JPH02260509A - Semiconductor ceramic capacitor of particle boundary insulation type - Google Patents

Semiconductor ceramic capacitor of particle boundary insulation type

Info

Publication number
JPH02260509A
JPH02260509A JP8177389A JP8177389A JPH02260509A JP H02260509 A JPH02260509 A JP H02260509A JP 8177389 A JP8177389 A JP 8177389A JP 8177389 A JP8177389 A JP 8177389A JP H02260509 A JPH02260509 A JP H02260509A
Authority
JP
Japan
Prior art keywords
semiconductor ceramic
powder
semiconductor
grain boundary
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8177389A
Other languages
Japanese (ja)
Other versions
JPH0529295B2 (en
Inventor
Koichiro Tsujiku
浩一郎 都竹
Takuji Aoyanagi
青柳 卓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8177389A priority Critical patent/JPH02260509A/en
Publication of JPH02260509A publication Critical patent/JPH02260509A/en
Publication of JPH0529295B2 publication Critical patent/JPH0529295B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To obtain the titled capacitor efficiently without increase in characteristic variations and deterioration of the characteristics by subjecting the lamination body to a heat treatment in which the powder whose melting point is over 100 deg.C higher than a temperature of the heat treatment exists among the laminated semiconductor ceramic. CONSTITUTION:After the molded body which is formed by mixing and kneading material powder and squeezing out it into a sheet form is put in a baking sheath made of alumina ceramic, it is subjected to sintering for 4 hours at 1450 deg.C in a reducing atmosphere of H2-10% and N2-90%, thereby obtaining a semiconductor ceramic. Next, a diffusion substance comprising Bi-65% and Cu-35% is applied to a surface of the semiconductor ceramic, followed by drying. Furthermore, an alumina powder (a melting point is about 2015 deg.C) whose average particle diameter is 50mum and a zirconia powder (a melting point is about 2677 deg.C) whose average particle diameter is 50mum are deposited on a surface of the semiconductor ceramic, and two semiconductor ceramics are laminated so that the powder is sandwiched between these ceramics and this lamination body is subjected to a heat treatment again at 1200 deg.C for 2 hours in an atmosphere. Then, Ag electrodes are printed on both main surfaces of the resultant semiconductor ceramic of particle boundary insulation type. Thus, the throughput becomes over 7 times as large as a conventional flat-packing method and the capacitors can be manufactured efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒界絶縁型半導体磁器コンデンサの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a grain boundary insulated semiconductor ceramic capacitor.

〔従来の技術〕[Conventional technology]

粒界絶縁型半導体磁器コンデンサは、一般的には、次の
工程により製造される。
A grain boundary insulated semiconductor ceramic capacitor is generally manufactured by the following process.

■ 例えば、5rTiOsを主成分とする原材料を混合
した後バインダー等を添加して混練し、シート状に押し
出し成形し、得られたシートを打ち抜いて円板状の成形
体を得る。
(2) For example, after mixing raw materials containing 5rTiOs as a main component, a binder and the like are added and kneaded, extrusion molded into a sheet, and the obtained sheet is punched out to obtain a disc-shaped molded body.

■ 上記成形体を複数枚重ねてサヤ詰めし、還元性雰囲
気中で焼成して半導体磁器を得る。
(2) A plurality of the above molded bodies are piled up and packed in pods, and fired in a reducing atmosphere to obtain semiconductor porcelain.

■ 上記半導体磁器の表面に粒界層拡散物質を塗布し、
大気中で熱処理して粒界絶縁型半導体磁器を得る。
■ Applying a grain boundary layer diffusion substance to the surface of the semiconductor porcelain,
A grain boundary insulated semiconductor porcelain is obtained by heat treatment in the atmosphere.

■ 上記粒界絶縁型半導体磁器の両主面の互いに対向す
る位置に、それぞれへg電極層を形成して粒界絶縁型半
導体磁器コンデンサを得る。
(2) G-electrode layers are formed on each of the principal surfaces of the grain boundary insulated semiconductor ceramic at opposing positions to obtain a grain boundary insulated semiconductor ceramic capacitor.

