JP2748412B2 - Method for forming conductor bonding film on ceramic superconductor - Google Patents

Method for forming conductor bonding film on ceramic superconductor

Info

Publication number
JP2748412B2
JP2748412B2 JP63166364A JP16636488A JP2748412B2 JP 2748412 B2 JP2748412 B2 JP 2748412B2 JP 63166364 A JP63166364 A JP 63166364A JP 16636488 A JP16636488 A JP 16636488A JP 2748412 B2 JP2748412 B2 JP 2748412B2
Authority
JP
Japan
Prior art keywords
powder
superconducting oxide
superconductor
compact
bonding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63166364A
Other languages
Japanese (ja)
Other versions
JPH0215519A (en
Inventor
貞明 萩原
英之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP63166364A priority Critical patent/JP2748412B2/en
Publication of JPH0215519A publication Critical patent/JPH0215519A/en
Application granted granted Critical
Publication of JP2748412B2 publication Critical patent/JP2748412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Bi−Ca−Sr−Cu−O系セラミツクス超電
導体またはTl−Ca−Ba−Cu−O系セラミツクス超電導体
に、良好電気接合または接触がなされるための導電体接
合膜を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a Bi—Ca—Sr—Cu—O ceramic superconductor or a Tl—Ca—Ba—Cu—O ceramic superconductor, Alternatively, the present invention relates to a method for forming a conductor bonding film for making contact.

〔従来の技術〕[Conventional technology]

近年、Bi−Ca−Sr−Cu−O系セラミツクス超電導体お
よびTl−Ca−Ba−Cu−O系セラミツクス超電導体が提案
されたことは広く知られているところである。
In recent years, it has been widely known that Bi-Ca-Sr-Cu-O-based ceramics superconductors and Tl-Ca-Ba-Cu-O-based ceramics superconductors have been proposed.

上記Bi−Ca−Sr−Cu−O系セラミツクス超電導体は、
まず、原料粉末としてBi酸化物(以下、Bi2O3で示
す)、Ca炭酸塩(以下、CaCO3で示す)、Sr炭酸塩(以
下、SrCO3で示す)およびCu酸化物(以下、CuOで示す)
の粉末を用意し、これら原料粉末を所定の割合に配合
し、混合し、この混合粉末を温度:700〜800℃の範囲内
で大気中12時間保持の焼成処理したのち、粉砕してBi−
Ca−Sr−Cu−O系超電導酸化物粉末とし、ついで、この
超電導酸化物粉末を原料粉末としてプレス成形により圧
粉体とし、これを焼結することにより製造されることは
よく知られているところである。
The Bi-Ca-Sr-Cu-O-based ceramics superconductor,
First, Bi oxide (hereinafter, referred to as Bi 2 O 3 ), Ca carbonate (hereinafter, referred to as CaCO 3 ), Sr carbonate (hereinafter, referred to as SrCO 3 ) and Cu oxide (hereinafter, referred to as CuO Indicated by
Are prepared, and these raw material powders are blended in a predetermined ratio, mixed, and the mixed powder is subjected to a sintering treatment in a temperature range of 700 to 800 ° C. for 12 hours in the atmosphere, followed by pulverization to obtain a Bi-
It is well known that a Ca-Sr-Cu-O-based superconducting oxide powder is used, and then the superconducting oxide powder is used as a raw material powder to be formed into a green compact by pressing and then sintered to produce a compact. By the way.

さらに、Tl−Ca−Ba−Cu−O系セラミツクス超電導体
についても、原料粉末としてTl酸化物(以下、Tl2O3
示す)、CaCO3、BaCO3およびCuOの各粉末を用意し、所
定の割合に配合し、混合した後、この混合粉末に600〜7
00℃の範囲内の温度に大気中所定時間保持の焼成処理を
施し、粉砕してTl−Ca−Ba−Cu−O系超電導酸化物粉末
とし、この超電導酸化物粉末を用いて上記Bi−Ca−Sr−
Cu−O系超電導酸化物と同様に製造することができるこ
とも知られている。
Further, as for the Tl-Ca-Ba-Cu-O-based ceramics superconductor, powders of Tl oxide (hereinafter referred to as Tl 2 O 3 ), CaCO 3 , BaCO 3 and CuO are prepared as raw material powders, After mixing and mixing, 600 to 7
A baking treatment is performed at a temperature in the range of 00 ° C. for a predetermined time in the atmosphere, and pulverized to obtain a Tl—Ca—Ba—Cu—O-based superconducting oxide powder. −Sr−
It is also known that it can be manufactured in the same manner as the Cu-O-based superconducting oxide.

