upper and lower surfaces of the surface plate (polishing surface and the opposite side)
Therefore, the temperature distribution inside the surface plate becomes almost vertically symmetrical, and thermal deformation control is carried out to minimize thermal deformation (distortion) of the surface plate. The above is the basic function of thermal deformation control, but the actual thermal deformation control system
The heater is turned on and off by measuring the strain (distortion), and instead of directly controlling the temperature of the surface plate, it controls the temperature distribution to suppress displacement (distortion) as described above. It has become. In addition, in the thermal deformation control means of this invention, the surface plate is heated from above and below, but by constantly flowing cooling water at a constant temperature and constant flow rate into the water channel, the temperature of the surface plate does not rise more than necessary during processing. That's what I do.

[実施例] 第1図はこの発明による熱変形制御型両面研磨装置の定
盤の一実施例を示す要部模式図である。
[Embodiment] FIG. 1 is a schematic diagram of the main part showing an embodiment of a surface plate of a thermal deformation controlled double-sided polishing apparatus according to the present invention.

第1図の(a)は−例として上定盤の一象限を示す部分
平面図、(b)は(a)に示したA−A線に沿う断面図
である。図において、第4図〜第6図の従来例と同−又
は相当部分には同じ符号を付し、説明を省略する。本実
施例においては、上定盤1の研磨面(第1図の(b)参
照)と反対側の面に直径の異なるリング状のヒーター3
0を複数個同心円状に接着して配置する。また、各ヒー
ター30に対応して、その近傍にそれぞれ歪ゲージ31
を配設する。
FIG. 1(a) is a partial plan view showing one quadrant of the upper surface plate as an example, and FIG. 1(b) is a sectional view taken along the line A--A shown in FIG. 1(a). In the figure, the same or corresponding parts as in the conventional example shown in FIGS. 4 to 6 are denoted by the same reference numerals, and the explanation thereof will be omitted. In this embodiment, a ring-shaped heater 3 with different diameters is provided on the surface opposite to the polishing surface of the upper surface plate 1 (see (b) in FIG. 1).
0 are glued and arranged concentrically. Also, corresponding to each heater 30, a strain gauge 31 is provided in the vicinity thereof.
Place.

この場合、ヒーター30は図示しない絶縁物内に埋込ま
れたヒーター線と、ヒーター3oの絶縁物上に接着形成
した2本の線状端子電極にヒーター線の端子を接続した
もので形成され、図示しないヒーター制御回路に接続す
るスプリング圧接タイプのヒータ一端子と回転中でも常
時接触するようになっている。また、歪ゲージ31は上
部にそれぞれ図示しない歪信号送信アンテナを有してい
てこのアンテナから送信される歪信号をヒーター制御回
路に設けた歪信号受信アンテナで受信して歪信号を制御
回路に取り込むようになっている。各歪出力信号は歪ゲ
ージ31毎に異なる周波数で送信され各歪ゲージの出力
を別々に受信できるようになっている。第2図は個々の
ヒーター30.歪ゲージ31に対応した制御ブロック線
図の一実施例であり、制御回路を構成している。なお、
図示は省略したが、下定盤2も同様な歪ゲージ81.ヒ
ーター3oが配置されている。
In this case, the heater 30 is formed by a heater wire embedded in an insulator (not shown) and a terminal of the heater wire connected to two linear terminal electrodes adhesively formed on the insulator of the heater 3o. It is in constant contact with a spring pressure contact type heater terminal connected to a heater control circuit (not shown) even during rotation. Each of the strain gauges 31 has a strain signal transmitting antenna (not shown) on its upper part, and the strain signal transmitted from this antenna is received by a strain signal receiving antenna provided in the heater control circuit, and the strain signal is taken into the control circuit. It looks like this. Each strain output signal is transmitted at a different frequency for each strain gauge 31, so that the output of each strain gauge can be received separately. Figure 2 shows individual heaters 30. This is an example of a control block diagram corresponding to the strain gauge 31, which constitutes a control circuit. In addition,
Although not shown, the lower surface plate 2 also has a similar strain gauge 81. A heater 3o is arranged.

