JP2697112B2 - Method for manufacturing reduction-reoxidation type semiconductor porcelain element - Google Patents

Method for manufacturing reduction-reoxidation type semiconductor porcelain element

Info

Publication number
JP2697112B2
JP2697112B2 JP1088848A JP8884889A JP2697112B2 JP 2697112 B2 JP2697112 B2 JP 2697112B2 JP 1088848 A JP1088848 A JP 1088848A JP 8884889 A JP8884889 A JP 8884889A JP 2697112 B2 JP2697112 B2 JP 2697112B2
Authority
JP
Japan
Prior art keywords
substance
semiconductor
main component
conversion
oxygen diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1088848A
Other languages
Japanese (ja)
Other versions
JPH02267909A (en
Inventor
慶一 野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1088848A priority Critical patent/JP2697112B2/en
Publication of JPH02267909A publication Critical patent/JPH02267909A/en
Application granted granted Critical
Publication of JP2697112B2 publication Critical patent/JP2697112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気回路および電子回路に用いられる還元再
酸化型半導体磁器素子の製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a reduced re-oxidation type semiconductor ceramic element used for an electric circuit and an electronic circuit.

従来の技術 従来、還元再酸化型半導体磁器素子としては、例えば
円板形半導体磁器の表面に高抵抗の再酸化層を形成した
り、円板形半導体磁器の粒界に高抵抗の再酸化層を形成
したりして誘電体とし、対向する表面に電極を形成して
実用化されている。この種の還元再酸化型半導体磁器素
子は、比較的小型でありながら大きな静電容量が得ら
れ、無極性で、耐熱性および周波数特性が良好で、漏れ
電流が小さく、比較的安価であるなどの利点を有し、広
く一般に使用されている。
2. Description of the Related Art Conventionally, as a reduction-reoxidation type semiconductor porcelain element, for example, a high-resistance re-oxidation layer is formed on the surface of a disk-shaped semiconductor porcelain, or a high-resistance re-oxidation layer is formed on a grain boundary of the disk-shaped semiconductor porcelain. Is formed as a dielectric material, and electrodes are formed on opposing surfaces, and are in practical use. This type of reduced-reoxidation type semiconductor porcelain element has a relatively small size, provides a large capacitance, is non-polar, has good heat resistance and frequency characteristics, has low leakage current, and is relatively inexpensive. And is widely and generally used.

発明が解決しようとする課題 最近、電子機器に使用される電子部品が小型化,チッ
プ化されつつある傾向にあるが、前記の還元再酸化型半
導体磁器素子の単位面積当たりの静電容量はたかだか30
0(nF/cm2)程度であり、1μF前後の大静電容量を得
ようとすると形状が大きくなってしまうという問題点が
ある。この問題点を解決するために、円板形の還元再酸
化型半導体磁器の一方の表面にオーミック性電極を形成
し、反対側の表面に非オーミック性電極を形成したもの
が提案されている。このような構造の還元再酸化型半導
体磁器素子は、円板形の還元再酸化型半導体磁器の両方
の表面に非オーミック性の電極を形成した構造の素子の
静電容量に比べ1.5〜2.0倍にまで大きくすることができ
るが、この構造の素子を製造するためには、磁器を還元
焼成し、再酸化した後、半導体磁器の表面に形成された
高抵抗の酸化層を一方の表面だけ除去して半導体部分を
露出させる必要がある。この高抵抗の酸化層を除去する
手段としては、ラップ研磨,サンドブラスト,レーザー
加工などがあるが、いずれにしても量産性に欠け、実用
化にまで至っていない。また、円板形の還元再酸化型半
導体材料を成形する際に、あらかじめ一方の表面に凸部
を設けておき、還元,再酸化した後、その凸部を機械的
に除去して半導体部分を露出させる方法が提案されてい
るが、除去すべき高抵抗の酸化層は30〜100μm程度あ
り、機械的に除去する方法、例えばサンドペーパー,ヤ
スリ,ラップ研磨,サンドブラスト,レーザー加工など
では量産性に欠け、実用できないという問題があった。
Problems to be Solved by the Invention In recent years, electronic components used in electronic devices tend to be miniaturized and made into chips, but the capacitance per unit area of the above-mentioned reduced re-oxidation type semiconductor porcelain element is at most as small as possible. 30
It is about 0 (nF / cm 2 ), and there is a problem that the shape becomes large when trying to obtain a large capacitance of about 1 μF. In order to solve this problem, a disk-shaped reduction / reoxidation type semiconductor ceramic in which an ohmic electrode is formed on one surface and a non-ohmic electrode is formed on the opposite surface has been proposed. The reduction-reoxidation type semiconductor porcelain element having such a structure is 1.5 to 2.0 times the capacitance of the element having a non-ohmic electrode formed on both surfaces of the disk-shaped reduction-reoxidation type semiconductor porcelain. However, in order to manufacture an element with this structure, the porcelain is reduced and fired and re-oxidized, and then the high-resistance oxide layer formed on the surface of the semiconductor porcelain is removed on only one surface. To expose the semiconductor portion. Means for removing the high-resistance oxide layer include lapping, sand blasting, and laser processing, but in any case, lacks mass productivity and has not been put to practical use. Also, when molding a disc-shaped reduced reoxidation type semiconductor material, a convex portion is provided on one surface in advance, and after reducing and reoxidizing, the convex portion is mechanically removed to remove the semiconductor portion. Although a method of exposing is proposed, a high-resistance oxide layer to be removed has a thickness of about 30 to 100 μm, and a method of mechanical removal, such as sand paper, file, lap polishing, sand blasting, laser processing, etc., is not suitable for mass production. There was a problem that it could not be practically used.