このようにして得られたBi−Ca−Sr−Cu−O系セラミ
ツクス超電導体またはTl−Ca−Ba−Cu−O系セラミツク
ス超電導体にリード線を接合する場合には、上記セラミ
ツクス超電導体の電気的接合部表面に、Ag、Au、Cu等を
蒸着することにより導電体接合膜を形成し、上記蒸着に
よる導電体接合膜の表面にInハンダ等でリード線をろう
付けし、セラミツクス超電導体への電流の供給および流
出を行なつていた。
When a lead wire is joined to the thus obtained Bi-Ca-Sr-Cu-O-based ceramics superconductor or Tl-Ca-Ba-Cu-O-based ceramics superconductor, the electric power of the ceramics superconductor is used. Ag, Au, Cu, etc. are vapor-deposited on the surface of the electrical joint to form a conductor bonding film. Current supply and discharge.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上記Bi−Ca−Sr−Cu−O系またはTl−Ca−
Ba−Cu−O系セラミツクス超電導体への蒸着による導電
体接合膜の形成は、蒸着が真空雰囲気中の高温で行なわ
れるために、上記セラミツクス超電導体中に内在する酸
素が飛散し、安定していると言われているBi−Ca−Sr−
Cu−O系またはTl−Ca−Ba−Cu−O系セラミツクス超電
導体の超電導特性が不安定かつ劣化し、この蒸着膜形成
中の酸素飛散を防止するために可能な限り室温に近い温
度で行なうと、付着強度の弱い蒸着膜が形成されるとい
う問題点があった。
However, the above Bi-Ca-Sr-Cu-O system or Tl-Ca-
The formation of the conductor bonding film by vapor deposition on the Ba-Cu-O-based ceramic superconductor is performed at a high temperature in a vacuum atmosphere. Bi-Ca-Sr-
The superconducting properties of the Cu-O-based or Tl-Ca-Ba-Cu-O-based ceramic superconductor are unstable and deteriorate, and the temperature is set as close to room temperature as possible to prevent oxygen scattering during the formation of this deposited film. Thus, there is a problem that a deposited film having low adhesion strength is formed.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、上記セラミツクス超電導体の
超電導特性を不安定かつ劣化せしめることなくセラミツ
クス超電導体の表面に導電体接合膜を形成すべく研究を
行なつた結果、 焼結前のBi−Ca−Sr−Cu−O系超電導酸化物粉末また
はTl−Ca−Ba−Cu−O系超電導酸化物粉末の成形体(例
えば、圧粉体、ドクターブレード法により得られたシー
ト状成形体、スクリーン印刷法により得られた印刷体
等)の表面に、導電材料ペーストを塗布し、上記導電材
料ペーストを塗布した成形体を焼結すると、上記超電導
酸化物粉末の成形体は焼結してセラミツクス超電導体に
なると同時に上記塗布された導電材料ペーストは焼付け
られ、Bi−Ca−Sr−Cu−O系またはTl−Ca−Ba−Cu−O
系セラミツクス超電導体の表面に付着強度のすぐれた導
電体接合膜が形成されるという知見を得たのである。
Therefore, the present inventors conducted research to form a conductor bonding film on the surface of the ceramic superconductor without making the superconducting characteristics of the ceramic superconductor unstable and degraded, and as a result, Bi- A compact of a Ca-Sr-Cu-O-based superconducting oxide powder or a Tl-Ca-Ba-Cu-O-based superconducting oxide powder (e.g., a green compact, a sheet-shaped compact obtained by a doctor blade method, a screen) When a conductive material paste is applied to the surface of a printed body obtained by a printing method, and the formed body coated with the conductive material paste is sintered, the formed body of the superconducting oxide powder is sintered to form a ceramic superconducting material. At the same time as the body, the applied conductive material paste is baked and Bi-Ca-Sr-Cu-O or Tl-Ca-Ba-Cu-O
It has been found that a conductor bonding film having excellent adhesion strength is formed on the surface of a ceramic-based superconductor.