上記製造方法により製造される粒界絶縁型半導体磁器コ
ンデンサにおいては、表面に粒界層拡散物質を塗布した
半導体磁器を大気中で熱処理する際の上記粒界層拡散物
質を塗布した半導体磁器表面への酸素供給の度合い及び
熱処理温度の条件等により、上記半導体磁器の粒界層部
分での上記拡散物質の拡散の度合が大きく異なり、これ
により、その静電容量C[+F] 、誘電損失jtn6
[%]、絶縁抵抗IR[MΩ]等の特性が大きく変動す
る。
In the grain boundary insulated semiconductor ceramic capacitor manufactured by the above manufacturing method, when the semiconductor porcelain whose surface is coated with the grain boundary layer diffusion substance is heat-treated in the air, the surface of the semiconductor porcelain coated with the grain boundary layer diffusion substance is heated. The degree of diffusion of the above-mentioned diffusion substance in the grain boundary layer portion of the above-mentioned semiconductor ceramic varies greatly depending on the degree of oxygen supply and heat treatment temperature conditions, etc., and this causes the capacitance C[+F] and dielectric loss jtn6 to
[%], insulation resistance IR [MΩ], and other characteristics vary greatly.

このような観点から従来は、拡散物質の拡散の度合が個
々の半導体磁器毎にばらつくことのないよう、アルミナ
、あるいはジルコニア等の耐火物からなる焼成用サヤの
上に、直接あるいは上記耐火物からなるセッターを介し
て、互いに重ならないように上記半導体磁器を平詰めし
たのち、これらのサヤを複数段重ねて大気中で熱処理す
るのが一般的であった。
From this point of view, conventionally, in order to prevent the degree of diffusion of the diffusing substance from varying among individual semiconductor porcelains, the firing pod made of a refractory material such as alumina or zirconia was heated directly or from the refractory material. It was common practice to pack the semiconductor porcelain flatly using a setter so as not to overlap each other, and then stack these pods in multiple stages and heat-treat them in the atmosphere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の製造方法では、耐火物製の焼
成用サヤあるいはセッターの上に、互いに重ならないよ
うに半導体磁器を平詰めして熱処理していたため、ひと
サヤ当たりに処理できる半導体磁器の数が少なく、熱効
率、処理効率ともに低かった。
However, in the conventional manufacturing method described above, semiconductor porcelain was packed flat and heat-treated on top of a refractory firing pod or setter so that they did not overlap each other, so the number of semiconductor porcelains that could be processed per pod was limited. Both thermal efficiency and processing efficiency were low.

また、ひとサヤ当たりの処理量を増やすために、上記半
導体磁器毎体 ことも検討されているが、半導体磁器毎に酸素雰囲気と
接する状態に違いが生じて特性が大きくばらつき、誘電
損失の増加や、絶縁抵抗の低下が否めなかった。
In addition, in order to increase the throughput per pod, it has been considered to use the above-mentioned semiconductor porcelain as a whole, but the conditions in which each semiconductor porcelain comes into contact with the oxygen atmosphere differs, resulting in large variations in properties, resulting in an increase in dielectric loss and , a decrease in insulation resistance was undeniable.

本発明の目的は、上記従来の問題点を解決して、特性バ
ラツキの増加や特性の悪化等を生ずることなく、粒界絶
縁型半導体磁器コンデンサを効率良く得ることが可能な
製造方法を提供することにある。
An object of the present invention is to provide a manufacturing method capable of solving the above-mentioned conventional problems and efficiently obtaining a grain boundary insulated semiconductor ceramic capacitor without increasing variation in characteristics or deteriorating characteristics. There is a particular thing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半導体磁器の原材料を混合したのち成形し、
得られた成形体を還元性雰囲気中で焼成したのち得られ
た半導体磁器の表面に粒界層拡散物質を塗布して大気中
で熱処理し、得られた粒界絶縁型半導体磁器の表面に一
対の電極層を形成してなる粒界絶縁型半導体磁器コンデ
ンサの製造方法において、上記粒界層拡散物質を塗布し
た半導体磁器を大気中で熱処理する際に、金属の酸化物
、炭化物、窒化物のうち、融点が、上記熱処理温度より
も100℃以上高いものの粉末を準備し、上記半導体磁
器同士の間に上記粉末が存在するように重ね合せた状態
で熱処理することを特徴とするものである。
The present invention involves mixing the raw materials of semiconductor porcelain and then molding it.
After firing the obtained molded body in a reducing atmosphere, a grain boundary layer diffusion substance is applied to the surface of the obtained semiconductor porcelain and heat treated in the air, and a pair of grain boundary layer diffusion substances are applied to the surface of the obtained grain boundary insulated semiconductor porcelain. In the method for manufacturing a grain boundary insulated semiconductor ceramic capacitor having an electrode layer formed thereon, when the semiconductor ceramic coated with the grain boundary layer diffusion material is heat-treated in the atmosphere, metal oxides, carbides, and nitrides are removed. Among these, a powder having a melting point higher than the heat treatment temperature by 100° C. or more is prepared, and the semiconductor ceramics are heat-treated while being stacked so that the powder is present between the semiconductor ceramics.