本発明はこのような前記の問題を解決するもので、磁
器を還元焼成し、再酸化した後、半導体磁器の表面に形
成された高抵抗の酸化層を除去するのに機械的な方法に
よらずに酸化層を除去することにより、容易に多量生産
できる方法を提供することを目的とするものである。
The present invention solves the above-described problem. After reducing and firing the porcelain and re-oxidizing the porcelain, a mechanical method is used to remove the high-resistance oxide layer formed on the surface of the semiconductor porcelain. It is an object of the present invention to provide a method capable of easily producing a large amount by removing an oxide layer without removing the oxide layer.

課題を解決するための手段 この問題点を解決するために本発明では、還元再酸化
型半導体磁器材料を主成分とし、これを成形,脱バイン
ダー、還元焼成した後、前記主成分中の半導体化促進物
質の含有量よりもその主成分の半導体化を促進する物質
を多く含む物質(酸素拡散遅延物質)中に、焼成体の一
方の表面が埋まるようにして再酸化するようにしたもの
である。
Means for Solving the Problems In order to solve this problem, according to the present invention, a reduced-reoxidation type semiconductor ceramic material is used as a main component, which is molded, debindered, reduced and fired, and then converted into a semiconductor in the main component. One of the surfaces of the fired body is reoxidized so that one surface of the fired body is buried in a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the promotion substance. .

作用 このようにすることにより、前記主成分中の半導体化
促進物質の含有量よりも前記主成分の半導体化を促進す
る物質を多く含む物質(酸素拡散遅延物質)中では、含
有量の多い半導体化促進物質のために酸素の拡散が前記
主成分よりも遅くなるため、このような物質に接してい
る還元再酸化型半導体磁器の表面までは酸素が拡散しに
くく、高抵抗層が形成されにくい。従って、前記主成分
中の半導体化促進物質の含有量よりもその主成分の半導
体化を促進する物質を多く含む物質(酸素拡散遅延物
質)に接している表面では高抵抗層がなく、その反対の
表面にのみ高抵抗層が形成されることになり、素子の表
面の両方に高抵抗の酸化層がある場合に比べ静電容量が
著しく増大することとなる。また、前記主成分中の半導
体化促進物質の含有量よりもその主成分の半導体化を促
進する物質を多く含む物質(酸素拡散遅延物質)の粒子
径が100μm以上と大きい場合、焼成体との接触点の数
が少なく、前記主成分中の半導体化促進物質の含有量よ
りもその主成分の半導体化を促進する物質を多く含む物
質(酸素拡散遅延物質)と焼成体を接触させたままで焼
成しても両者は容易に分離することができる。
In this way, a semiconductor (oxygen diffusion retardant) containing a larger amount of the substance that promotes the conversion of the main component into a semiconductor than the content of the semiconductor conversion promoting substance in the main component has a higher content. Since diffusion of oxygen is slower than that of the main component due to the chemical substance, oxygen is hardly diffused up to the surface of the reduced reoxidation type semiconductor porcelain in contact with such a substance, and a high resistance layer is hardly formed. . Therefore, there is no high-resistance layer on the surface in contact with a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component. A high resistance layer is formed only on the surface of the element, and the capacitance is significantly increased as compared with a case where a high resistance oxide layer is present on both surfaces of the element. Further, when the particle diameter of a substance (oxygen diffusion retardant) containing a large amount of a substance that promotes semiconductivity of the main component is greater than 100 μm or more than the content of the semiconductivity promoting substance in the main component, the content of the substance may be reduced. Baking while keeping the fired body in contact with a substance (oxygen diffusion retarding substance) having a small number of contact points and containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component Even so, the two can be easily separated.