この発明は、かかる知見にもとづいてなされたもので
あつて、 (1) Bi2O3粉末、CaCO3粉末、SrCO3粉末およびCuO粉
末を所定の割合に配合し、混合したのち、この混合粉末
を焼成処理し、粉砕してBi−Ca−Sr−Cu−O系超電導酸
化物粉末とし、この超電導酸化物粉末を成形して成形体
とし、 ついで上記成形体の表面に、導電材料ペーストを塗布
した後、焼結することにより、上記成形体を焼結すると
同時にBi−Ca−Sr−Cu−O系セラミツクス超電導体に導
電体接合膜を形成する方法、 および (2) Tl2O3粉末、CaCO3粉末、BaCO3粉末およびCuO粉
末を所定の割合に配合し、混合したのち、この混合粉末
を焼成処理し、粉砕してTl−Ca−Ba−Cu−O系超電導酸
化物粉末とし、この超電導酸化物粉末を成形して成形体
とし、 ついで上記成形体の表面に、導電材料ペーストを塗布
した後、焼結することにより、上記成形体を焼結すると
同時にTl−Ca−Ba−Cu−O系セラミツクス超電導体に導
電体接合膜を形成する方法、 に特徴を有するものである。
The invention shall apply been made based on such findings, (1) Bi 2 O 3 powder, CaCO 3 powder, blended with SrCO 3 powder and CuO powder in a predetermined ratio, were mixed, the mixed powder Is baked, pulverized to obtain a Bi-Ca-Sr-Cu-O-based superconducting oxide powder, and the superconducting oxide powder is formed into a compact, and then a conductive material paste is applied to the surface of the compact. And then sintering to form a conductor bonding film on the Bi-Ca-Sr-Cu-O-based ceramic superconductor at the same time as sintering the compact, and (2) Tl 2 O 3 powder, After mixing CaCO 3 powder, BaCO 3 powder and CuO powder in a predetermined ratio and mixing, the mixed powder is calcined and pulverized to obtain a Tl-Ca-Ba-Cu-O-based superconducting oxide powder. The superconducting oxide powder is molded into a compact, and then a conductive material is formed on the surface of the compact. After applying the paste, a method of sintering the molded body and simultaneously forming a conductor bonding film on the Tl-Ca-Ba-Cu-O-based ceramics superconductor by sintering. is there.

上記成形体とは、Bi−Ca−Sr−Cu−O系超電導酸化物
粉末またはTl−Ca−Ba−Cu−O系超電導酸化物粉末をプ
レス成形して得られた圧粉体、ドクターブレード法によ
り得られた上記超電導酸化物粉末ペースト層を加熱乾燥
して得られたシート状成形体、スクリーン印刷法により
得られた印刷体、泥しよう法による射出成形体の乾燥体
等、Bi−Ca−Sr−Cu−O系超電導酸化物粉末またはTl−
Ca−Ba−Cu−O系超電導酸化物粉末を適当な方法で所定
の形状に成形したものをいう。
The compact is a compact obtained by press-molding a Bi-Ca-Sr-Cu-O-based superconducting oxide powder or a Tl-Ca-Ba-Cu-O-based superconducting oxide powder, a doctor blade method. Bi-Ca-, such as a sheet-like molded product obtained by heating and drying the superconducting oxide powder paste layer obtained by the above, a printed product obtained by a screen printing method, a dried injection molded product obtained by a slurry method, etc. Sr-Cu-O-based superconducting oxide powder or Tl-
It is obtained by molding a Ca-Ba-Cu-O-based superconducting oxide powder into a predetermined shape by an appropriate method.

さらに、上記導電材料ペーストとは、AgまたはAg合
金、AuまたはAu合金、PdまたはPd合金等の良導電材料粉
末を有機溶剤に混合したものであるが、一般に、平均粒
径:0.5〜10μmのAg粉末に有機溶剤、例えば、エチルセ
ルロース、テレピン油、ブチルカルビトールアセテー
ト、PVA(ポリビニルアルコール)等に混合したAgペー
ストが最も多く使用される。
Further, the conductive material paste, Ag or Ag alloy, Au or Au alloy, Pd or a good conductive material powder such as Pd alloy mixed with an organic solvent, generally, average particle size: 0.5 to 10 μm Ag paste mixed with an organic solvent, for example, ethyl cellulose, turpentine oil, butyl carbitol acetate, PVA (polyvinyl alcohol) or the like, is most frequently used.

