JPH0532889B2 - - Google Patents

Info

Publication number
JPH0532889B2
JPH0532889B2 JP7639990A JP7639990A JPH0532889B2 JP H0532889 B2 JPH0532889 B2 JP H0532889B2 JP 7639990 A JP7639990 A JP 7639990A JP 7639990 A JP7639990 A JP 7639990A JP H0532889 B2 JPH0532889 B2 JP H0532889B2
Authority
JP
Japan
Prior art keywords
layer
carbon
reoxidation
cylindrical
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7639990A
Other languages
Japanese (ja)
Other versions
JPH03276610A (en
Inventor
Koichiro Tsujiku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP7639990A priority Critical patent/JPH03276610A/en
Publication of JPH03276610A publication Critical patent/JPH03276610A/en
Publication of JPH0532889B2 publication Critical patent/JPH0532889B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体層と表面酸化層(誘電体層)
とを有する表面再酸化型半導体磁器コンデンサの
製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor layer and a surface oxidation layer (dielectric layer).
The present invention relates to a method of manufacturing a surface reoxidation type semiconductor ceramic capacitor having the following methods.

[従来の技術] 表面再酸化型半導体磁器コンデンサを製造する
際に、表面再酸化層(誘電体層)は半導体層の全
表面に形成される。従つて、表面再酸化層をこの
ままにして貴金属(非還元性材料)からなる一対
のコンデンサ電極を設けると、一方のコンデンサ
電極と他方のコンデンサ電極との間に一方の表面
再酸化層(誘電体層)と半導体層(誘電寄与層)
と他方の表面再酸化層(誘電体層とが介在する。
この結果、実効誘電体層の厚みが2つの表面再酸
化層の和になり、静電容量の低下が生じる。
[Prior Art] When manufacturing a surface reoxidation type semiconductor ceramic capacitor, a surface reoxidation layer (dielectric layer) is formed on the entire surface of the semiconductor layer. Therefore, if a pair of capacitor electrodes made of a noble metal (non-reducible material) is provided with the surface reoxidation layer left as is, one surface reoxidation layer (dielectric layer) and semiconductor layer (dielectric contributing layer)
and the other surface reoxidation layer (dielectric layer) are interposed.
As a result, the effective dielectric layer thickness becomes the sum of the two surface reoxidation layers, resulting in a decrease in capacitance.

この種の欠点を解決するための方法として、表
面再酸化層の一部を物理的に研摩することによつ
て半導体層を露出させ、ここに一方の電極を接続
する方法、及び卑金属(還元性金属)ペーストを
表面再酸化層の一部に塗布し、焼付けることによ
つて表面再酸化層を還元して導体化し、半導体層
に対する電気的接続を形成する方法が知られてい
る。これ等の方法によれば、一対の電極間に1つ
の表面再酸化層(誘電体層)のみが介在すること
になるので、実効誘導体厚みが1/2になり、静電
容量が約2倍になる。
A method to solve this kind of drawback is to physically polish a part of the surface reoxidation layer to expose the semiconductor layer and connect one electrode thereto, and to connect base metals (reducible A method is known in which a metal) paste is applied to a portion of the surface reoxidized layer and baked to reduce the surface reoxidized layer and make it conductive, thereby forming an electrical connection to the semiconductor layer. According to these methods, only one surface reoxidation layer (dielectric layer) is interposed between a pair of electrodes, so the effective dielectric thickness is halved and the capacitance is approximately doubled. become.

[発明が解決しようとする課題] ところで、これ等の方法で表面再酸化型半導体
磁器コンデンサを量産すると、次のような問題が
生じる。
[Problems to be Solved by the Invention] By the way, when surface reoxidation type semiconductor ceramic capacitors are mass-produced using these methods, the following problems arise.

(1) 前者の物理的研摩で再酸化層を除去する方法
の場合には、磁器素体に機械的力が加わるため
にマイクロラツクが発生し、コンデンサの特性
及び信頼性の低下が生じる。なお、マイクロク
ラツクを防ぐために研摩時の機械的力を抑える
ことは可能であるが、生産効率が大幅に低下す
る。
(1) In the case of the former method of removing the re-oxidized layer by physical polishing, microracks are generated due to the mechanical force applied to the porcelain element, resulting in a deterioration in the characteristics and reliability of the capacitor. Although it is possible to suppress the mechanical force during polishing to prevent microcracks, the production efficiency will be significantly reduced.

