JPH03280411A - Manufacture of surface reoxidized type semiconductor ceramic capacitor - Google Patents

Manufacture of surface reoxidized type semiconductor ceramic capacitor

Info

Publication number
JPH03280411A
JPH03280411A JP8163490A JP8163490A JPH03280411A JP H03280411 A JPH03280411 A JP H03280411A JP 8163490 A JP8163490 A JP 8163490A JP 8163490 A JP8163490 A JP 8163490A JP H03280411 A JPH03280411 A JP H03280411A
Authority
JP
Japan
Prior art keywords
oxygen
semiconductor ceramic
partial pressure
heat treatment
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8163490A
Other languages
Japanese (ja)
Inventor
Katsuo Koizumi
勝男 小泉
Takuji Aoyanagi
青柳 卓司
Kiyoshi Tanaka
喜佳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8163490A priority Critical patent/JPH03280411A/en
Publication of JPH03280411A publication Critical patent/JPH03280411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reliability of the title capacitor having excellent practical electric insulation resistance value and dielectric breakdown voltage by a method wherein the reoxidizing heat treatment is conducted on a semiconductor ceramic in the atmosphere of partial pressure of oxygen higher than that of atmospheric air. CONSTITUTION:The raw material of a semiconductor ceramic is mainly composed of barium titanate (BaTiO3) and one or two or more kinds selected from titanate oxide (TiO2), neodymium oxide (Nd2C3), lanthanium oxide (La2O3), manganese oxide (MnO2) and the like are added to the above-mentioned material. The adding quantity should be 0.1 to 10 mol or thereabout in total quantity against barium titanate of 100. The semiconductor ceramic is formed using the semiconductor ceramic manufacturing method which is conventionally used, and the partial pressure of oxygen when a reoxidation heat treatment is conducted on the semiconductor ceramic should be oxygen gas ratio of 25 to 100vol.% in the oxydizing atmosphere consisting of oxygen gas and nitrogen gas, namely, in the partial pressure of oxygen of about 0.25 to 1.0 which is higher than the partial pressure of oxygen in atmospheric air, and the heat treatment temperature in the partial pressure of oxygen should be 900 to 1050 deg.C or thereabout.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面再酸化型半導体磁器コンデンサの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a surface reoxidation type semiconductor ceramic capacitor.

(従来の技術) 従来、この種の表面再酸化型半導体磁器コンデンサの製
造方法としては、例えばチタン酸バリウム(BaTiO
2)を主成分とし、これに酸化ネオジウム、酸化ランタ
ン等を少量添加して成形された成形体を大気中で高温度
で焼成した後、中性雰囲気中或いは還元性雰囲気中で熱
処理して半導体化した半導体磁器を再び大気中で温度9
00〜1100℃で再酸化熱処理する方法が知られてい
る。
(Prior Art) Conventionally, as a manufacturing method of this type of surface reoxidation type semiconductor ceramic capacitor, barium titanate (BaTiO
2) as the main component, with a small amount of neodymium oxide, lanthanum oxide, etc. added to the molded body, which is then fired at high temperature in the air and then heat-treated in a neutral or reducing atmosphere to form a semiconductor. The converted semiconductor porcelain is heated again in the atmosphere at a temperature of 9.
A method of performing reoxidation heat treatment at 00 to 1100°C is known.

このようにして製造された表面再酸化型半導体磁器コン
デンサは表面に誘電体層が形成されており、比較的小型
で面積容量が大きなものが得られるので、電子回路に広
く利用されている。
Surface reoxidation type semiconductor ceramic capacitors manufactured in this manner have a dielectric layer formed on the surface, and are relatively compact and have a large area capacitance, and are therefore widely used in electronic circuits.