〔実施例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明
する。
Next, the present invention will be specifically described based on embodiments.

原料粉末として、いずれも平均粒径:10μmのBi2O3
末、Tl2O3粉末、CaCO3粉末、SrCO3粉末、BaCO3粉末およ
びCuO粉末を用意した。
As raw material powders, Bi 2 O 3 powder, Tl 2 O 3 powder, CaCO 3 powder, SrCO 3 powder, BaCO 3 powder and CuO powder each having an average particle diameter of 10 μm were prepared.

実施例1 これら原料粉末のうちBi2O3粉末、CaCO3粉末、SrCO3
粉末およびCuO粉末を、Bi2O3粉末:53.4%、CaCO3粉末:1
1.5%、SrCO3粉末:16.9%およびCuO粉末:18.2%(以上
重量%)の割合で配合し、混合し、この混合粉末を大気
中、温度:800℃、12時間保持の条件で焼成処理を行なつ
てBi−Ca−Sr−Cu−O系超電導酸化物を作成し、つい
で、このBi−Ca−Sr−Cu−O系超電導酸化物を粉砕し
て、平均粒径:5μmのBi−Ca−Sr−Cu−O系超電導酸化
物粉末を製造した。
Example 1 Among these raw material powders, Bi 2 O 3 powder, CaCO 3 powder, SrCO 3
Powder and CuO powder, Bi 2 O 3 powder: 53.4%, CaCO 3 powder: 1
1.5%, SrCO 3 powder: 16.9% and CuO powder: 18.2% (or more by weight) are mixed and mixed, and the mixed powder is fired in the atmosphere at a temperature of 800 ° C. for 12 hours. To form a Bi-Ca-Sr-Cu-O-based superconducting oxide, and then pulverize the Bi-Ca-Sr-Cu-O-based superconducting oxide to obtain a Bi-Ca having an average particle size of 5 µm. A -Sr-Cu-O-based superconducting oxide powder was produced.

このBi−Ca−Sr−Cu−O系超電導酸化物粉末をプレス
成形して、たて:3mm×横:8mm×長さ:30mmの圧粉体を2
個成形し、この2個の圧粉体のうちの一方の圧粉体の両
端部にAgペーストを塗布し、他方の圧粉体にはAgペース
トを塗布せずに、共に大気中、温度:850℃、15時間保持
の条件にて焼結した。
This Bi-Ca-Sr-Cu-O-based superconducting oxide powder was press-molded, and a green compact having a length of 3 mm, a width of 8 mm, and a length of 30 mm was formed into a compact.
Each of the two green compacts is coated with an Ag paste on both ends of one green compact, and the other green compact is not coated with the Ag paste. Sintering was performed at 850 ° C. for 15 hours.

上記Agペーストは、平均粒径:3μmのAg粉末に、有機
溶剤としてブチルカルビトールアセテートおよびエチル
セルロースを20重量%添加混合して製造したものを用い
た。
The Ag paste used was prepared by adding and mixing 20% by weight of butyl carbitol acetate and ethyl cellulose as organic solvents with Ag powder having an average particle diameter of 3 μm.

上記焼結された圧粉体は、Bi−Ca−Sr−Cu−O系セラ
ミツクス超電導体となり、上記一方の圧粉体の両端に塗
布したAgペーストは、上記セラミツクス超電導体の両端
に付着強度のすぐれたAg薄膜として焼付けられていた。
The sintered green compact becomes a Bi-Ca-Sr-Cu-O-based ceramics superconductor, and the Ag paste applied to both ends of the one green compact has adhesion strength at both ends of the ceramics superconductor. It was baked as an excellent Ag thin film.

上記セラミツクス超電導体の両端部表面に形成された
Ag薄膜にInろう材を用いてAgワイヤを接続し、上記セラ
ミツクス超電導体の超電導特性を測定した。その結果を
第1表に示す。
Formed on both end surfaces of the ceramic superconductor
An Ag wire was connected to the Ag thin film using an In brazing material, and the superconducting properties of the ceramic superconductor were measured. Table 1 shows the results.