また、酸素拡散遅延物質の粒子径が100μm未満と比
較的小さい場合、酸素が直接焼結体の表面に触れにくく
なり、高抵抗層が形成され難くなる。
If the particle diameter of the oxygen diffusion retarding substance is relatively small, less than 100 μm, it is difficult for oxygen to directly contact the surface of the sintered body, and it is difficult to form a high resistance layer.

また、電極の種類としては非オーミック性電極でもオ
ーミック性電極でも同様の効果が得られるが、オーミッ
ク性電極の方がより良い特性が得られる。また、焼結体
の一方の表面が、前記主成分中の半導体化促進物質の含
有量よりもその主成分の半導体化を促進する物質を多く
含む物質(酸素拡散遅延物質)に埋まるようにして焼成
した面に、オーミック性の電極を形成することにより、
素子の半導体部分とオーミック性電極とが直接接触する
ため、電極界面にバリヤーが形成されないので、誘電率
の低下といった特性の劣化がなくなる。また、焼結体の
一方の表面が、前記主成分中の半導体化促進物質の含有
量よりもその主成分の半導体化を促進する物質を多く含
む物質(酸素拡散遅延物質)に埋まるようにして焼成し
た面の反対の面は誘電体層が露出しているため、オーミ
ック性電極でも非オーミック性電極でも同様の効果が得
られるが、オーミック性電極の場合は誘電率の低下とい
った特性の劣化がなく、非オーミック性電極の場合は誘
電率の低下はあるが、電極界面に形成されるバリヤーに
よって絶縁耐圧が向上するといった特性の改善が可能と
なる。
The same effect can be obtained by using a non-ohmic electrode or an ohmic electrode as the type of electrode, but the ohmic electrode provides better characteristics. Also, one surface of the sintered body is buried in a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component. By forming an ohmic electrode on the fired surface,
Since the semiconductor portion of the element and the ohmic electrode are in direct contact with each other, no barrier is formed at the electrode interface. Also, one surface of the sintered body is buried in a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component. Since the dielectric layer is exposed on the surface opposite to the fired surface, the same effect can be obtained with an ohmic electrode or a non-ohmic electrode.However, in the case of an ohmic electrode, deterioration of characteristics such as a decrease in dielectric constant is caused. In the case of a non-ohmic electrode, there is a decrease in the dielectric constant, but it is possible to improve characteristics such as an increase in dielectric strength with a barrier formed at the electrode interface.

実施例 以下に実施例を挙げて本発明を具体的に説明する。Examples Hereinafter, the present invention will be described specifically with reference to examples.