上記の構成において、まず、第4図の従来例と同様に上
定盤1(下定盤2についても同様)の温度が研磨加工に
よって上り過ぎないように、水路3(3aも含む)には
常時一定温度・一定流量の冷却水が供給されている。そ
して、研磨加工が開始されると、研磨面側は加熱されて
温度が上昇する。このため、上定盤1(以後実施例の説
明では定盤という)は上側に曲るように変形を始めるよ
うになる。この熱変形は歪ゲージ(又は変位計)31に
より検出される。そこで、第2図に示したように、あら
かじめ定められたヒーター3oのオン−オフ判断の基準
値(歪)を基準信号として、歪ゲージ31で計測した実
際の変位(歪)と共に比較器32に入力し、その偏差値
によってヒーター(加熱装置)30のオン−オフを制御
する。第3図はヒーター30のオン−オフ信号と歪ゲー
ジ31の出力との関係を示す線図である。第3図の(a
)は歪ゲージの出力(縦軸は歪)と時間(横軸)を示し
、第3図の(b)はヒーター30のオン−オフ(縦軸)
と時間(横軸)を示している。図に示したように、歪ゲ
ージ31の出力(波状曲線)がヒーター3oのオン−オ
フ判断の基準値(点線)を超えるとヒーター80がオン
(第3図の(b)参照)となり、定盤の外側の面を加熱
する。ヒーター30オン直後も歪はやや増加するが時間
の経過とともに減小する。そして、歪が基準値以下にな
ったときヒーター30はオフとなる。この操作を制御装
置がくり返し実行することにより、変位を基準値近傍に
抑えておくことのできる熱変形制御が行われる。なお、
上記実施例では変位計測手段として歪ゲージを用いた場
合を示したが、取りつけ方法を工夫すれば変位計を用い
ることもできる。
In the above configuration, first, as in the conventional example shown in FIG. Cooling water is supplied at a constant temperature and constant flow rate. Then, when the polishing process is started, the polishing surface side is heated and the temperature rises. For this reason, the upper surface plate 1 (hereinafter referred to as the surface plate in the description of the embodiment) begins to deform so as to bend upward. This thermal deformation is detected by a strain gauge (or displacement meter) 31. Therefore, as shown in FIG. 2, a predetermined reference value (strain) for on/off judgment of the heater 3o is used as a reference signal, and a comparator 32 is sent together with the actual displacement (strain) measured by the strain gauge 31. The deviation value is used to control on/off of the heater (heating device) 30. FIG. 3 is a diagram showing the relationship between the on-off signal of the heater 30 and the output of the strain gauge 31. Figure 3 (a
) shows the output of the strain gauge (vertical axis is strain) and time (horizontal axis), and (b) in Fig. 3 shows the on-off of the heater 30 (vertical axis).
and time (horizontal axis). As shown in the figure, when the output of the strain gauge 31 (wavy curve) exceeds the reference value (dotted line) for determining whether the heater 3o is on or off, the heater 80 is turned on (see (b) in Figure 3), and the Heat the outside surface of the board. The distortion increases slightly immediately after the heater 30 is turned on, but decreases with the passage of time. Then, when the distortion becomes less than the reference value, the heater 30 is turned off. By repeatedly performing this operation by the control device, thermal deformation control that can suppress the displacement to near the reference value is performed. In addition,
In the above embodiment, a strain gauge is used as a displacement measuring means, but a displacement meter can also be used if the mounting method is devised.

また、研磨加工開始後歪ゲージ31により定盤の変形を
観測し、歪ゲージの出力に応じてヒーター30のオン−
オフを行う熱変形制御においては、ヒーター30のオン
−オフの基準となる歪ゲージ31の出力値は、定盤の諸
元、ヒーターの性能(特性)、加工条件等を考慮に入れ
て決めるようになっている。
In addition, after the polishing process starts, the deformation of the surface plate is observed using the strain gauge 31, and the heater 30 is turned on or off according to the output of the strain gauge.
In thermal deformation control that turns off the heater 30, the output value of the strain gauge 31, which is the reference for turning on and off the heater 30, is determined by taking into consideration the specifications of the surface plate, the performance (characteristics) of the heater, the processing conditions, etc. It has become.