従来例1 一方、従来例として、上記実施例1で製造した他方の
Ag薄膜のないセラミツクス超電導体の両端部に、通常の
蒸着法によりAg蒸着薄膜を形成し、上記Ag蒸着薄膜にIn
ろう材を用いてAgワイヤを接続し、上記セラミツクス超
電導体の超電導特性を測定し、その結果も第1表に示し
た。
Conventional Example 1 On the other hand, as a conventional example, on the other hand,
At both ends of a ceramic superconductor without an Ag thin film, an Ag evaporated thin film was formed by a normal evaporation method,
An Ag wire was connected using a brazing material, and the superconducting properties of the ceramic superconductor were measured. The results are also shown in Table 1.

実施例2 上記原料粉末のうち、Tl2O3粉末、CaCO3粉末、BaCO3
粉末、およびCuO粉末を、 Tl2O3粉末:35.4%、CaCO3粉末:15.5%、BaCO3粉末:3
0.6%およびCuO粉末:18.5%(以上重量%)の割合で配
合し、混合し、この混合粉末を酸素雰囲気中、温度:800
℃、10時間保持の条件で焼成処理し、Tl−Ca−Ba−Cu−
O系超電導酸化物を作成し、ついで、このTl−Ca−Ba−
Cu−O系超電導酸化物を粉砕して平均粒径:5μmのTl−
Ca−Ba−Cu−O系超電導酸化物粉末を製造した。
Example 2 Among the above raw material powders, Tl 2 O 3 powder, CaCO 3 powder, BaCO 3
Powder and CuO powder, Tl 2 O 3 powder: 35.4%, CaCO 3 powder: 15.5%, BaCO 3 powder: 3
0.6% and CuO powder: blended and mixed at a ratio of 18.5% (or more by weight), and mixed this powder in an oxygen atmosphere at a temperature of 800
C., calcination treatment under the conditions of 10 hours, Tl-Ca-Ba-Cu-
O-based superconducting oxide was prepared, and then this Tl-Ca-Ba-
The Cu-O-based superconducting oxide is pulverized to an average particle size of 5 μm Tl−
A Ca-Ba-Cu-O-based superconducting oxide powder was produced.

このTl−Ca−Ba−Cu−O系超電導酸化物粉末をプレス
成形して、たて:5mm×横:8mm×長さ:30mmの圧粉体を2
個成形し、この2個の圧粉体のうち、一方の圧粉体の両
端部にAgペーストを塗布し、他方の圧粉体にはAgペース
トを塗布せずに、共に酸素雰囲気中、温度:900℃、3時
間保持の条件にて焼結した。
This Tl-Ca-Ba-Cu-O-based superconducting oxide powder was press-molded to give a green compact having a length of 5 mm, a width of 8 mm and a length of 30 mm.
Ag compact is applied to both ends of one of the two green compacts, and the other green compact is not coated with the Ag paste. : Sintered at 900 ° C for 3 hours.

上記Agペーストは、平均粒径:3μmのAg粉末に、有機
溶剤としてブチルカルビトールアセテートおよびエチル
セルロースを20重量%添加混合して製造したものを用い
た。
The Ag paste used was prepared by adding and mixing 20% by weight of butyl carbitol acetate and ethyl cellulose as organic solvents with Ag powder having an average particle diameter of 3 μm.

上記焼結された圧粉体は、Tl−Ca−Ba−Cu−O系セラ
ミツクス超電導体となり、上記一方の圧粉体の両端に塗
布したAgペーストは、上記セラミツクス超電導体の両端
に付着強度のすぐれたAg薄膜として焼付けられていた。
The sintered green compact becomes a Tl-Ca-Ba-Cu-O-based ceramic superconductor, and the Ag paste applied to both ends of the one green compact has an adhesion strength at both ends of the ceramic superconductor. It was baked as an excellent Ag thin film.

上記セラミツクス超電導体の両端部表面に形成された
Ag薄膜にInろう材を用いてAgワイヤを接続し、上記セラ
ミツクス超電導体の超電導特性を測定した。その結果を
第2表に示す。
Formed on both end surfaces of the ceramic superconductor
An Ag wire was connected to the Ag thin film using an In brazing material, and the superconducting properties of the ceramic superconductor were measured. Table 2 shows the results.