(2) 後者の卑金属ペーストを使用する方法では、
卑金属ペーストを使用する方法では、卑金属ペ
ーストが他の磁器素体に接触すると、その部分
が還元されて絶縁性が大幅に低下するので、磁
器素体相互の接触を防ぐことが必要になり、卑
金属ペーストの焼付の効率が悪くなる。また、
焼付炉内に卑金属粉末が漂つて磁器素体の表面
再酸化層に付着し、絶縁劣化を生じる。
(2) In the latter method using base metal paste,
In the method of using base metal paste, if the base metal paste comes into contact with other porcelain bodies, that part will be reduced and the insulation properties will be significantly reduced, so it is necessary to prevent the porcelain bodies from coming into contact with each other. Paste baking efficiency deteriorates. Also,
Base metal powder floats in the firing furnace and adheres to the re-oxidized layer on the surface of the porcelain body, causing insulation deterioration.

そこで、本発明の目的は、量産性を向上させる
ことができると共に特性劣化を少なくすることが
できる表面再酸化型半導体磁器コンデンサの製造
方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a surface reoxidation type semiconductor ceramic capacitor, which can improve mass productivity and reduce characteristic deterioration.

[課題を解決するための手段] 上記目的を達成するための本発明は、円筒型半
導体層と前記半導体層の表面酸化層とから成る円
筒型磁器素体を用意する工程と、前記円筒型磁器
素体の中空部の表面酸化層の少なくとも一部に接
触するように炭素粉末又は炭素粉末含有物を配置
する工程と、前記炭素粉末又は炭素粉末含有物と
前記円筒型磁器素体を加熱し、前記炭素粉末によ
つて前記表面酸化層を還元すること、前記円筒型
磁器素体の外周面の少なくとも一部における前記
表面酸化層の上に非還元性材料から成る第1の電
極層を形成し、且つ前記円筒型磁器素体の前記中
空部の還元された領域を介して前記半導体層に接
続されように非還元性材料から成る第2の電極層
を形成する工程とを備えた表面再酸化型半導体磁
器コンデンサの製造方法に係わるものである。
[Means for Solving the Problems] To achieve the above object, the present invention includes a step of preparing a cylindrical ceramic body consisting of a cylindrical semiconductor layer and a surface oxidation layer of the semiconductor layer; arranging carbon powder or a substance containing carbon powder so as to contact at least a portion of the surface oxidation layer in the hollow part of the element body; heating the carbon powder or substance containing carbon powder and the cylindrical porcelain element body; reducing the surface oxidized layer with the carbon powder; and forming a first electrode layer made of a non-reducible material on the surface oxidized layer on at least a portion of the outer peripheral surface of the cylindrical ceramic body. and forming a second electrode layer made of a non-reducible material so as to be connected to the semiconductor layer through the reduced region of the hollow part of the cylindrical ceramic body. The present invention relates to a method of manufacturing a type semiconductor ceramic capacitor.

[作用] 本発明においては、円筒状磁器素体の中空部は
炭素粉末又はこの含有物(例えばペースト)をこ
こにとじ込める作用を有する。従つて、量産時に
複数の磁器素体の外周面同志が接触しても酸化層
の還元による絶縁低下が生じない。また、卑金属
を還元物質として使用した場合に、卑金属が炉内
を漂つて酸化層に付着することに基づいて生じる
特性劣化に比べ、炭素を還元物質として使用した
場合における上述のような特性劣化は少ない。
[Function] In the present invention, the hollow portion of the cylindrical porcelain body has the function of trapping carbon powder or its inclusions (for example, paste) therein. Therefore, even if the outer circumferential surfaces of a plurality of ceramic bodies come into contact with each other during mass production, there will be no reduction in insulation due to reduction of the oxide layer. Furthermore, compared to the property deterioration that occurs when a base metal is used as a reducing substance due to the base metal drifting in the furnace and adhering to the oxide layer, the above-mentioned property deterioration occurs when carbon is used as a reducing substance. few.