(発明が解決しようとする課題) しかしながら、前記製造方法で再酸化熱処理により表面
に形成される誘電体層は半導体磁器の表面層部分への大
気中からの酸素拡散速度および半導体磁器内部での酸素
拡散速度に依存するため、例えば、半導体磁器への再酸
化熱処理温度を1100℃のような高温で行うと半導体
磁器内部での酸素拡散か進行するので、得られる磁器コ
ンデンサ表面の誘電体層は厚く形成されるから電気絶縁
抵抗値、絶縁破壊電圧は向上するが面積容量は小さくな
るという問題があり、また半導体磁器への再酸化熱処理
温度を900℃のような低温で行うと半導体磁器内部で
の酸素拡散が抑制されるばかりではなく磁器表面での酸
素拡散も抑制されるので、得られる磁器コンデンサ表面
の誘電体層は薄く不均一な厚さに形成されるから面積容
積は大きくなるが、電気絶縁抵抗値、絶縁破壊電圧は低
下し、十分な面積容量、電気絶縁抵抗値、絶縁破壊電圧
を有する磁器コンデンサが得られないという問題がある
(Problem to be Solved by the Invention) However, in the above manufacturing method, the dielectric layer formed on the surface by reoxidation heat treatment has problems with the rate of oxygen diffusion from the atmosphere into the surface layer portion of the semiconductor ceramic and the rate of oxygen diffusion inside the semiconductor ceramic. Because it depends on the diffusion rate, for example, if the reoxidation heat treatment temperature for semiconductor ceramics is performed at a high temperature such as 1100°C, oxygen diffusion will proceed inside the semiconductor ceramics, so the dielectric layer on the surface of the resulting ceramic capacitor will be thick. Although the electrical insulation resistance value and dielectric breakdown voltage are improved due to this formation, there is a problem that the area capacitance is reduced.Also, if the reoxidation heat treatment temperature for semiconductor porcelain is performed at a low temperature such as 900°C, the inside of the semiconductor porcelain Not only oxygen diffusion is suppressed, but also oxygen diffusion on the ceramic surface is suppressed, so the resulting dielectric layer on the surface of the ceramic capacitor is formed with a thin and non-uniform thickness, resulting in a large area and volume. There is a problem in that the insulation resistance value and dielectric breakdown voltage decrease, and a ceramic capacitor having sufficient areal capacitance, electrical insulation resistance value, and dielectric breakdown voltage cannot be obtained.

本発明は前記問題点を解消し、面積容量が同じ容量の場
合、電気絶縁抵抗値、絶縁破壊電圧に優れ、コンデンサ
の実用性としての信頼性が高い表面再酸化型半導体磁器
コンデンサを製造する方法を提供することを目的とする
The present invention solves the above-mentioned problems and is a method for manufacturing a surface reoxidation type semiconductor ceramic capacitor that has excellent electrical insulation resistance and dielectric breakdown voltage when the areal capacitance is the same, and is highly reliable for practical use as a capacitor. The purpose is to provide

(課題を解決するための手段) 本発明の表面再酸化型半導体磁器コンデンサの製造方法
は、半導体磁器に再酸化熱処理を施して表面再酸化型半
導体磁器コンデンサを製造する方法において、該半導体
磁器への再酸化熱処理を大気中の酸素分圧よりも高い酸
素分圧中で行うことを特徴とする。
(Means for Solving the Problems) A method for manufacturing a surface reoxidation type semiconductor ceramic capacitor of the present invention is a method for manufacturing a surface reoxidation type semiconductor ceramic capacitor by subjecting semiconductor ceramic to reoxidation heat treatment. The reoxidation heat treatment is carried out at an oxygen partial pressure higher than the oxygen partial pressure in the atmosphere.

本発明で用いる半導体磁器の原料としては、例えばチタ
ン酸バリウム(BaTi0= )を主成分とし、これに
酸化チタン(Ti02) 、酸化ネオジウム(Nd20
3)、酸化ランタン(La203) 、酸化マンガン(
MnO□)等の酸化物を1種類或いは2種類以上添加し
たものが挙げられる。これら酸化物の添加量としては、
チタン酸バリウム100モルに対し一般に総量でα、1
〜10モル程度とする。
The raw material for the semiconductor porcelain used in the present invention includes, for example, barium titanate (BaTi0=) as the main component, and titanium oxide (Ti02) and neodymium oxide (Nd20).
3), lanthanum oxide (La203), manganese oxide (
Examples include those to which one or more types of oxides such as MnO□) are added. The amount of these oxides added is as follows:
Generally, the total amount is α, 1 per 100 moles of barium titanate.
The amount should be about 10 moles.

そして前記半導体磁器の原料から半導体磁器を作成する
には従来の半導体磁器製造方法で行えばよい。
In order to create semiconductor porcelain from the raw material for semiconductor porcelain, a conventional semiconductor porcelain manufacturing method may be used.