従来例2 一方、従来例として、上記実施例2で製造したAg薄膜
のない他方のTl−Ca−Ba−Cu−O系セラミツクス超電導
体の両端部に、通常の蒸着法によりAg蒸着薄膜を形成
し、上記Ag蒸着薄膜にInろう材を用いてAgワイヤを接続
し、上記セラミツクス超電導体の超電導特性を測定し、
その結果も第2表に示した。
Conventional Example 2 On the other hand, as a conventional example, an Ag vapor-deposited thin film was formed on both ends of the other Tl-Ca-Ba-Cu-O-based ceramics superconductor having no Ag thin film manufactured in Example 2 by a normal vapor deposition method. Then, an Ag wire was connected to the Ag-deposited thin film using an In brazing material, and the superconductivity of the ceramic superconductor was measured.
The results are also shown in Table 2.

上記第1表および第2表の結果から、Ag薄膜をセラミ
ツクス超電導体表面に従来例の蒸着法により形成する
と、セラミツクス超電導体の超電導特性が劣化するに対
し、この発明の実施例1および実施例2のようにAgペー
ストを、Bi−Ca−Sr−Cu−O系超電導酸化物粉末または
Tl−Ca−Ba−Cu−O系超電導酸化物粉末の圧粉体を焼結
と同時に焼付けてAg接合膜を形成するとセラミツクス超
電導体の超電導特性の劣化がみられないことがわかる。
From the results in Tables 1 and 2 above, when the Ag thin film was formed on the surface of the ceramics superconductor by the conventional vapor deposition method, the superconducting characteristics of the ceramics superconductor deteriorated. Ag paste as in 2, the Bi-Ca-Sr-Cu-O-based superconducting oxide powder or
It can be seen that when the compact of Tl-Ca-Ba-Cu-O-based superconducting oxide powder is sintered and baked at the same time as forming the Ag bonding film, the superconducting properties of the ceramic superconductor do not deteriorate.

この実施例では、Bi−Ca−Sr−Cu−O系超電導酸化物
粉末またはTl−Ca−Ba−Cu−O系超電導酸化物粉末の圧
粉体を焼結すると同時に塗布されたAgペーストを焼付け
てAg薄膜を形成したが、上記超電導酸化物粉末ペースト
を、ドクターブレード法により成形して得られたシート
状成形体または印刷法より基板上に印刷した印刷体の表
面にAgペーストを塗布し、上記シート状成形体または印
刷体を焼結すると同時にAg薄膜を形成してもよい。
In this example, a compact of a Bi-Ca-Sr-Cu-O-based superconducting oxide powder or a Tl-Ca-Ba-Cu-O-based superconducting oxide powder was sintered, and simultaneously the applied Ag paste was baked. Although the Ag thin film was formed, the superconducting oxide powder paste was coated with an Ag paste on the surface of a sheet-shaped molded body obtained by molding by a doctor blade method or a printed body printed on a substrate by a printing method, The Ag thin film may be formed at the same time as sintering the sheet-shaped molded body or the printed body.

〔発明の効果〕〔The invention's effect〕

上述の如く、この発明によると、リード線等をセラミ
ツクス超電導体に接合するための導電体接合膜は、Bi−
Ca−Sr−Cu−O系超電導酸化物粉末またはTl−Ca−Ba−
Cu−O系超電導酸化物粉末の成形体を焼結すると同時に
焼付けられて形成されるために、従来のような蒸着膜形
成工程を省略することができ、しかも導電体接合膜が形
成されたセラミツクス超電導体の超電導特性の劣化がみ
られないというすぐれた効果を奏するものである。
As described above, according to the present invention, a conductor bonding film for bonding a lead wire or the like to a ceramics superconductor is made of Bi-
Ca-Sr-Cu-O-based superconducting oxide powder or Tl-Ca-Ba-
Since the formed body of the Cu-O-based superconducting oxide powder is sintered and baked at the same time, the conventional vapor-deposited film forming step can be omitted, and the ceramics on which the conductor bonding film is formed. This has an excellent effect that the superconducting characteristics of the superconductor are not deteriorated.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01R 43/00 ZAA H01R 43/00 ZAAZ ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01R 43/00 ZAA H01R 43/00 ZAAZ