(実施例1) まず、SrTiO3(99.5mol%),Nb2O5(0.2mol%),CuO
(0.3mol%)になるように秤量し、ボールミルなどで20
Hr湿式混合し、乾燥した後、ポリビニルアルコールなど
の有機バインダーを10wt%加えて造粒し、乾式プレスで
10φ×1t(mm),プレス圧力1t/cm2で円板状に成形し、
空気中で1200℃,2Hrで焼成(脱バインダー)した後、
N2:H2=9:1の還元性雰囲気中で1350℃,4Hrで焼成する。
次に、酸素拡散遅延物質[例えば、SrTiO3(99.2mol
%)とNb2O5(0.8mol%)の混合粉末]を下記の第1表
に示すように組成と粒子径を種々変えて粉末状にし、磁
器製のサヤに敷きつめ、その上に焼成体の円板の一方の
面を下にし、その面が例えばSrTiO3(99.2mol%)とNb2
O5(0.8mol%)の混合粉末に完全に埋まるようにして一
枚ずつ並べ、空気中で1010℃,8Hrで熱処理して再酸化を
行う。次に、対向する円板の表面にAgなどの電極ペース
トをスクリーン印刷などの方法で塗布し、空気中で600
℃,10minで焼成して電極を形成し、リード線を半田付け
などの方法で取付け、外装樹脂を塗布する。このように
して得られた素子の特性を下記の第1表に併せて示す。
(Example 1) First, SrTiO 3 (99.5 mol%), Nb 2 O 5 (0.2 mol%), CuO
(0.3 mol%), and weigh with a ball mill etc.
After wet mixing with Hr and drying, 10 wt% of organic binder such as polyvinyl alcohol is added and granulated.
Formed into a disc at 10φ × 1t (mm), press pressure 1t / cm 2 ,
After firing (removing binder) at 1200 ℃, 2Hr in air,
Calcination is performed at 1350 ° C. and 4 hours in a reducing atmosphere of N 2 : H 2 = 9: 1.
Next, an oxygen diffusion retarding substance [for example, SrTiO 3 (99.2 mol
%) And Nb 2 O 5 (0.8 mol%) in powder form with various compositions and particle diameters as shown in Table 1 below, spread over a porcelain sheath, and fired on it One side of the disk is down, and that side is, for example, SrTiO 3 (99.2 mol%) and Nb 2
Arrange them one by one so as to be completely buried in the mixed powder of O 5 (0.8 mol%), and heat-treat at 1010 ° C., 8Hr in air to perform reoxidation. Next, an electrode paste such as Ag is applied to the surface of the opposing disc by screen printing or the like, and the
The electrodes are formed by firing at 10 ° C for 10 minutes, the lead wires are attached by soldering or the like, and the exterior resin is applied. The characteristics of the device thus obtained are also shown in Table 1 below.

また、本発明における製造工程の概略を第1図に示
す。
FIG. 1 shows an outline of the manufacturing process in the present invention.

(実施例2) まず、SrTiO3(99.5mol%),Nb2O5(0.2mol%),CuO
(0.3mol%)になるように秤量し、ボールミルなどで20
Hr湿式混合し、乾燥した後、ポリビニルアルコールなど
の有機バインダーを10wt%加えて造粒し、乾式プレスで
10φ×1t(mm),プレス圧力1t/cm2で円板状に成形し、
空気中で1100℃,4Hrで焼成(脱バインダー)した後、
N2:H2=9:1の還元性雰囲気中で1450℃,3Hrで焼成する。
次に、酸素拡散遅延物質[例えば、SrTiO3(99.2mol
%)とNb2O5(0.8mol%)の混合粉末]を下記の第2表
に示すように組成と粒子径を種々変えて粉末状にし、磁
器製のサヤに敷きつめ、その上に焼成体の円板の一方の
面を下にし、その面が例えばSrTiO3(99.2mol%)とNb2
O5(0.8mol%)の混合粉末に完全に埋まるようにして一
枚ずつ並べ、空気中で1030℃,6Hrで熱処理して再酸化を
行う。次に、対向する円板の表面にAgなどの電極ペース
トをスクリーン印刷などの方法で塗布し、空気中で600
℃,10minで焼成して電極を形成し、リード線を半田付け
などの方法で取付け、外装樹脂を塗布する。このように
して得られた素子の特性を下記の第2表に併せて示す。
Example 2 First, SrTiO 3 (99.5 mol%), Nb 2 O 5 (0.2 mol%), CuO
(0.3 mol%), and weigh with a ball mill etc.
After wet mixing with Hr and drying, 10 wt% of organic binder such as polyvinyl alcohol is added and granulated.
Formed into a disc at 10φ × 1t (mm), press pressure 1t / cm 2 ,
After firing at 1100 ° C and 4Hr in air (debinding),
Calcination is performed at 1450 ° C. and 3 hours in a reducing atmosphere of N 2 : H 2 = 9: 1.
Next, an oxygen diffusion retarding substance [for example, SrTiO 3 (99.2 mol
%) And Nb 2 O 5 (0.8 mol%) were powdered with various compositions and particle diameters as shown in Table 2 below, spread over a porcelain sheath, and then fired. One side of the disk is down, and that side is, for example, SrTiO 3 (99.2 mol%) and Nb 2
One by one so as to be completely buried in the mixed powder of O 5 (0.8 mol%), and heat-treated at 1030 ° C. and 6 hours in air to perform re-oxidation. Next, an electrode paste such as Ag is applied to the surface of the opposing disc by screen printing or the like, and the
The electrodes are formed by firing at 10 ° C for 10 minutes, the lead wires are attached by soldering or the like, and the exterior resin is applied. The characteristics of the device thus obtained are also shown in Table 2 below.

