JP2864731B2 - Positive characteristic thermistor and manufacturing method thereof - Google Patents
Positive characteristic thermistor and manufacturing method thereofInfo
- Publication number
- JP2864731B2 JP2864731B2 JP33809990A JP33809990A JP2864731B2 JP 2864731 B2 JP2864731 B2 JP 2864731B2 JP 33809990 A JP33809990 A JP 33809990A JP 33809990 A JP33809990 A JP 33809990A JP 2864731 B2 JP2864731 B2 JP 2864731B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- insulator layer
- powder
- barium titanate
- niobium pentoxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、特定の温度で抵抗値が急激に増加する正特
性サーミスタ及びその製造方法に関するものであり、特
に還元性ガス雰囲気下で使用された場合に特性劣化の少
ない、高信頼性の正特性サーミスタ及びその製造方法に
関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor whose resistance value sharply increases at a specific temperature, and a method of manufacturing the same, particularly when used in a reducing gas atmosphere. The present invention relates to a highly reliable positive temperature coefficient thermistor with less characteristic deterioration and a method of manufacturing the same.
従来の技術 従来より良く知られているように、チタン酸バリウム
を主成分とし、ニオブあるいは希土類元素などで半導体
化させた正特性サーミスタは、通常スイッチング温度と
呼ばれる特定の温度以上で急激な抵抗値増加を示す。こ
の特性を利用して、発熱体としてあるいはテレビジョン
受像機の消磁回路のスイッチング素子などの広範な用途
に用いられている。2. Description of the Related Art As is well known, a positive temperature coefficient thermistor containing barium titanate as a main component and made into a semiconductor with niobium or a rare earth element has an abrupt resistance value above a specific temperature, which is usually called a switching temperature. Indicates an increase. Utilizing this characteristic, it is used for a wide range of applications such as a heating element or a switching element of a degaussing circuit of a television receiver.
発明が解決しようとする課題 このような正特性サーミスタの特性は、結晶粒界に依
存していることが古くから指摘されているが、還元性雰
囲気や中性雰囲気中で使用した場合には、抵抗値が大き
く低下したり、抵抗温度係数が著しく小さくなってしま
うなどの特性変化を起こす。従って、素子が直接このよ
うな雰囲気に触れないように工夫をする必要があった。
加えてガソリンや機械油,食用油,調味料などの有機成
分から成り、素子に付着した場合に還元作用を起こすも
のについても接触を防止する必要があり、その用途に限
られていた。Problems to be Solved by the Invention It has long been pointed out that the characteristics of such a positive temperature coefficient thermistor depend on crystal grain boundaries, but when used in a reducing atmosphere or a neutral atmosphere, This causes a characteristic change such as a large decrease in the resistance value and a remarkable decrease in the temperature coefficient of resistance. Therefore, it was necessary to devise a device so that the element did not directly come into contact with such an atmosphere.
In addition, it is necessary to prevent contact with substances that are composed of organic components such as gasoline, machine oil, edible oil, and seasonings, and that cause a reducing action when adhered to the element, thus limiting its use.
本発明は特に還元性雰囲気下で使用された場合に、特
性劣化が少なくかつ高信頼性の正特性サーミスタ及びそ
の製造方法を提供することを目的とするものである。It is an object of the present invention to provide a highly reliable positive temperature coefficient thermistor with a small characteristic deterioration particularly when used in a reducing atmosphere, and a method of manufacturing the same.
課題を解決するための手段 このような問題点を解決し、還元性雰囲気下で使用さ
れた場合でも特性劣化を少なくするため、本発明では正
の抵抗温度特性を有する半導体磁器の電極形成面以外の
面に絶縁体層を形成して成るものである。Means for Solving the Problems In order to solve such problems and reduce characteristic deterioration even when used in a reducing atmosphere, the present invention employs a semiconductor ceramic having a positive resistance temperature characteristic other than the electrode forming surface. Is formed by forming an insulator layer on the surface.
また、上記絶縁体層は半導体組成物の半導体化元素を
過剰量添加したものより構成される。Further, the insulator layer is formed by adding an excessive amount of a semiconductor element of the semiconductor composition.