また、半導体磁器への再酸化熱処理する際の酸素分圧と
しては、例えば酸素ガスと窒素ガスから成る酸化性雰囲
気中の酸素ガス比率か25〜100容量96程度、即ち
酸素分圧か大気中の酸素分圧(0,20)よりも高い0
.25〜1.0程度とし、該酸素分圧中での熱処理温度
は900〜1050℃程度とする。
In addition, the oxygen partial pressure when performing reoxidation heat treatment on semiconductor porcelain is, for example, the oxygen gas ratio in an oxidizing atmosphere consisting of oxygen gas and nitrogen gas, or about 25 to 100 to 96, that is, the oxygen partial pressure in the atmosphere. 0 higher than oxygen partial pressure (0,20)
.. 25 to about 1.0, and the heat treatment temperature in the oxygen partial pressure is about 900 to 1050°C.

(実施例) 次に本発明の具体的実施例を比較例と共に説明する。(Example) Next, specific examples of the present invention will be described together with comparative examples.

先ず、チタン酸バリウム(BaTi03) 100モル
に、酸化チタン(Ti02) 0.2モル、酸化ネオジ
ウム(Nd203) 1モル、酸化ランタン(La20
3)0.5モル、酸化マンガン(Mn02) 0.1モ
ルを夫々添加した半導体磁器の原料粉末を用意した。
First, 100 moles of barium titanate (BaTi03), 0.2 moles of titanium oxide (Ti02), 1 mole of neodymium oxide (Nd203), and lanthanum oxide (La20) were added.
3) Semiconductor porcelain raw material powders to which 0.5 mol and 0.1 mol of manganese oxide (Mn02) were added were prepared.

次にこの原料粉末をウレタン被覆玉石を用いたボールミ
ルによって20時時間式混合した。この混合物を脱水し
、温度150℃で3時間乾燥した後、これにバインダー
としてメチルセルロースを4重量部と、グリセリンを5
重量部加え、更に水を適量加えて混練した。混練物を成
形金型を用いて外径1.8關、内径1.0龍、長さ4.
5關の円筒状成形体に成形した。
Next, this raw material powder was mixed for 20 hours using a ball mill using urethane-coated cobblestones. After dehydrating this mixture and drying it at a temperature of 150°C for 3 hours, 4 parts by weight of methyl cellulose and 5 parts by weight of glycerin were added to this as a binder.
Parts by weight were added, and an appropriate amount of water was further added and kneaded. The kneaded material was molded using a mold with an outer diameter of 1.8 mm, an inner diameter of 1.0 mm, and a length of 4 mm.
It was molded into a 5-inch cylindrical molded body.

成形された成形体を大気中で温度1350℃で2時間焼
成した後、水素ガス3容量%と窒素ガス97容量%の還
元性雰囲気中で温度1100℃で2時間熱処理を施して
半導体磁器を作成した。
The molded body was fired in the air at a temperature of 1,350°C for 2 hours, and then heat treated at a temperature of 1,100°C for 2 hours in a reducing atmosphere containing 3% by volume of hydrogen gas and 97% by volume of nitrogen gas to create semiconductor porcelain. did.

続いて半導体磁器に酸素分圧(酸素ガスと窒素ガスの合
計量100容量中の酸素ガス容量比)を0.20 (大
気) 、0.25.0,30.0.40..0.60゜
0.80.1.00に夫々変え、かつ熱処理温度を96
0℃、985℃、1000℃、1015℃に夫々変えた
各条件下で2時間の再酸化熱処理を施して表面再酸化型
半導体磁器コンデンサを作成した。
Subsequently, the semiconductor porcelain was subjected to an oxygen partial pressure (oxygen gas volume ratio in 100 volumes of oxygen gas and nitrogen gas) of 0.20 (atmosphere), 0.25.0, 30.0.40. .. 0.60°, 0.80, and 1.00, respectively, and the heat treatment temperature was changed to 96°C.
Surface reoxidation type semiconductor ceramic capacitors were fabricated by performing reoxidation heat treatment for 2 hours under various conditions of 0°C, 985°C, 1000°C, and 1015°C.

作成された表面再酸化型半導体磁器コンデンサの円筒状
の外面および内面に銀ペーストを塗布して、温度800
℃で焼付けて電極を形成した。
Silver paste was applied to the cylindrical outer and inner surfaces of the prepared surface reoxidation type semiconductor ceramic capacitor, and the temperature was raised to 800°C.
The electrodes were formed by baking at ℃.