以上説明した実施例によって明らかなように、従来の温
度制御型両面研磨装置と比べて定盤の熱変形を一定値に
安定することができるので、つ工−ハの加工不良率を低
減でき、さらに加工精度(平坦度)を高くすることがで
きる。
As is clear from the embodiments described above, the thermal deformation of the surface plate can be stabilized at a constant value compared to conventional temperature-controlled double-sided polishing equipment, so the machining defect rate of the tool can be reduced. Furthermore, processing accuracy (flatness) can be increased.

なお、上記実施例では上定盤に歪ゲージとヒーターを配
設した場合を説明したが、場合によっては下定盤に同様
に配設してもよく、あるいは上・下定盤の両方に配設し
てもよい。
In the above embodiment, the strain gauge and heater were arranged on the upper surface plate, but depending on the case, they may be similarly arranged on the lower surface plate, or they may be arranged on both the upper and lower surface plates. You can.

[発明の効果コ 以上のようにこの発明によれば、ウェーハ用の両面研磨
装置の上・下定盤のうち少くとも一方の研磨面の反対面
に変位計測装置(歪ゲージ等)と加熱装置(ヒーター)
を配設し、定盤の変位値に基づいてヒーターをオン−オ
フする制御を行う構成としたので、従来の単なる温度制
御方式に比して、実際の定盤の変位を制御できるので、
精度のよい熱変形制御が可能となる。これにより、ウェ
ーハの加工不良率を著しく低減できるとともに、加工精
度(平坦度)を向上させることができる効果が得られる
[Effects of the Invention] As described above, according to the present invention, a displacement measuring device (such as a strain gauge) and a heating device (such as a strain gauge) and a heating device ( heater)
Since the heater is controlled to turn on and off based on the displacement value of the surface plate, the actual displacement of the surface plate can be controlled, compared to the conventional simple temperature control method.
Accurate thermal deformation control becomes possible. As a result, the processing defect rate of wafers can be significantly reduced, and processing accuracy (flatness) can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の定盤部分の構成を示す模
式図、第2図は各ヒーター・歪ゲージに対応した制御の
一実施例を示す制御ブロック線図、第3図はヒーターの
オン−オフ信号と歪ゲージの出力との関係を説明する線
図、第4図は従来の温度制御型両面研磨装置の一例を示
した模式断面図、第5図は第4図の従来例の要部平面模
式図、第6図は従来装置の動作を説明するために示した
部分拡大模式図である。 図において、1は上定盤、2は下定盤、3,3aは水路
、5は研磨布、6は太陽歯車、7は遊星キャリア、8は
インターナル歯車、9はシリコンウェーハ、10は温度
センサー、30はヒーター、31は歪ゲージ、32は比
較器である。
Fig. 1 is a schematic diagram showing the configuration of the surface plate portion of an embodiment of the present invention, Fig. 2 is a control block diagram showing an embodiment of control corresponding to each heater and strain gauge, and Fig. 3 is a heater Figure 4 is a schematic cross-sectional view showing an example of a conventional temperature-controlled double-sided polishing device, and Figure 5 is the conventional example of Figure 4. FIG. 6 is a partially enlarged schematic diagram for explaining the operation of the conventional device. In the figure, 1 is an upper surface plate, 2 is a lower surface plate, 3 and 3a are water channels, 5 is a polishing cloth, 6 is a sun gear, 7 is a planetary carrier, 8 is an internal gear, 9 is a silicon wafer, and 10 is a temperature sensor , 30 is a heater, 31 is a strain gauge, and 32 is a comparator.

Claims (1)