さらに、上記絶縁体層は、粉体の成形時点で半導体磁
器の外周部に形成され、焼成により絶縁体層となるもの
である。Further, the insulator layer is formed on the outer peripheral portion of the semiconductor porcelain at the time of molding the powder, and becomes an insulator layer by firing.
作用 本発明によれば、正の抵抗温度特性を有する半導体磁
器の電極形成面以外の面、即ち外周部に絶縁体層を形成
することにより、半導体磁器と周囲雰囲気との接触を防
ぎ、還元雰囲気や還元性物質による特性劣化を防止する
ことができることとなる。According to the present invention, by forming an insulator layer on a surface other than the electrode forming surface of a semiconductor porcelain having a positive resistance temperature characteristic, that is, on an outer peripheral portion, contact between the semiconductor porcelain and the surrounding atmosphere is prevented, and a reducing atmosphere is formed. It is possible to prevent the characteristic deterioration due to a reducing substance or the like.
また、絶縁体層はその主成分が半導体磁器と同じであ
るため、素子の発熱、冷却に伴う熱膨張,収縮に際して
も、剥離したり亀裂が入ったりすることがないため、長
期の使用に耐えうるものである。In addition, since the main component of the insulator layer is the same as that of semiconductor porcelain, it does not peel or crack during thermal expansion and contraction due to heat generation and cooling of the element, so it can withstand long-term use. It is a good thing.
さらに、絶縁体層は粉体の成形時点で半導体磁器の外
周部に粉体の状態で形成され、その後の焼成で絶縁体層
となるため、強固な接合が得られ、長期の使用に耐えう
るものとなる。Furthermore, the insulator layer is formed in a powder state on the outer peripheral portion of the semiconductor porcelain at the time of molding the powder, and becomes an insulator layer by subsequent firing, so that a strong bonding is obtained and can withstand long-term use. It will be.
実施例 以下、本発明の一実施例について説明する。Example Hereinafter, an example of the present invention will be described.
まず、(Ba0.73Pb0.22Ca0.05)TiO3+0.001Nb2O5+0.
02SiO2+0.0033MnO2の組成と成るようにBaCO3,PbO,Ti
O2,Nb2O5,SiO2,MnO2を秤量を秤量し、通常の方法を用い
て混合し,仮焼,粉砕して半導体磁器粉末を得た。ま
た、上記組成のうちNb2O5量が各々0.005,0.010,0.050,
0.200モルとなるようにBaCo3,PbO,TiO2,Nb2O5,SiO2,MnO
2を秤量し、通常の方法を用いて混合,仮焼,粉砕して
4種類の絶縁体層用の粉末を得た。First, (Ba 0.73 Pb 0.22 Ca 0.05 ) TiO 3 + 0.001Nb 2 O 5 +0.
02 BaCO 3 , PbO, Ti so that the composition becomes SiO 2 + 0.0033MnO 2
O 2 , Nb 2 O 5 , SiO 2 , and MnO 2 were weighed, mixed using a usual method, calcined and pulverized to obtain a semiconductor ceramic powder. In the above composition, the amount of Nb 2 O 5 is 0.005, 0.010, 0.050,
BaCo 3 , PbO, TiO 2 , Nb 2 O 5 , SiO 2 , MnO
2 were weighed and mixed, calcined, and pulverized using a conventional method to obtain four types of powders for an insulator layer.
次いで、上記半導体磁器粉末にポリビニルアルコール
からなるバインダーを加え、粉体加圧成形により1平方
センチメートル当り300kgの圧力で直径35mm,厚さ3.2mm
円板状に成形した。Next, a binder made of polyvinyl alcohol was added to the semiconductor porcelain powder, and the powder was pressed under a pressure of 300 kg per square centimeter to a diameter of 35 mm and a thickness of 3.2 mm.
It was formed into a disk shape.