上記粉末の具体的な材料としては、例えば、アルミナ、
ジルコニア、マグネシア、あるいはこれらの混合組成物
が挙げられる。
Specific materials for the above powder include, for example, alumina,
Examples include zirconia, magnesia, or a mixed composition thereof.

〔作 用〕[For production]

本発明の粒界絶縁型半導体磁器コンデンサの製造方法に
おいては、半導体磁器同士の間に粉末が存在するように
重ねた状態で熱処理するようにしたので、各半導体磁器
への熱伝導および酸素拡散が均一に行われる。
In the method for manufacturing a grain boundary insulated semiconductor porcelain capacitor of the present invention, the semiconductor porcelains are heat-treated in a stacked state so that powder exists between them, so that heat conduction and oxygen diffusion to each semiconductor porcelain are improved. done evenly.

〔実施例〕〔Example〕

以下、本発明の粒界絶縁型半導体磁器コンデンサの実施
例を比較例と共に説明する。
Examples of the grain boundary insulated semiconductor ceramic capacitor of the present invention will be described below along with comparative examples.

先ず、5tTi03 85a+o1%、ClTiO31
5ma1%、Nb2030.15mo1%、の組成比か
らなる半導体磁器の原料粉末を混合し、バインダーとし
てメチルセルロース7v1%と、可塑剤としてグリセリ
ンの10m1%水溶液を添加し混練したのち、086關
の厚さのシート状に押し出し成形した。次いで、上記シ
ートを10龍φの円板形状に打ち抜き、得られた成形体
をアルミナ磁器製の焼成用サヤに詰めた後、82 10
yo1%、N2 9Qya1%の還元性雰囲気中145
0℃で4時間焼結して半導体磁器を得た。次に、上記半
導体磁器の表面に、Bl  65m。
First, 5tTi03 85a+o1%, ClTiO31
The raw material powder for semiconductor porcelain with a composition ratio of 5ma1% and Nb2030.15mol1% was mixed, and 7v1% of methyl cellulose as a binder and a 10ml1% aqueous solution of glycerin as a plasticizer were added and kneaded. It was extruded into a sheet. Next, the above-mentioned sheet was punched into a disc shape of 10 mm diameter, and the resulting molded body was packed in an alumina porcelain firing sheath.
145 in a reducing atmosphere of yo1%, N2 9Qya1%
Sintering was performed at 0° C. for 4 hours to obtain semiconductor porcelain. Next, 65m of Bl was applied to the surface of the semiconductor porcelain.

1%、Cu  35moljlの比率で含む拡散物質を
塗布したのち、乾燥させた。
A diffusion material containing 1% Cu and 35 moljl of Cu was applied and then dried.

更に、平均粒径50++mのアルミナ粉末(融点二約2
015℃)および、平均粒径50jmのジルコニア粉末
(融点:約2677℃)を準備し、次のa−dの手段に
より上記で得られた半導体磁器の表面に付着させた。
Furthermore, alumina powder with an average particle size of 50++ m (melting point approximately 2
015°C) and zirconia powder (melting point: about 2677°C) with an average particle size of 50jm were prepared and adhered to the surface of the semiconductor ceramic obtained above by the following steps a to d.

a、上記粉末の入った容器中に上記の半導体磁器を入れ
、該容器を振動させて、半導体磁器の表面に上記粉末を
付着させた。
a. The above semiconductor porcelain was placed in a container containing the above powder, and the container was vibrated to cause the above powder to adhere to the surface of the semiconductor porcelain.

b、粉砕したクマロン樹脂粉末と上記粉末とが入った容
器中に上記の半導体磁器を入れて混合し、発生した静電
気により該半導体磁器の表面に上記粉末および上記クマ
ロン樹脂粉末を付着させた。
b. The above semiconductor porcelain was placed in a container containing the pulverized coumaron resin powder and the above powder, and mixed, and the above powder and the coumaron resin powder were attached to the surface of the semiconductor porcelain by the generated static electricity.