ここで、前記主成分の半導体化を促進する物質として
は、Nb2O5,Ta2O5,WO3,La2O3,CeO2,Nd2O3,Pr6O11,Dy2O3,
Y2O3,Sm2O3,GeO2,Eu2O3のうちの少なくとも一つ以上の
物質であれば、同様の効果が得られることを確認した。
また、前記主成分中の半導体化促進物質の含有量よりも
その主成分の半導体化を促進する物質を多く含む物質
(酸素拡散遅延物質)としては、Nb2O5,Ta2O5,WO3,La2O
3,CeO2,Nd2O3,Pr6O11,Dy2O3,Y2O3,Sm2O3,GeO2,Eu2O3
うちの少なくとも一つ以上と、SrTiO3,BaTiO3,CaTiO3,M
gTiO3のうちの少なくとも一つ以上との混合物または化
合物であれば同様の効果が得られることを確認した。ま
た、前記主成分中の半導体化促進物質の含有量よりもそ
の主成分の半導体化を促進する物質を多く含む物質(酸
素拡散遅延物質)中の半導体化促進物質の含有量は、前
記主成分の半導体化を促進する物質の含有量よりも多け
れば効果があるが、含有量の差が大きければ大きいほど
効果があることを確認した。
Here, substances that promote the conversion of the main component into a semiconductor include Nb 2 O 5 , Ta 2 O 5 , WO 3 , La 2 O 3 , CeO 2 , Nd 2 O 3 , Pr 6 O 11 , Dy 2 O 3 ,
It was confirmed that a similar effect can be obtained with at least one of Y 2 O 3 , Sm 2 O 3 , GeO 2 , and Eu 2 O 3 .
Examples of the substance (oxygen diffusion retardant) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component include Nb 2 O 5 , Ta 2 O 5 , and WO. 3 , La 2 O
3 , at least one of CeO 2 , Nd 2 O 3 , Pr 6 O 11 , Dy 2 O 3 , Y 2 O 3 , Sm 2 O 3 , GeO 2 , Eu 2 O 3 and SrTiO 3 , BaTiO 3 , CaTiO 3 , M
It has been confirmed that the same effect can be obtained with a mixture or compound with at least one of gTiO 3 . In addition, the content of the semiconducting substance in a substance (oxygen diffusion retardant) containing a substance that promotes semiconductivity of the main component is larger than the content of the semiconducting substance in the main component, It was confirmed that the effect was higher when the content was larger than the content of the substance that promotes the formation of a semiconductor, but the effect was higher as the difference in the content was larger.