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Bi−Ca−Sr−Cu−O系超電導酸化物粉末を
成形して得られた成形体の表面に導電材料ペーストを塗
布したのち焼結することにより、上記成形体を焼結する
と同時に導電体接合膜の焼付けを行うことを特徴とする
セラミックス超電導体の導電体接合膜形成法。
1. A method for sintering said compact by applying a conductive material paste to the surface of a compact obtained by molding a Bi-Ca-Sr-Cu-O-based superconducting oxide powder, followed by sintering. And baking the conductor bonding film at the same time as the method.
【請求項2】Tl−Ca−Ba−Cu−O系超電導酸化物粉末を
成形して得られた成形体の表面に導電材料ペーストを塗
布したのち焼結することにより、上記成形体を焼結する
と同時に導電体接合膜の焼付けを行うことを特徴とする
セラミックス超電導体の導電体接合膜形成方法。
2. A method for sintering said compact by applying a conductive material paste on the surface of a compact obtained by molding a Tl-Ca-Ba-Cu-O-based superconducting oxide powder, followed by sintering. And baking the conductor bonding film at the same time as the method.
JP63166364A 1988-07-04 1988-07-04 Method for forming conductor bonding film on ceramic superconductor Expired - Lifetime JP2748412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166364A JP2748412B2 (en) 1988-07-04 1988-07-04 Method for forming conductor bonding film on ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166364A JP2748412B2 (en) 1988-07-04 1988-07-04 Method for forming conductor bonding film on ceramic superconductor

Publications (2)

Publication Number Publication Date
JPH0215519A JPH0215519A (en) 1990-01-19
JP2748412B2 true JP2748412B2 (en) 1998-05-06

Family

ID=15830029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166364A Expired - Lifetime JP2748412B2 (en) 1988-07-04 1988-07-04 Method for forming conductor bonding film on ceramic superconductor

Country Status (1)

Country Link
JP (1) JP2748412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889595B2 (en) * 1989-07-10 1999-05-10 三洋電機株式会社 Method for forming electrode of oxide superconductor film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257183A (en) * 1988-04-08 1989-10-13 Ube Ind Ltd Production of stabilized high-temperature superconducting ceramic wire and tape

Also Published As

Publication number Publication date
JPH0215519A (en) 1990-01-19

Similar Documents

Publication Publication Date Title
JP2615977B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP3636075B2 (en) Multilayer PTC thermistor
US20060171099A1 (en) Electrode paste for thin nickel electrodes in multilayer ceramic capacitors and finished capacitor containing same
US4739544A (en) Method of manufacturing a vapor-phase-diffused boundary-layer type multilayer ceramic capacitor
JP2748412B2 (en) Method for forming conductor bonding film on ceramic superconductor
JPH07242845A (en) Electrically-conductive coating compound for electrode and its production
JP3146966B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JP3030557B2 (en) Electronic components using dielectric porcelain materials
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JPH01270582A (en) Conductor junction film for ceramic superconductor
JP2722457B2 (en) Manufacturing method of ceramic capacitor
JP2004221304A (en) Method for manufacturing electronic parts having internal electrode
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
WO2024042767A1 (en) Thermistor element and method for producing same
JP2773187B2 (en) Method for manufacturing reduction-reoxidation type semiconductor porcelain element
JP3189341B2 (en) Composite varistor
JP2864731B2 (en) Positive characteristic thermistor and manufacturing method thereof
JP3129046B2 (en) Sputtered sintered target material with excellent thermal shock resistance
JPH0982560A (en) Multilayer ceramic capacitor
JPS62262303A (en) High dielectric constant porcelain compound
JP2949294B2 (en) Aluminum nitride substrate and method of manufacturing the same
JP3599645B2 (en) Dielectric porcelain composition, porcelain capacitor using the same, and method of manufacturing the same
JP2697112B2 (en) Method for manufacturing reduction-reoxidation type semiconductor porcelain element
JP2775916B2 (en) Multilayer ceramic capacitors
JP2889595B2 (en) Method for forming electrode of oxide superconductor film