[第1の実施例] 次に、第1図A〜Cを参照して本発明の第1の
実施例に係わる表面再酸化型磁器コンデンサの製
造方法を説明する。
[First Example] Next, a method for manufacturing a surface reoxidation type ceramic capacitor according to a first example of the present invention will be described with reference to FIGS. 1A to 1C.

まず、高純度(99.5%以上)のチタン酸バリウ
ム(BaTiO3)を94.5モル%と酸化ネオジム
(Nd2O3)5モル%と、更に鉱化材として酸化マ
ンガン(MnO)を0.5モル%秤量し、アルミナボ
ールの入つた樹脂ポツトを用いて湿式混合した。
次に、この混合物を脱水及び乾燥した後に、これ
にセルロース形バインダを8重量%と、グリセリ
ンを10重量%と、水を加え、十分に混練し、円筒
状に押し出し成形した。
First, we weighed 94.5 mol% of high purity (99.5% or higher) barium titanate (BaTiO 3 ), 5 mol% of neodymium oxide (Nd 2 O 3 ), and 0.5 mol% of manganese oxide (MnO) as a mineralizing agent. Then, wet mixing was performed using a resin pot containing an alumina ball.
Next, after dehydrating and drying this mixture, 8% by weight of a cellulose type binder, 10% by weight of glycerin, and water were added thereto, thoroughly kneaded, and extruded into a cylindrical shape.

次に、この成形体を大気(酸化性)雰囲気中で
1300℃、2時間焼成することによつて焼結体を
得、これを一度室温まで冷却した後にN290%+
H210%の還元性雰囲気中で1000℃、2時間熱処
理し、更に、大気(酸化性雰囲気)中で900℃、
2時間熱処理(再酸化処理)した。これにより、
第1図Aに示すように半導体層1と表面再酸化層
(誘電体層)2とから成る円筒型磁器素体3が得
られる。
Next, this molded body is placed in an atmospheric (oxidizing) atmosphere.
A sintered body was obtained by firing at 1300℃ for 2 hours, and after cooling it once to room temperature, N 2 90% +
Heat treated at 1000℃ for 2 hours in a reducing atmosphere of 10% H2 , then heated at 900℃ in the air (oxidizing atmosphere).
Heat treatment (reoxidation treatment) was performed for 2 hours. This results in
As shown in FIG. 1A, a cylindrical ceramic body 3 consisting of a semiconductor layer 1 and a surface reoxidation layer (dielectric layer) 2 is obtained.

次に、第1図Bに示すように磁器素体3の中空
部4の表面再酸化層2の上に、炭素粉末と有機バ
インダとから成る炭素を10%含有したペースト層
5を塗布法で形成した。
Next, as shown in FIG. 1B, a paste layer 5 containing 10% carbon made of carbon powder and an organic binder is applied on the surface reoxidation layer 2 of the hollow part 4 of the porcelain body 3 by a coating method. Formed.

次に、多数の磁器素体3をこれ等の外周面が互
いに接触するように加熱炉にまとめて入れて、大
気中で800℃、2時間熱処理することによつて炭
素粉末含有ペーストを熱分解させ、表面再酸化層
2の中の酸素を炭素で奪い、その部分を還元し
た。即ち、表面再酸化層2の一部を還元すること
によつてその部分を半導体層に戻した。なお、再
酸化処理後の炭素粉末の磁器素体3に対する付着
力は極めて弱いので容易に除去される。
Next, the carbon powder-containing paste is thermally decomposed by placing a large number of porcelain bodies 3 into a heating furnace so that their outer peripheral surfaces are in contact with each other and heat-treating them at 800°C for 2 hours in the atmosphere. The oxygen in the surface reoxidized layer 2 was removed by carbon, and that portion was reduced. That is, by reducing a portion of the surface reoxidized layer 2, that portion was returned to a semiconductor layer. Note that the adhesion force of the carbon powder to the ceramic body 3 after the reoxidation treatment is extremely weak, so that it is easily removed.