【特許請求の範囲】 上・下研磨定盤、研磨布、遊星キャリア、太陽歯車、及
びインターナル歯車を主構成とし、上記遊星キャリアに
セットしたウェーハの研磨を行う両面研磨装置において
、 上記上・下研磨定盤のうち少くとも一方に設けられ常時
所定温度・所定流量に制御した冷却水を供給する水路を
有する冷却手段と、 上記上・下研磨定盤のうち少くとも一方の研磨面の反対
面に設置されこの上・下研磨定盤のうち少くとも一方の
熱変形を検出する変位計測手段と、この変位計測手段の
検出値に基づいて上記上・下研磨定盤のうち少くとも一
方を昇温する加熱手段と、 上記変位計測手段の出力に基づいて上記ウェーハの研磨
加工中に上記加熱手段の作動のオン−オフを行い上記上
・下研磨定盤のうち少くとも一方の熱変形を制御する制
御装置と を有することを特徴とする熱変形制御型両面研磨装置。
[Scope of Claims] A double-sided polishing apparatus that polishes a wafer set on the planetary carrier, the main structure being an upper and lower polishing surface plate, a polishing cloth, a planetary carrier, a sun gear, and an internal gear, a cooling means provided on at least one of the lower polishing surface plates and having a water channel for constantly supplying cooling water controlled at a predetermined temperature and a predetermined flow rate; and an opposite polishing surface of at least one of the upper and lower polishing surfaces. displacement measuring means installed on the surface to detect thermal deformation of at least one of the upper and lower polishing plates; A heating means for raising the temperature, and an operation of the heating means is turned on and off during polishing of the wafer based on the output of the displacement measuring means to prevent thermal deformation of at least one of the upper and lower polishing plates. 1. A thermal deformation controlled double-sided polishing device, comprising: a control device for controlling thermal deformation.
JP2158682A 1990-06-19 1990-06-19 Thermal deformation control type double face polishing device Pending JPH0453671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158682A JPH0453671A (en) 1990-06-19 1990-06-19 Thermal deformation control type double face polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158682A JPH0453671A (en) 1990-06-19 1990-06-19 Thermal deformation control type double face polishing device

Publications (1)

Publication Number Publication Date
JPH0453671A true JPH0453671A (en) 1992-02-21

Family

ID=15677058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158682A Pending JPH0453671A (en) 1990-06-19 1990-06-19 Thermal deformation control type double face polishing device

Country Status (1)

Country Link
JP (1) JPH0453671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803798A (en) * 1994-03-28 1998-09-08 Speedfam Corporation Dual column abrading machine
US5877088A (en) * 1995-11-10 1999-03-02 Nippon Steel Corporation Flattening method and apparatus for semiconductor device
JP2002305894A (en) * 2001-03-30 2002-10-18 Shinko Electric Co Ltd Mover system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803798A (en) * 1994-03-28 1998-09-08 Speedfam Corporation Dual column abrading machine
US5877088A (en) * 1995-11-10 1999-03-02 Nippon Steel Corporation Flattening method and apparatus for semiconductor device
JP2002305894A (en) * 2001-03-30 2002-10-18 Shinko Electric Co Ltd Mover system

Similar Documents

Publication Publication Date Title
JP4094743B2 (en) Chemical mechanical polishing method and apparatus
KR101090951B1 (en) Substrate Polishing Apparatus and Substrate Polishing Method
JP4502168B2 (en) Chemical mechanical polishing apparatus and chemical mechanical polishing method
JP3741523B2 (en) Polishing equipment
JPH07122523A (en) Semiconductor production system
EP0790101A1 (en) Shape control method and nc machine using the method
JPH0453671A (en) Thermal deformation control type double face polishing device
US10593603B2 (en) Chemical mechanical polishing apparatus containing hydraulic multi-chamber bladder and method of using thereof
JPH09131660A (en) Semiconductor manufacturing device and method thereof
JP3045232B2 (en) Wafer polishing apparatus and polishing amount detection method
US6399498B1 (en) Method and apparatus for polishing work
JPH0659623B2 (en) Wafer mechanochemical polishing method and apparatus
JP2005118969A (en) Method for stably polishing silicon wafer having high flatness
TWI826082B (en) System and method for monitoring processing status of grinding device and double-sided grinding device
JPH0740233A (en) Thickness measuring device of work
JP4278836B2 (en) Wafer polishing equipment
JP2002166357A (en) Wafer polishing method
JPH0317621B2 (en)
JP2002187061A (en) Measuring method for grinding temperature, grinding method, workpiece holding mechanism and grinding device
JP4051115B2 (en) Wafer polishing equipment
JPH02274464A (en) Polishing device and method for semiconductor wafer
CN117637543A (en) Silicon wafer trimming method and silicon wafer processing equipment
JPH09148281A (en) Polishing apparatus and polishing method
JPH10313032A (en) Wafer for temperature distribution measurement
JPH0320029A (en) Monitoring method for semiconductor wafer polishing amount