なお、静電容量,tanδの評価は1KHzで行っった。ま
た、本実施例ではSrTiO3系の組成についてのみ示した
が、BaTiO3,CaTiO3,MgTiO3などの還元再酸化型半導体磁
器材料ならばどのようなものであってもよいし、添加物
もどのようなものであっても同様の効果が得られること
を確認した。また、電極の種類としては、非オーミック
性電極でもオーミック性電極でも同様の効果が得られる
が、オーミック性電極の方がより良い特性が得られる。
また、成形体の一方の表面が、前記主成分中の半導体化
促進物質の含有量よりもその主成分の半導体化を促進す
る物質を多く含む物質(酸素拡散遅延物質)中に埋まる
ようにして焼成した面に、オーミック性の電極を形成す
ることにより、素子の半導体部分とオーミック性電極と
が直接接触するため、電極界面にバリヤーが形成されな
いので、誘電率の低下といった特性の劣化がなくなる。
また、成形体の一方の表面が、前記主成分中の半導体化
促進物質の含有量よりもその主成分の半導体化を促進す
る物質を多く含む物質(酸素拡散遅延物質)に埋まるよ
うにして焼成した面の反対の面は誘電体層が露出してい
るため、オーミック性電極でも非オーミック性電極でも
同様の効果が得られるが、オーミック性電極の場合は誘
電率の低下といった特性の劣化がなく、非オーミック性
電極の場合は誘電率の低下はあるが、電極界面に形成さ
れるバリヤーによって絶縁耐圧が向上するといった特性
の改善が可能となる。さらに、得られた特性については
静電容量,tanδについてのみ示したが、バリスタ特性を
併せ持つもので同様の効果が得られることを確認した。
一例として前記の第1表にサージ耐量(所定の電流を流
した後の素子に1mAの電流を流した時に素子の両端にか
かる電圧の変化が±10%となる時の電量値)で示す。
The evaluation of the capacitance and tan δ was performed at 1 KHz. Although this embodiment shows only the composition of the SrTiO 3 system, BaTiO 3, to CaTiO 3, or whatever if reduction reoxidation type semiconductor ceramic material, such as MgTiO 3, also additives It was confirmed that the same effect could be obtained regardless of the type. Regarding the type of electrode, the same effect can be obtained with a non-ohmic electrode or an ohmic electrode, but the ohmic electrode has better characteristics.
Further, one surface of the molded body is buried in a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component. By forming an ohmic electrode on the fired surface, the semiconductor portion of the element and the ohmic electrode are in direct contact, and no barrier is formed at the electrode interface, so that deterioration in characteristics such as a decrease in dielectric constant is eliminated.
In addition, firing is performed such that one surface of the molded body is buried in a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component. Since the dielectric layer is exposed on the opposite side of the surface, the same effect can be obtained with an ohmic electrode or a non-ohmic electrode, but in the case of an ohmic electrode, there is no deterioration in characteristics such as a decrease in dielectric constant. In the case of a non-ohmic electrode, the dielectric constant is reduced, but the barrier formed at the electrode interface can improve characteristics such as an increase in dielectric strength. Further, the obtained characteristics are shown only for the capacitance and tan δ, but it was confirmed that the same effect can be obtained with the varistor characteristics.
As an example, the above Table 1 shows the surge withstand capability (the electric charge value when a change in the voltage applied to both ends of the element when a current of 1 mA flows through the element after a predetermined current flows becomes ± 10%).