C0上記粉末と有機バインダーであるPVA水溶液とを
混合し、この中に上記の半導体磁器を浸したのち引上げ
て乾燥させ、上記半導体磁器の表面に上記粉末を付着さ
せた。
The above C0 powder and an aqueous PVA solution as an organic binder were mixed, and the above semiconductor porcelain was immersed in the mixture and then pulled up and dried to adhere the above powder to the surface of the semiconductor porcelain.

d、上記粉末と有機バインダーであるPVA水溶液とを
混合した液を上記半導体磁器の表面に噴霧したのち乾燥
させ、上記半導体磁器の表面に上記粉末を付着させた。
d. A liquid mixture of the powder and an aqueous PVA solution as an organic binder was sprayed onto the surface of the semiconductor ceramic and dried to adhere the powder to the surface of the semiconductor ceramic.

上記で得られた半導体磁器を用いて、第1表に示す実施
例1〜4及び比較例1〜3の条件で再び大気中1200
℃で2時間熱処理して粒界絶縁型半導体磁器を得た。尚
、上記第1表においてスペーサーとは、上記粉末によっ
て形成されるスペーサを意味する。上記で得られた粒界
絶縁型半導体磁器の両生面にそれぞれ6IIIlφの円
形に^g?1を極材料ペーストを塗布し、800℃で1
0分間焼き付は処理して粒界絶縁型半導体磁器コンデン
サ試料を得た。
Using the semiconductor porcelain obtained above, the test was carried out again under the conditions of Examples 1 to 4 and Comparative Examples 1 to 3 shown in Table 1.
A grain boundary insulated semiconductor porcelain was obtained by heat treatment at ℃ for 2 hours. Note that in Table 1 above, the spacer means a spacer formed from the above powder. A circular shape of 6IIIlφ is formed on each of the two sides of the grain boundary insulated semiconductor porcelain obtained above. Apply polar material paste to 1 and heat 1 at 800℃.
The 0-minute baking process was performed to obtain a sample of a grain boundary insulated semiconductor ceramic capacitor.

このようにして得られたコンデンサ試料6500個につ
いて、測定周波数1kH1,測定電圧0、 IVで静電
容量C(nF) 、誘電損失+1flδ(%)、オよび
直流50Vの電圧を15秒印加した後の絶縁抵抗IR(
MQIII定し、平均値’i 、/< −y ツキ(3
y/i)、およびひとサヤ当たりの処理量の比すなわち
処理能力比を求めて、その結果を第2表に示した。
For the 6,500 capacitor samples obtained in this way, a measurement frequency of 1 kHz, a measurement voltage of 0, a capacitance C (nF) at IV, a dielectric loss + 1 fl δ (%), and a voltage of 50 V DC were applied for 15 seconds. Insulation resistance IR (
MQIII is set, and the average value 'i, /< -y Tsuki (3
y/i) and the ratio of the throughput per pod, that is, the throughput ratio, and the results are shown in Table 2.

第1表 第2表 第2表に示される通り、本発明の実施例1〜4で得られ
た試料はいずれも、静電容量、誘電損失、絶縁抵抗とも
に比較例1に示す従来の平詰め方法による試料と同等の
特性を有し、また静電容量、誘電損失では、比較例1〜
3で得られた試料よりもバラツキが小さかった。また、
ひとサヤ当たりの処理量の点では、従来の平詰め方法に
比べて7倍以上の処理量であった。
As shown in Table 1, Table 2, and Table 2, all of the samples obtained in Examples 1 to 4 of the present invention had capacitance, dielectric loss, and insulation resistance of the conventional flat packing shown in Comparative Example 1. It has the same characteristics as the samples obtained by the method, and in terms of capacitance and dielectric loss, Comparative Examples 1-
The variation was smaller than that of the sample obtained in No. 3. Also,
In terms of the throughput per pod, the throughput was more than seven times that of the conventional flat packing method.

上記実施例では、粉末としてアルミナあるいはジルコニ
アを用いたが、本発明はこれに限定されるものではなく
、金属あるいは金属の酸化物、炭化物、窒化物のうち、
融点が、該熱処理温度よりも 100℃以上高いものの
粉末の中から種々選択して用いることが可能である。
In the above embodiments, alumina or zirconia was used as the powder, but the present invention is not limited to this. Among metals, metal oxides, carbides, and nitrides,
It is possible to use various powders selected from powders having a melting point 100° C. or more higher than the heat treatment temperature.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上記実施例の結果に示される通り、特
性バラツキの増加や特性の悪化等を生ずることなく、粒
界絶縁型半導体磁器コンデンサを効率良く製造すること
ができる。
According to the present invention, as shown in the results of the above examples, a grain boundary insulated semiconductor ceramic capacitor can be efficiently manufactured without increasing variation in characteristics or deteriorating characteristics.