このようにして作成された各表面再酸化型半導体磁器コ
ンデンサ(以下試料という)の夫々について面積容量、
電気絶縁抵抗値、絶縁破壊強度を調べ、その結果を表に
示した。
For each surface reoxidation type semiconductor ceramic capacitor (hereinafter referred to as a sample) created in this way, the areal capacitance,
The electrical insulation resistance value and dielectric breakdown strength were investigated, and the results are shown in the table.

尚、面積容量はデジタルLCRメーターにて周波数I 
 KHz、電圧1Vで測定した静電容量(C)と試料の
電極面積により求めた。
In addition, the areal capacity is determined by measuring the frequency I using a digital LCR meter.
It was determined from the capacitance (C) measured at KHz and a voltage of 1 V and the electrode area of the sample.

また、電気絶縁抵抗値は試料に直流電圧50Vを30秒
間印加した後の試料の測定値とした。
Further, the electrical insulation resistance value was the value measured for the sample after applying a DC voltage of 50 V to the sample for 30 seconds.

また、絶縁破壊電圧は試料に印加する直流電圧を増加さ
せながら試料に流れる電流が111+Aとなった時の印
加された電圧値とした。
Further, the dielectric breakdown voltage was defined as the voltage value applied when the current flowing through the sample reached 111+A while increasing the DC voltage applied to the sample.

表 表から明らかなように、半導体磁器の再酸化熱処理を大
気中の酸素分圧より高い酸素分圧中で行った本発明の実
施例1,2.3,4,5゜6は、再酸化熱処理を大気中
で行った比較例1に比してか面積容量が同じ容量の場合
、電気絶縁抵抗値および絶縁破壊電圧が向上したことが
確認された。
As is clear from the table, Examples 1, 2. It was confirmed that when the area capacity was the same as in Comparative Example 1 in which the heat treatment was performed in the air, the electrical insulation resistance value and dielectric breakdown voltage were improved.

また、酸素分圧を高くすることにより再酸化熱処理温度
が同じ場合は、電気絶縁抵抗値および絶縁抵抗電圧が高
い磁器コンデンサが得られることが分かる。また、酸素
分圧が高いほど面積容量が同じ容量の場合、電気絶縁抵
抗値および絶縁破壊電圧が向上することが分かる。
Furthermore, it can be seen that by increasing the oxygen partial pressure, a ceramic capacitor with a high electrical insulation resistance value and high insulation resistance voltage can be obtained when the reoxidation heat treatment temperature is the same. Furthermore, it can be seen that the higher the oxygen partial pressure is, the higher the electrical insulation resistance value and dielectric breakdown voltage are when the areal capacitance is the same.

従って、半導体磁器に再酸化熱処理を施す際、酸素分圧
と、熱処理温度を調整することにより面積容量の異なる
用途に応じた表面再酸化型半導体磁器コンデンサを製造
することが出来る。
Therefore, when subjecting semiconductor ceramics to reoxidation heat treatment, by adjusting the oxygen partial pressure and heat treatment temperature, it is possible to manufacture surface reoxidation type semiconductor ceramic capacitors with different areal capacitances in accordance with applications.

尚、前記再酸化熱処理の際の雰囲気は酸素ガスと窒素ガ
スの混合ガスに限定されるものではなく、酸素ガスに混
合する窒素ガスの一部或いは全部に代えてHe%Ar、
Ne、 Kr、 Xe、 Rn等の不活性ガスのうち1
種または2種以上を用いることが出来る。
Note that the atmosphere during the reoxidation heat treatment is not limited to a mixed gas of oxygen gas and nitrogen gas, and instead of some or all of the nitrogen gas mixed with oxygen gas, He%Ar,
One of the inert gases such as Ne, Kr, Xe, Rn, etc.
A species or two or more species can be used.