次に、この成形体を直径38mmの粉体加圧成形用金型中
央部に置き、成形体の周辺部に上記絶縁体層用粉末内
の、Nb2O5量が0.005モルの粉末にバインダーを加えた粉
末を充填し、1平方センチメートル当り1000kgの圧力で
加圧成形して、直径38mm,厚さ3mmの成形体を得た。Next, this compact was placed in the center of a powder pressure molding die having a diameter of 38 mm, and Nb 2 O 5 in the above-mentioned insulator layer powder was mixed with a powder having 0.005 mol of Nb 2 O 5 at the periphery of the compact. Was added thereto, and the mixture was press-molded at a pressure of 1000 kg per square centimeter to obtain a molded body having a diameter of 38 mm and a thickness of 3 mm.
この成形を1290℃で焼成したところ、焼成後の直径32
mm,厚さ2.5mmであり、亀裂のない平坦な磁器が得られ
た。次に、この磁器にNiメッキを形成した後、銀ペース
トを塗布,焼き付けし、電極とした後、側面の電極を削
除して試料を作製した。また、他の3種類の絶縁体層用
粉末についても同様にして試料を作製した。When this molding was fired at 1290 ° C, the diameter after firing was 32.
mm and a thickness of 2.5 mm, a crack-free flat porcelain was obtained. Next, after forming a Ni plating on the porcelain, a silver paste was applied and baked to form electrodes, and the electrodes on the side surfaces were deleted to prepare a sample. In addition, samples were prepared in the same manner for the other three types of insulator layer powders.
また、比較例として、上記半導体磁器粉末のみで成形
体を作製し、上記と同様に電極を形成した。In addition, as a comparative example, a molded body was prepared using only the semiconductor ceramic powder, and an electrode was formed in the same manner as described above.
第1図,第2図は上記のようにして作製された本発明
にかかる正特性サーミスタの斜視図及び斜面図であり、
図中1は半導体磁器、2は絶縁体層、3は電極である。1 and 2 are a perspective view and an oblique view of the positive temperature coefficient thermistor according to the present invention manufactured as described above.
In the figure, 1 is a semiconductor ceramic, 2 is an insulator layer, and 3 is an electrode.
以上の試料の抵抗値,温度特性を測定した後、窒素ガ
ス中で、100時間100Vの電圧を印可した後、試料を取出
し、通常雰囲気中の中で再び抵抗値,温度特性を測定し
た。その結果を下記の第1表に示す。After measuring the resistance and temperature characteristics of the above sample, a voltage of 100 V was applied in nitrogen gas for 100 hours, the sample was taken out, and the resistance and temperature characteristics were measured again in a normal atmosphere. The results are shown in Table 1 below.
比較例の試料番号1及び5では、第1表に示すように
窒素ガス中での通電後抵抗値に並びに抵抗値の変化幅が
著しく低下しているのに対し、本発明の実施例の試料番
号2及び3では、ほとんど特性が変化していない。 In the sample numbers 1 and 5 of the comparative examples, as shown in Table 1, the resistance value after the energization in nitrogen gas and the range of change in the resistance value were significantly reduced, whereas the sample numbers of the examples of the present invention were reduced. In the numbers 2 and 3, the characteristics hardly change.
これは、半導体磁器の側面が微細結晶粒子よりなる緻
密絶縁体層で覆われており、また電極形成面においても
緻密なNiメッキに覆われているため、外部雰囲気の影響
をほとんどうけることがないためと考えられる。This is because the side of the semiconductor porcelain is covered with a dense insulator layer made of fine crystal grains, and the electrode formation surface is also covered with dense Ni plating, so it is hardly affected by the external atmosphere It is thought to be.
なお、本発明において絶縁体材料における五酸化ニオ
ブ(Nb2O5)の添加量を0.01モル以上0.1モル未満とした
理由は、0.01モル未満では結晶粒子が十分微細化せず、
従って絶縁体層の緻密化が不十分なため、本発明の効果
を発揮することができないためである。これは五酸化ニ
オブの添加量が0.01モル以上では、絶縁体層粒径は2μ
m以下と微細でその気孔率は0.1%以下であるのに対
し、0.01モル未満では半導体磁器の粒径並びに気孔率と
ほとんど同じで、粒径5μm、気孔率0.5%以上となる
ためであると考えられる。In the present invention, the reason why the addition amount of niobium pentoxide (Nb 2 O 5 ) in the insulator material is 0.01 mol or more and less than 0.1 mol is that if it is less than 0.01 mol, the crystal grains are not sufficiently refined.