Claims (1)

【特許請求の範囲】[Claims]  半導体磁器の原材料を混合したのち成形し、得られた
成形体を還元性雰囲気中で焼成し、得られた半導体磁器
の表面に粒界層拡散物質を塗布したのち大気中で熱処理
し、得られた粒界絶縁型半導体磁器の表面に一対の電極
層を形成してなる粒界絶縁型半導体磁器コンデンサの製
造方法において、上記粒界層拡散物質が塗布された半導
体磁器を大気中で熱処理する際に、金属あるいは金属の
酸化物、炭化物、窒化物のうち、融点が、前記熱処理温
度よりも100℃以上高いものの粉末を準備し、前記半
導体磁器同士の間に前記粉末が存在するように重ね合せ
た状態で熱処理することを特徴とする粒界絶縁型半導体
磁器コンデンサの製造方法。
The raw materials for semiconductor porcelain are mixed and molded, the resulting molded body is fired in a reducing atmosphere, a grain boundary layer diffusion substance is applied to the surface of the semiconductor porcelain, and then heat treated in the air. In the method for manufacturing a grain boundary insulated semiconductor ceramic capacitor in which a pair of electrode layers is formed on the surface of a grain boundary insulated semiconductor ceramic, the semiconductor ceramic coated with the grain boundary layer diffusion substance is heat treated in the atmosphere. Prepare a powder of a metal or a metal oxide, carbide, or nitride whose melting point is 100° C. or more higher than the heat treatment temperature, and stack the semiconductor ceramics so that the powder exists between them. 1. A method for manufacturing a grain boundary insulated semiconductor ceramic capacitor, the method comprising heat-treating the capacitor in a state where the grain boundary is insulated.
JP8177389A 1989-03-31 1989-03-31 Semiconductor ceramic capacitor of particle boundary insulation type Granted JPH02260509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8177389A JPH02260509A (en) 1989-03-31 1989-03-31 Semiconductor ceramic capacitor of particle boundary insulation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8177389A JPH02260509A (en) 1989-03-31 1989-03-31 Semiconductor ceramic capacitor of particle boundary insulation type

Publications (2)

Publication Number Publication Date
JPH02260509A true JPH02260509A (en) 1990-10-23
JPH0529295B2 JPH0529295B2 (en) 1993-04-30

Family

ID=13755796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8177389A Granted JPH02260509A (en) 1989-03-31 1989-03-31 Semiconductor ceramic capacitor of particle boundary insulation type

Country Status (1)

Country Link
JP (1) JPH02260509A (en)

Also Published As

Publication number Publication date
JPH0529295B2 (en) 1993-04-30

Similar Documents

Publication Publication Date Title
JPH02260509A (en) Semiconductor ceramic capacitor of particle boundary insulation type
JPH0524649B2 (en)
JPH0524648B2 (en)
JP2520699B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
EP1100094A2 (en) Production of passive devices
JP2748412B2 (en) Method for forming conductor bonding film on ceramic superconductor
JP3914635B2 (en) Manufacturing method of ceramic electronic component
JP3252649B2 (en) Method for firing ceramic molded body
JPH02165602A (en) Thermoresistance device
JPH0246712A (en) Manufacture of semiconductor ceramic element
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JPH0153494B2 (en)
JPS6217368B2 (en)
JPH08222470A (en) Manufacture of grain boundary insulated laminated ceramic component
JPS6131361A (en) Manufacture of ceramic wafer
JPH09260107A (en) Thermistor element and manufacturing method thereof
JPH0352214A (en) Manufacture of laminated ceramic capacitor
JPH0812803B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JPH01185902A (en) Manufacture of voltage nonlinear resistor
JPH07120597B2 (en) Method for forming grain boundary layer of semiconductor porcelain
JPS63285920A (en) Manufacture of grain boundary insulation type semiconductor ceramic capacitor
JPS641204A (en) Laminated thermistor
JPH06181108A (en) Semiconductor ceramic having positive resistance-temperature characteristic
JPH0532889B2 (en)