発明の効果 以上の説明で明らかなように、本発明の方法によれば
従来半導体磁器の表面に形成された高抵抗の酸化層を除
去するのに機械的な方法を用いるしかなかったため、量
産性に欠けていたものが、再酸化時に前記主成分中の半
導体化促進物質の含有量よりもその主成分の半導体化を
促進する物質を多く含む物質(酸素拡散遅延物質)中
に、焼成体の一方の表面が埋まるようにして埋め込むだ
けで高抵抗の酸化層の形成を抑制できるため、機械的な
方法を用いることなく、半導体部分に直接電極を形成す
ることができ、従来の素子に比べて静電容量を大きくす
ることができるため、小型で大容量の還元再酸化型半導
体磁器素子を容易に量産することができる。また、酸素
拡散遅延物質100μm未満の場合は、大容量化により有
効である。
As is clear from the above description, according to the method of the present invention, the conventional method had to use a mechanical method to remove the high-resistance oxide layer formed on the surface of the semiconductor porcelain. What was lacking in the fired body was a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component during reoxidation. Since the formation of a high-resistance oxide layer can be suppressed by simply filling one surface so that it is buried, an electrode can be formed directly on the semiconductor part without using a mechanical method, and compared with a conventional device. Since the capacitance can be increased, small-sized and large-capacity reduced-re-oxidation type semiconductor ceramic devices can be easily mass-produced. When the oxygen diffusion retardant is less than 100 μm, it is effective to increase the capacity.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例による還元再酸化型半導体磁
器素子の製造方法における概略の製造工程を示す図であ
る。
FIG. 1 is a view showing a schematic manufacturing process in a method for manufacturing a reduced re-oxidation type semiconductor ceramic device according to one embodiment of the present invention.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】還元再酸化型半導体磁器材料を主成分と
し、これを成形,脱ベインダー、還元焼成して焼成体と
した後、前記主成分中の半導体化促進物質の含有量より
もその主成分の半導体化を促進する物質を多く含む物質
(酸素拡散遅延物質)中に、前記焼成体の一方の表面が
埋まるようにして再酸化したことを特徴とする還元再酸
化型半導体磁器素子の製造方法。
1. A reduced-reoxidation type semiconductor porcelain material comprising a main component, which is formed, debindered, reduced and fired to form a fired body. A re-oxidation type semiconductor ceramic device characterized in that one of the surfaces of the fired body is re-oxidized so as to be buried in a substance (oxygen diffusion retarding substance) containing a large amount of a substance which promotes the conversion of a component into a semiconductor. Method.
【請求項2】主成分中の半導体化促進物質の含有量より
もその主成分の半導体化を促進する物質を多く含む物質
(酸素拡散遅延物質)として、粒子径が100μm以上の
ものを用いてなる請求項1記載の還元再酸化型半導体磁
器素子の製造方法。
2. A substance (oxygen diffusion retarding substance) having a particle diameter of 100 μm or more is used as a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component. The method for producing a reduced re-oxidized semiconductor ceramic device according to claim 1.
【請求項3】主成分中の半導体化促進物質の含有量より
もその主成分の半導体化を促進する物質を多く含む物質
(酸素拡散遅延物質)として、粒子径が100μm未満の
ものを用いてなる請求項1記載の還元再酸化型半導体磁
器素子の製造方法。
3. A substance (oxygen diffusion retarding substance) having a particle diameter of less than 100 μm as a substance (oxygen diffusion retarding substance) containing a substance that promotes the formation of a semiconductor as a main component more than the content of the semiconductor conversion promoting substance in the main component. The method for producing a reduced re-oxidized semiconductor ceramic device according to claim 1.
【請求項4】主成分の半導体化を促進する物質が、Nb2O
5,Ta2O5,WO3,La2O3,CeO2,Nd2O3,Pr6O11,Dy2O3,Y2O3,Sm2
O3,GeO2,Eu2O3のうちの少なくとも一つ以上であること
を特徴とする請求項1記載の還元再酸化型半導体磁器素
子の製造方法。
4. The substance which promotes the conversion of a main component into a semiconductor is Nb 2 O
5, Ta 2 O 5, WO 3, La 2 O 3, CeO 2, Nd 2 O 3, Pr 6 O 11, Dy 2 O 3, Y 2 O 3, Sm 2
2. The method according to claim 1, wherein at least one of O 3 , GeO 2 , and Eu 2 O 3 is used.
【請求項5】主成分中の半導体化促進物質の含有量より
もその主成分の半導体化を促進する物質を多く含む物質
(酸素拡散遅延物質)が、Nb2O5,Ta2O5,WO3,La2O3,Ce
O2,Nd2O3,Pr6O11,Dy2O3,Y2O3,Sm2O3,GeO2,Eu2O3のうち
の少なくとも一つ以上と、SrTiO3,BaTiO3,CaTiO3,MgTiO
3のうちの少なくとも一つ以上との混合物または化合物
であることを特徴とする請求項1記載の還元再酸化型半
導体磁器素子の製造方法。
5. A substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component is Nb 2 O 5 , Ta 2 O 5 , WO 3 , La 2 O 3 , Ce
O 2 , Nd 2 O 3 , Pr 6 O 11 , Dy 2 O 3 , Y 2 O 3 , Sm 2 O 3 , GeO 2 , Eu 2 O 3 , and at least one of SrTiO 3 , BaTiO 3 , CaTiO 3 , MgTiO
2. The method of claim 1, wherein the mixture is a compound or a compound with at least one of the three.
【請求項6】焼成体の一方の表面が、主成分中の半導体
化促進物質の含有量よりもその主成分の半導体化を促進
する物質を多く含む物質(酸素拡散遅延物質)中に埋ま
るようにして焼成した面に、オーミック性の電極を形成
したことを特徴とする請求項1記載の還元再酸化型半導
体磁器素子の製造方法。
6. One surface of the fired body is buried in a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component. 2. The method according to claim 1, wherein an ohmic electrode is formed on the fired surface.
【請求項7】焼成体の両方の表面に、オーミック性の電
極を形成したことを特徴とする請求項1記載の還元再酸
化型半導体磁器素子の製造方法。
7. The method according to claim 1, wherein ohmic electrodes are formed on both surfaces of the fired body.
【請求項8】焼成体の一方の表面が、主成分中の半導体
化促進物質の含有量よりもその主成分の半導体化を促進
する物質を多く含む物質(酸素拡散遅延物質)中に埋ま
るようにして焼成した面の反対の面に非オーミック性の
電極を形成したことを特徴とする請求項1記載の還元再
酸化型半導体磁器素子の製造方法。
8. One surface of the fired body is buried in a substance (oxygen diffusion retarding substance) containing a substance that promotes the conversion of the main component into a semiconductor more than the content of the semiconductor conversion promoting substance in the main component. 2. The method according to claim 1, wherein a non-ohmic electrode is formed on the surface opposite to the surface fired.
JP1088848A 1989-04-07 1989-04-07 Method for manufacturing reduction-reoxidation type semiconductor porcelain element Expired - Lifetime JP2697112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088848A JP2697112B2 (en) 1989-04-07 1989-04-07 Method for manufacturing reduction-reoxidation type semiconductor porcelain element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088848A JP2697112B2 (en) 1989-04-07 1989-04-07 Method for manufacturing reduction-reoxidation type semiconductor porcelain element