Therefore, the effect of the present invention cannot be exhibited due to insufficient densification of the insulator layer. This is because when the amount of niobium pentoxide added is 0.01 mol or more, the particle size of the insulator layer is 2 μm.
m and a porosity of 0.1% or less, whereas a porosity of less than 0.01 mol is almost the same as the particle size and porosity of the semiconductor porcelain, with a particle size of 5 μm and a porosity of 0.5% or more. Conceivable.
また、五酸化ニオブの添加量が0.1モルを超えると、
第1表に示すように過剰の五酸化ニオブが半導体磁器中
に拡散し、抵抗値の増加を招くという不都合が生じるた
めである。Also, if the amount of niobium pentoxide exceeds 0.1 mol,
This is because, as shown in Table 1, there is a disadvantage that excessive niobium pentoxide diffuses into the semiconductor ceramic and causes an increase in the resistance value.
なお、上記実施例ではチタン酸鉛,チタン酸カルシウ
ムを含むチタン酸バリウム系化合物について記述した
が、チタン酸バリウム系化合物についてはこれに限定さ
れるものではなく、チタン酸バリウムの一部が、チタン
酸ストロンチウム,スズ酸バリウム,ジルコン酸バリウ
ム,ジルコン酸カルシウムなどで置換された化合物でも
かまわない。In the above embodiment, a barium titanate-based compound containing lead titanate and calcium titanate was described. However, the barium titanate-based compound is not limited thereto, and a part of barium titanate may be replaced with titanium. Compounds substituted with strontium acid, barium stannate, barium zirconate, calcium zirconate, etc. may be used.
また、絶縁体層を形成する方法としては粉体加圧成形
を用いればどのような方法でもよく、例えば、半導体磁
器材料よりなる円板成形体と、この円板の直径と同じ寸
法の内径を持つ絶縁体材料よりなるリング状の成形体を
用意し、両者を嵌め合わせた後に、静水圧成形などの方
法により一体化して焼成してもよい。As a method of forming the insulator layer, any method may be used as long as powder pressure molding is used.For example, a disk molded body made of a semiconductor porcelain material and an inner diameter having the same dimension as the diameter of the disk may be used. A ring-shaped molded body made of an insulating material may be prepared, and after fitting both, they may be integrated and fired by a method such as hydrostatic molding.
発明の効果 以上詳述したように、本発明を用いることにより、中
性雰囲気あるいは還元性雰囲気で使用されても特性変化
の少ない正特性サーミスタを得ることができるものであ
り、その利用価値は大きい。Effect of the Invention As described in detail above, by using the present invention, it is possible to obtain a positive temperature coefficient thermistor having a small characteristic change even when used in a neutral atmosphere or a reducing atmosphere, and its utility value is great. .
第1図,第2図はそれぞれ本発明にかかる正特性サーミ
スタの一実施例を示す斜視図及び断面図である。 1……半導体磁器、2……絶縁体層、3……電極。1 and 2 are a perspective view and a sectional view, respectively, showing an embodiment of a positive temperature coefficient thermistor according to the present invention. 1 ... Semiconductor ceramic, 2 ... Insulator layer, 3 ... Electrode.
Claims (2)
五酸化ニオブを少なくとも含む正の抵抗温度特性を有す
る半導体磁器の電極形成面以外の面に絶縁体層が形成さ
れ、かつ上記絶縁体層は、チタン酸バリウム系化合物1
モルに対して五酸化ニオブを0.01モル以上0.1モル未満
含有する絶縁体材料よりなることを特徴とする正特性サ
ーミスタ。(1) a barium titanate-based compound as a main component,
An insulator layer is formed on a surface other than the electrode forming surface of the semiconductor porcelain having a positive resistance temperature characteristic containing at least niobium pentoxide, and the insulator layer is made of a barium titanate compound 1
A positive temperature coefficient thermistor comprising an insulating material containing 0.01 mol or more and less than 0.1 mol of niobium pentoxide based on mol.