次に、貴金属(非還元性)電極材料である銀
(Ag)ペーストを塗布して800℃、15分間焼付け
ることによつて、第1図Cに示す第1及び第2の
電極層6,7を形成した。この銀ペーストの焼付
処理は磁器素体をこれ等の外周面が互いに接触す
るように炉に入れた状態で行つた。第1の電極6
は外周面の表面再酸化層2の上に形成され、第2
の電極7は、中空部の半導体層1に接触するよう
に形成されていると共に端面を通つて外周面の一
部に延在するように形成されている。
Next, silver (Ag) paste, which is a noble metal (non-reducible) electrode material, is applied and baked at 800°C for 15 minutes to form the first and second electrode layers 6, shown in FIG. 7 was formed. This silver paste baking treatment was carried out with the porcelain bodies placed in a furnace so that their outer peripheral surfaces were in contact with each other. first electrode 6
is formed on the surface reoxidation layer 2 on the outer peripheral surface, and the second
The electrode 7 is formed so as to be in contact with the semiconductor layer 1 in the hollow portion, and is also formed so as to extend over a part of the outer peripheral surface through the end face.

得られた試料(コンデンサ)200個の電気的特
性を測定し、その平均値を求めたところ、 容量は675nF/cm2、 tanδは2.8%、 絶縁抵抗は1010Ω以上、 直流破壊電圧は1.0kVであつた。
The electrical characteristics of 200 samples (capacitors) obtained were measured and the average values were found; the capacitance was 675nF/cm 2 , tanδ was 2.8%, insulation resistance was 10 10 Ω or more, and DC breakdown voltage was 1.0. It was warm at kV.

比較のために、炭素含有ペーストによる還元処
理工程を設けない他は、本実施例と同一の方法で
磁器コンデンサを形成し、同一の方法で電気的特
性を測定したところ、 容量は350nF/cm2、 tanδは2.1%、 絶縁抵抗は1010Ω以上、 直流破壊電圧は1.2kVであつた。
For comparison, a ceramic capacitor was formed using the same method as in this example, except that the reduction process using the carbon-containing paste was not performed, and the electrical characteristics were measured using the same method. The capacitance was 350 nF/cm 2 , tanδ was 2.1%, insulation resistance was 10 10 Ω or more, and DC breakdown voltage was 1.2 kV.

この比較例と本実施例の容量の対比から明らか
なように、本実施例において炭素による還元作用
が生じていることは明らかである。
As is clear from the comparison of the capacities of this comparative example and this example, it is clear that a reducing action by carbon occurs in this example.

比較のために、第1図Bの炭素含有ペースト層
5の代りに卑金属であるZnのペースト層を設け、
外周面にAgペースト層を設けて焼付けることに
よつて磁器コンデンサを作り、電気的特性を測定
したところ、 容量は680nF/cm2、 tanδは3.5%、 絶縁抵抗は107Ω以上、 直流破壊電圧は0.13kVであつた。
For comparison, a paste layer of Zn, which is a base metal, was provided in place of the carbon-containing paste layer 5 in FIG.
A ceramic capacitor was made by baking an Ag paste layer on the outer surface, and its electrical characteristics were measured. The capacitance was 680nF/cm 2 , tanδ was 3.5%, insulation resistance was 10 7 Ω or more, and DC breakdown. The voltage was 0.13kV.

この比較例と本実施例との絶縁抵抗及び破壊電
圧の対比から明らかなように、炭素を使用するこ
とにより絶縁抵抗及び破壊電圧の低下は極めて小
さい。
As is clear from the comparison of insulation resistance and breakdown voltage between this comparative example and this example, the decrease in insulation resistance and breakdown voltage is extremely small by using carbon.

炭素含有ペーストの炭素の含有量の変化による
特性変化を調べるために、炭素含有ペーストの炭
素の含有率を50%とし、その他は上述の実施例と
同一にして磁器コンデンサを作り、特性を調べた
ところ、 容量は680nF/cm2、 tanδは2.2%、 絶縁抵抗は1010Ω以上、 直流破壊電圧は0.9kVであつた。
In order to investigate changes in characteristics due to changes in the carbon content of the carbon-containing paste, a ceramic capacitor was made with the carbon content of the carbon-containing paste set to 50% and the other conditions were the same as in the above example, and the characteristics were investigated. However, the capacitance was 680nF/cm 2 , tanδ was 2.2%, insulation resistance was more than 10 10 Ω, and DC breakdown voltage was 0.9 kV.

[第2の実施例] 第1の実施例と同一方法で第2図に示す半導体
層1と再酸化層2とから成る磁器素体3を形成
し、この中空部4に炭素粉末5aを充填し、これ
を大気中で800℃、2時間熱処理し、しかる後、
第1の実施例と同様にAg焼付電極から成る第1
及び第2の電極を形成し、その電気的特性を測定
したところ、 容量は683nF/cm2、 tanδは2.0%、 絶縁抵抗は1010Ω以上、 直流破壊電圧は0.9kVであつた。
[Second Example] A ceramic body 3 consisting of a semiconductor layer 1 and a reoxidation layer 2 shown in FIG. 2 is formed by the same method as in the first example, and the hollow part 4 is filled with carbon powder 5a. This was then heat treated at 800℃ for 2 hours in the air, and then
The first electrode is made of Ag baked electrode as in the first embodiment.
When a second electrode was formed and its electrical characteristics were measured, the capacitance was 683 nF/cm 2 , tan δ was 2.0%, insulation resistance was 10 10 Ω or more, and DC breakdown voltage was 0.9 kV.

[変形例] 本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and, for example, the following modifications are possible.

(1) 炭素含有ペースト層5は中空部4の全壁面に
設けずに、一部のみに設けてもよい。
(1) The carbon-containing paste layer 5 may not be provided on the entire wall surface of the hollow portion 4, but may be provided only on a portion thereof.

(2) 第2の電極層7を中空部4の全領域に設けて
もよい。また、第2の電極層7を外周面に導出
しない構成にすることもできる。また、第1の
電極層6を磁器素体3の端面上に延在させるこ
とができる。
(2) The second electrode layer 7 may be provided in the entire area of the hollow portion 4. Further, it is also possible to adopt a configuration in which the second electrode layer 7 is not led out to the outer circumferential surface. Moreover, the first electrode layer 6 can be extended on the end surface of the ceramic body 3.

(3) 銀以外の貴金属(非還元性金属)で電極を形
成することができる。
(3) Electrodes can be formed from noble metals (non-reducible metals) other than silver.

[発明の効果] 上述から明らかなように、本発明は次の効果を
有する。
[Effects of the Invention] As is clear from the above, the present invention has the following effects.

(イ) 磁器素体に中空部を設け、この中空部の酸化
層に炭素又はこれを含有する物質を接触させて
酸化層を還元するので、量産のために複数の磁
器素体の外周面同志が互いに接触したとしても
外周面における酸化層の絶縁低下が生じない。
従つて、特性の良い表面再酸化型磁器コンデン
サの量産が可能になる。
(b) A hollow part is provided in the porcelain element, and carbon or a substance containing carbon is brought into contact with the oxidized layer in this hollow part to reduce the oxidized layer. Even if they come into contact with each other, the insulation of the oxide layer on the outer peripheral surface does not deteriorate.
Therefore, mass production of surface reoxidation type ceramic capacitors with good characteristics becomes possible.

(ロ) 還元物質が卑金属ではなくて炭素であるの
で、所望領域以外に還元物質が付着することに
よる絶縁低下が少ない。
(b) Since the reducing substance is carbon rather than a base metal, there is little deterioration in insulation due to attachment of the reducing substance to areas other than desired areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,B,Cは本発明の第1の実施例の表
面再酸化型磁器コンデンサを工程順に示す断面
図、第2図は本発明の第2の実施例の表面再酸化
型磁器コンデンサの1つの工程を示す断面図であ
る。 1…半導体層、2…酸化層、3…磁器素体、4
…中空部、5…炭素含有ペースト層、6…第1の
電極層、7…第2の電極層。
FIGS. 1A, B, and C are cross-sectional views showing the surface reoxidation type ceramic capacitor according to the first embodiment of the present invention in order of process, and FIG. 2 is a surface reoxidation type ceramic capacitor according to the second embodiment of the present invention. FIG. DESCRIPTION OF SYMBOLS 1...Semiconductor layer, 2...Oxide layer, 3...Porcelain element, 4
... hollow part, 5 ... carbon-containing paste layer, 6 ... first electrode layer, 7 ... second electrode layer.

Claims (1)

【特許請求の範囲】 1 円筒型半導体層と前記半導体層の表面酸化層
とから成る円筒型磁器素体を用意する工程と、 前記円筒型磁器素体の中空部の表面酸化層の少
なくとも一部に接触するように炭素粉末又は炭素
粉末含有物を配置する工程と、 前記炭素粉末又は炭素粉末含有物と前記円筒型
磁器素体を加熱し、前記炭素粉末によつて前記表
面酸化層を還元すること、 前記円筒型磁器素体の外周面の少なくとも一部
における前記表面酸化層の上に非還元性材料から
成る第1の電極層を形成し、且つ前記円筒型磁器
素体の前記中空部の還元された領域を介して前記
半導体層に接続されるように非還元性材料から成
る第2の電極層を形成する工程と を備えた表面再酸化型半導体磁器コンデンサの製
造方法。
[Scope of Claims] 1. A step of preparing a cylindrical ceramic element comprising a cylindrical semiconductor layer and a surface oxidation layer of the semiconductor layer, and at least a portion of the surface oxidation layer in the hollow part of the cylindrical ceramic element. heating the carbon powder or carbon powder-containing material and the cylindrical porcelain body to reduce the surface oxidation layer with the carbon powder; A first electrode layer made of a non-reducing material is formed on the surface oxidation layer on at least a portion of the outer peripheral surface of the cylindrical porcelain body, and forming a second electrode layer made of a non-reducible material so as to be connected to the semiconductor layer through the reduced region.
JP7639990A 1990-03-26 1990-03-26 Manufacture of surface reoxidized type semiconductor porcelain capacitor Granted JPH03276610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7639990A JPH03276610A (en) 1990-03-26 1990-03-26 Manufacture of surface reoxidized type semiconductor porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7639990A JPH03276610A (en) 1990-03-26 1990-03-26 Manufacture of surface reoxidized type semiconductor porcelain capacitor

Publications (2)

Publication Number Publication Date
JPH03276610A JPH03276610A (en) 1991-12-06
JPH0532889B2 true JPH0532889B2 (en) 1993-05-18

Family

ID=13604211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7639990A Granted JPH03276610A (en) 1990-03-26 1990-03-26 Manufacture of surface reoxidized type semiconductor porcelain capacitor

Country Status (1)

Country Link
JP (1) JPH03276610A (en)

Also Published As

Publication number Publication date
JPH03276610A (en) 1991-12-06

Similar Documents

Publication Publication Date Title
US4533931A (en) Reduction reoxidation type semiconductor ceramic condenser
JPH0524646B2 (en)
JPH0532889B2 (en)
JPH0532890B2 (en)
JPH07123095B2 (en) Method for manufacturing surface reoxidation type semiconductor ceramic capacitor
JP2971689B2 (en) Grain boundary type semiconductor porcelain capacitor
JPH0815128B2 (en) Reduction-reoxidation type semiconductor ceramic capacitor and manufacturing method thereof
JPH07123096B2 (en) Method for manufacturing surface reoxidation type semiconductor ceramic capacitor
JP2019067827A (en) Laminate electronic component
JPH043445Y2 (en)
JPS6231108A (en) Ceramic capacitor
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JPH03280411A (en) Manufacture of surface reoxidized type semiconductor ceramic capacitor
JPS6032752Y2 (en) composite parts
JP2000226257A (en) Production of grain boundary insulation-type laminated semiconductor capacitor
JP3132300B2 (en) Grain boundary insulated multilayer ceramic parts
JP2605332B2 (en) Method for forming grain boundary layer of semiconductor porcelain
JP2697112B2 (en) Method for manufacturing reduction-reoxidation type semiconductor porcelain element
CN1046635A (en) Semiconductor ceramic capacitor
JP2687138B2 (en) Grain boundary insulation method for strontium titanate-based semiconductor ceramics
JPH0828306B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JPH01102912A (en) Reduction-reoxidation type semiconductor cylindrical capacitor
JPH0563089B2 (en)
JPH07267729A (en) Production of grain boundary insulated semiconductor porcelain