Publications (2)

Publication Number Publication Date
JPH02267909A JPH02267909A (en) 1990-11-01
JP2697112B2 true JP2697112B2 (en) 1998-01-14

Family

ID=13954402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088848A Expired - Lifetime JP2697112B2 (en) 1989-04-07 1989-04-07 Method for manufacturing reduction-reoxidation type semiconductor porcelain element

Country Status (1)

Country Link
JP (1) JP2697112B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135507A (en) * 1982-02-04 1983-08-12 松下電器産業株式会社 High dielectric constant porcelain composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135507A (en) * 1982-02-04 1983-08-12 松下電器産業株式会社 High dielectric constant porcelain composition

Also Published As

Publication number Publication date
JPH02267909A (en) 1990-11-01

Similar Documents

Publication Publication Date Title
KR920003225B1 (en) Semiconductive ceramic composition
WO2008108897A1 (en) Ultra low temperature fired x7r and bx dielectric ceramic composition and method of making
WO1990010941A1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
JP4717302B2 (en) Dielectric porcelain composition and electronic component
JP3419713B2 (en) Manufacturing method of multilayer ceramic chip capacitor
JP3207847B2 (en) Multilayer ceramic chip capacitors
JP2787746B2 (en) Multilayer ceramic chip capacitors
JP2697112B2 (en) Method for manufacturing reduction-reoxidation type semiconductor porcelain element
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP7310543B2 (en) Dielectric compositions and electronic components
JP2666401B2 (en) Method for manufacturing reduction-reoxidation type semiconductor porcelain element
JP2773187B2 (en) Method for manufacturing reduction-reoxidation type semiconductor porcelain element
JP2001278664A (en) Dielectric ceramic composition and ceramic capacitor using it
JP2005158895A (en) Grain-boundary-insulated semiconductor ceramic and laminated semiconductor capacitor
JP2019067827A (en) Laminate electronic component
JP2971689B2 (en) Grain boundary type semiconductor porcelain capacitor
JP2000216042A (en) Manufacture of laminated ceramic capacitor
JPH02267910A (en) Manufacture of reduction reoxidation type semiconductor porcelain element
JPH02267911A (en) Manufacture of reduction reoxidation type semiconductor porcelain element
JP3189341B2 (en) Composite varistor
KR920009172B1 (en) Semiconductive ceramic composition and semiconductive ceramic capacitor
JP2697113B2 (en) Grain boundary insulated multilayer semiconductor capacitors
JP2775916B2 (en) Multilayer ceramic capacitors
JP2523834B2 (en) High dielectric constant dielectric ceramic composition
JP2715529B2 (en) Ceramic capacitor and method of manufacturing the same