(発明の効果) このように本発明によるときは、半導体磁器への再酸化
熱処理を大気中の酸素分圧よりも高い酸素分圧中で行う
ようにしたので、再酸化熱処理の酸素分圧を高くするこ
とにより、熱処理温度を低くすることが出来るから、半
導体磁器内部での酸素拡散を抑制して半導体磁器表面に
誘電体層を薄く均一に形成出来て、面積容量が同じ容量
の場合、電気絶縁抵抗値および絶縁破壊電圧を向上させ
ることか出来るため、コンデンサの実用性としての電気
絶縁抵抗値および絶縁破壊電圧に優れた信頼性の高い表
面再酸化型半導体磁器コンデンサを容易に製造すること
が出来る等の効果を特する 特許 出 願 人  太陽誘電株式会社代     理
     人   北   村   欣   −。
(Effects of the Invention) As described above, according to the present invention, since the reoxidation heat treatment on semiconductor ceramics is performed in an oxygen partial pressure higher than that of the atmosphere, the oxygen partial pressure of the reoxidation heat treatment can be reduced. By increasing the heat treatment temperature, the heat treatment temperature can be lowered, suppressing oxygen diffusion inside the semiconductor porcelain and forming a thin and uniform dielectric layer on the surface of the semiconductor porcelain.If the areal capacitance is the same, the electric Since the insulation resistance value and dielectric breakdown voltage can be improved, it is possible to easily manufacture highly reliable surface reoxidation type semiconductor ceramic capacitors with excellent electrical insulation resistance value and dielectric breakdown voltage for practical capacitors. Applicant: Taiyo Yuden Co., Ltd. Agent: Kin Kitamura −.

外3名3 other people

Claims (1)

【特許請求の範囲】[Claims] 半導体磁器に再酸化熱処理を施して表面再酸化型半導体
磁器コンデンサを製造する方法において、該半導体磁器
への再酸化熱処理を大気中の酸素分圧よりも高い酸素分
圧中で行うことを特徴とする表面再酸化型半導体磁器コ
ンデンサの製造方法。
A method for manufacturing a surface reoxidation type semiconductor ceramic capacitor by subjecting semiconductor porcelain to reoxidation heat treatment, characterized in that the reoxidation heat treatment to the semiconductor porcelain is performed in an oxygen partial pressure higher than the oxygen partial pressure in the atmosphere. A method for manufacturing a surface reoxidation type semiconductor ceramic capacitor.
JP8163490A 1990-03-29 1990-03-29 Manufacture of surface reoxidized type semiconductor ceramic capacitor Pending JPH03280411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8163490A JPH03280411A (en) 1990-03-29 1990-03-29 Manufacture of surface reoxidized type semiconductor ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8163490A JPH03280411A (en) 1990-03-29 1990-03-29 Manufacture of surface reoxidized type semiconductor ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH03280411A true JPH03280411A (en) 1991-12-11

Family

ID=13751770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8163490A Pending JPH03280411A (en) 1990-03-29 1990-03-29 Manufacture of surface reoxidized type semiconductor ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH03280411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008929B4 (en) * 1999-03-05 2008-05-08 Murata Mfg. Co., Ltd., Nagaokakyo Semiconductor ceramic monolithic electronic element
CN101863667A (en) * 2001-06-13 2010-10-20 精工爱普生株式会社 Ceramics and production method therefor, and ferroelectric capacitor, semiconductor device, other elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008929B4 (en) * 1999-03-05 2008-05-08 Murata Mfg. Co., Ltd., Nagaokakyo Semiconductor ceramic monolithic electronic element
CN101863667A (en) * 2001-06-13 2010-10-20 精工爱普生株式会社 Ceramics and production method therefor, and ferroelectric capacitor, semiconductor device, other elements

Similar Documents

Publication Publication Date Title
JPH04218207A (en) Dielectric porcelain composition
JPH0524646B2 (en)
JP3419713B2 (en) Manufacturing method of multilayer ceramic chip capacitor
JPH0684608A (en) Ceramic element
JPH03280411A (en) Manufacture of surface reoxidized type semiconductor ceramic capacitor
JPS606535B2 (en) porcelain composition
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPS6249976B2 (en)
JPS6128209B2 (en)
JPH0472368B2 (en)
JPS58209807A (en) Dielectric porcelain composition
JPH06102573B2 (en) Composition for reduction / reoxidation type semiconductor ceramic capacitor
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JPH05174626A (en) Reduction-resistant dielectric porcelain composition
JPH0514409B2 (en)
JPH0828306B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JPS6328493B2 (en)
JPH07240342A (en) Capacitor
JPS6126207B2 (en)
JPS584448B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
JPH0472367B2 (en)
JPH0563089B2 (en)
JPH0472369B2 (en)