五酸化ニオブ少なくとも含む正の抵抗温度特性を有する
半導体磁気組成物粉末を粉体加圧成形すると同時に、チ
タン酸バリウム系化合物1モルに対して五酸化ニオブを
0.01モル以上0.1モル未満含有する絶縁体粉末を外周部
に配置した状態で粉体加圧成形した後、焼成して絶縁体
層を形成することを特徴とする正特性サーミスタの製造
方法。2. A barium titanate-based compound as a main component,
The semiconductor magnetic composition powder having at least a positive resistance temperature characteristic containing at least niobium pentoxide is subjected to powder pressure molding, and simultaneously, niobium pentoxide is added to 1 mol of the barium titanate-based compound.
A method for producing a positive temperature coefficient thermistor, comprising: forming an insulator layer by subjecting an insulator powder containing 0.01 mol or more and less than 0.1 mol to an outer peripheral portion, followed by powder pressing and firing to form an insulator layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33809990A JP2864731B2 (en) | 1990-11-30 | 1990-11-30 | Positive characteristic thermistor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33809990A JP2864731B2 (en) | 1990-11-30 | 1990-11-30 | Positive characteristic thermistor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04206803A JPH04206803A (en) | 1992-07-28 |
JP2864731B2 true JP2864731B2 (en) | 1999-03-08 |
Family
ID=18314902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33809990A Expired - Fee Related JP2864731B2 (en) | 1990-11-30 | 1990-11-30 | Positive characteristic thermistor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2864731B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008036835A1 (en) | 2008-08-07 | 2010-02-18 | Epcos Ag | Heating device and method for producing the heating device |
DE102008036836A1 (en) | 2008-08-07 | 2010-02-11 | Epcos Ag | Shaped body, heating device and method for producing a shaped body |
-
1990
- 1990-11-30 JP JP33809990A patent/JP2864731B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04206803A (en) | 1992-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100284605B1 (en) | Piezoelectric Ceramic and Method for Producing Piezoelectric Ceramic Element | |
US4761711A (en) | Barrier layer ceramic dielectric capacitor containing barium plumbate | |
JP2864731B2 (en) | Positive characteristic thermistor and manufacturing method thereof | |
JPH05343202A (en) | Monolithic semiconductor ceramic for positive characteristic thermistor | |
JPH05144605A (en) | Positive temperature coefficient thermistor | |
JPH05144606A (en) | Positive temperature coefficient thermistor | |
JPH0652718A (en) | Dielectric porcelain and porcelain capacitor | |
JPH04299802A (en) | Positive temperature coefficient thermistor | |
JPH04299803A (en) | Positive temperature coefficient thermistor and manufacture thereof | |
JP3289379B2 (en) | High dielectric constant dielectric porcelain composition | |
JP2808758B2 (en) | Method for firing barium titanate-based semiconductor porcelain | |
JP3289377B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3223462B2 (en) | Method for producing reduction-reoxidation type varistor | |
JPH05144607A (en) | Positive temperature coefficient thermistor | |
JP2872513B2 (en) | Dielectric porcelain and porcelain capacitor | |
JP3319024B2 (en) | High dielectric constant dielectric porcelain composition | |
KR920001162B1 (en) | Barium titanate-baseo semi-conductor porcelain | |
JP3309477B2 (en) | High dielectric constant dielectric porcelain composition | |
JPH0561221B2 (en) | ||
JPH02141472A (en) | Dielectric porcelain composition | |
JPH0761896B2 (en) | Grain boundary insulating semiconductor ceramic composition and method for producing the same | |
JPH0761897B2 (en) | Grain boundary insulating semiconductor ceramic composition and method for producing the same | |
JPH02120277A (en) | Barium titanate semiconductor porcelain material | |
JPH0761898B2 (en) | Grain boundary insulating semiconductor ceramic composition and method for producing the same | |
JPH0761894B2 (en) | Grain boundary insulating semiconductor ceramic composition and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |