JPH02120277A - Barium titanate semiconductor porcelain material - Google Patents

Barium titanate semiconductor porcelain material

Info

Publication number
JPH02120277A
JPH02120277A JP63269542A JP26954288A JPH02120277A JP H02120277 A JPH02120277 A JP H02120277A JP 63269542 A JP63269542 A JP 63269542A JP 26954288 A JP26954288 A JP 26954288A JP H02120277 A JPH02120277 A JP H02120277A
Authority
JP
Japan
Prior art keywords
barium titanate
temperature
barium
titanium
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63269542A
Other languages
Japanese (ja)
Other versions
JPH0478579B2 (en
Inventor
Tetsuo Yamaguchi
哲生 山口
Keishin Ohara
佳信 尾原
Tetsuya Nishi
哲也 西
Naoki Katsuta
直樹 勝田
Yasuhiro Nakagami
中上 恭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP63269542A priority Critical patent/JPH02120277A/en
Publication of JPH02120277A publication Critical patent/JPH02120277A/en
Publication of JPH0478579B2 publication Critical patent/JPH0478579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To enable to lower the specific resistance value of the subject material at the ordinary temperature without affecting the positive resistance temperature coefficient thereof by substituting one part of TiO2 component of the porcelain material containing a semiconductor-forming additive for BaTiO3 with Ti2O3. CONSTITUTION:The barium component of barium carbonate, the titanium component of titanium dioxide and titanium trioxide(Ti2O3) and a semiconductor- forming additive (e.g., a rare metal element, Mn, Sb, SiO2) for barium titanate are mixed, molded and sintered (preferably at 1300-1500 deg.C for 1hr) to form a barium titanate semiconductor porcelain material. The addition of a Sr compound to the magnetic material mixture and also the addition of a Pb compound to the magnetic material mixture permit the transfer of the positive resistance temperature coefficient of the magnetic material to a lower temperature and to a higher temperature, respectively, and the adjustment of the addition amounts of both the components enables to adjust a temperature exhibiting the positive resistance temperature coefficient of the magnetic material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体磁器材料に関し、詳しくは常温における
比抵訊が低く、電圧依存性が小さく、さらに比較的大き
い正の抵抗温度特性を有するとともに高温における比抵
抗の低下がない半導体磁器材料に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor ceramic material, and more specifically, it has a low resistivity at room temperature, a small voltage dependence, and a relatively large positive resistance temperature characteristic. The present invention relates to a semiconductor ceramic material that does not have a decrease in resistivity at high temperatures.

本発明の半導体磁器材料は、温度制御および電流制御に
利用することができ、また消磁回路に利用することがで
きる。
The semiconductor ceramic material of the present invention can be used for temperature control and current control, and can also be used for degaussing circuits.

〔技術の背景および従来技術の説朗〕[Technical background and explanation of conventional technology]

チタン酸バリウムのセラミックスを、コンデンサ、圧電
体として利用することは従来より広く知られている。
It has been widely known that barium titanate ceramics can be used as capacitors and piezoelectric bodies.

チタン酸バリウムに希土類元素を極く少量添加すると、
その比抵祈がlO〜lOΩ・cmの一部の半導体となり
、そのキュリー点に対応する温度において正の抵抗温度
特性(Po5itive TemperatureCo
efficient  (PTC特性)〕を示すことは
1950年代に発見され、チタン酸バリウム系の半導体
磁器材料が開発されたが、自動制御の発展とともに、微
小電流で作動するデバイス等を使用することが多くなり
、最近では、その弱電化がさらに追んで、常温における
低い抵払値と大きい正の抵@温度特性を有する半導体の
開発が要望されている。チタン酸バリウムに、イツトリ
ウム(Y)、fN土類元元素3価の金属元素、およびア
ルカリ金属、タリウム等の1ofHの金属元素を加え、
焼成して室温付近の温度で大きい正の抵@温度特性を有
するチタン酸バリウム系の正特性半導体磁器を調音する
方法が提案され(特開昭58−107603号公報)、
またチタン酸バリウム系半導体におけるバリウム(Ba
)の一部をストロンチウム(Sr)で置換することによ
り正の抵抗温度特性(PTC特性)を示す温度を低温側
に移動すること、およびそのバリウムの一部を鉛(pb
)で置換することによりPTC特性を示す温度を高温側
に移動することは広く知られており、またチタン酸バリ
ウムのバリウム(Ba)の一部をストロンチウム(Sr
)および鉛(pb)で置換し、そのチタン酸バリウムに
希土類元素およびビスマス(Bi)、アンチモン(sb
)、ニオブ(Nb)、タンタル(Ta)のうちのlN以
上、マンガン(Mn)、鉄(Fe)および飼(Cu)の
うちの1種以上、およびシリカ(510゜)およびアル
ミナ(AIO)を添加して焼成したものであって、電圧
依存性が小さく、耐電圧が高い特性を有するチタン酸バ
リウム系半導体磁器が提案されている(特開昭53−9
8095号公報)。
When a very small amount of rare earth elements are added to barium titanate,
The resistivity becomes a part of a semiconductor with a range of 1O to 1OΩ・cm, and it exhibits a positive resistance-temperature characteristic (Po5itive TemperatureCo) at the temperature corresponding to its Curie point.
PTC characteristics) was discovered in the 1950s, and barium titanate-based semiconductor porcelain materials were developed, but with the development of automatic control, devices that operate with minute currents are increasingly used. Recently, with the trend towards weaker electrical currents, there has been a demand for the development of semiconductors that have a low resistance value at room temperature and a large positive resistance@temperature characteristic. Adding yttrium (Y), fN earth element trivalent metal element, and 1ofH metal element such as alkali metal and thallium to barium titanate,
A method has been proposed for tuning barium titanate-based positive characteristic semiconductor porcelain which has a large positive resistance@temperature characteristic at a temperature near room temperature by firing (Japanese Patent Application Laid-Open No. 107603/1982).
In addition, barium (Ba) in barium titanate-based semiconductors
) by replacing part of the barium with strontium (Sr) to move the temperature exhibiting positive resistance-temperature characteristics (PTC characteristics) to a lower temperature side, and replacing part of the barium with lead (pb).
) is widely known to shift the temperature exhibiting PTC characteristics to a higher temperature side.
) and lead (pb), and the barium titanate is replaced with rare earth elements, bismuth (Bi), and antimony (sb).
), niobium (Nb), tantalum (Ta), one or more of manganese (Mn), iron (Fe) and copper (Cu), and silica (510°) and alumina (AIO). Barium titanate-based semiconductor porcelain has been proposed, which is made by adding additives and firing, and has characteristics of low voltage dependence and high withstand voltage (Japanese Patent Laid-Open No. 53-9
Publication No. 8095).

またチタン酸バリウム系の正の抵抗温度特性を存する半
導体磁器の製造において、半導体化促進剤としてバリウ
ム−チタニウム−シリケートまたはバリウム−シリケー
ト系化合物を添加し、焼成して正の抵抗温度特性を存す
る比抵抗のバラツキをかさくシ、その比抵抗を低下する
ことが提案されているが(特開昭57−109301号
公報)、シリケート成分(Sin)の添加は、バリウム
(Ba)とチタン(T1)の比率の調整を必要とする。
In addition, in the production of barium titanate-based semiconductor porcelain that has positive resistance-temperature characteristics, barium-titanium-silicate or barium-silicate-based compounds are added as a semiconductor accelerator, and the ratio of barium titanate-based ceramics that exhibits positive resistance-temperature characteristics is added by firing. It has been proposed to reduce the variation in resistance and lower the specific resistance (Japanese Patent Application Laid-open No. 109301/1983), but the addition of a silicate component (Sin) is effective against barium (Ba) and titanium (T1). It is necessary to adjust the ratio of

またチタン酸バリウム組成物のチタン(Ti)の−部を
タングステン−亜鉛(W−Zn)またはタングステン−
マグネシウム(W−Mg)で置換えたチタン酸バリウム
系半導体磁器が提案されているが(特開昭56−169
302号公報)、イオン半径の相違によって固溶体を形
成し難いと考えられる。
Alternatively, the negative part of titanium (Ti) in the barium titanate composition may be replaced with tungsten-zinc (W-Zn) or tungsten-zinc (W-Zn).
A barium titanate semiconductor porcelain substituted with magnesium (W-Mg) has been proposed (Japanese Patent Laid-Open No. 56-169).
302), it is thought that it is difficult to form a solid solution due to the difference in ionic radius.

本発明者らは、チタン酸バリウムの圧電性について研究
を続け、−軸方向に配列したチタン酸バリウムを合成樹
脂マトリックスに配列することによって、優れた圧電性
を有するチタン酸バリウム複合圧電素子材料を提案した
が(特願昭62−97号)、チタン酸バリウムの電気特
性について研究を砿太し、その研究においてチタン酸バ
リウムにおける酸化チタンの一部を亜酸化チタン(Tt
o)で置換すると、正の抵抗温度特性(ある温度におい
て比抵抗が急激に増大する特性)に影響を及ぼすことな
く、常温における比抵抗の値が低下することを見出し、
その知見に基づいて本発明に到達した。
The present inventors continued research on the piezoelectricity of barium titanate, and created a barium titanate composite piezoelectric element material with excellent piezoelectricity by arranging barium titanate arranged in the -axial direction in a synthetic resin matrix. (Japanese Patent Application No. 1983-1997), but extensive research was conducted into the electrical properties of barium titanate, and in this research, some of the titanium oxide in barium titanate was replaced with titanium suboxide (Tt
It has been discovered that when substituted with o), the value of specific resistance at room temperature decreases without affecting the positive resistance-temperature characteristics (characteristics in which specific resistance rapidly increases at a certain temperature),
Based on this knowledge, we have arrived at the present invention.

〔発明の目的および発明の要約〕[Object of the invention and summary of the invention]

本発明の目的は、チタン酸バリウム系半導体磁器材料を
提供することにあり、詳しくは正の抵抗温度特性に影響
を及ぼすことなく、常温における比抵折僅の低下したチ
タン酸バリウム系半導体磁器材料を提供することにある
An object of the present invention is to provide a barium titanate-based semiconductor ceramic material, and more specifically, a barium titanate-based semiconductor ceramic material that exhibits a slight decrease in specific resistance at room temperature without affecting the positive resistance-temperature characteristics. Our goal is to provide the following.

本発明は、チタン酸バリウムの半導体化添加剤を含むチ
タン酸バリウム系半導体磁器材料において、酸化チタン
成分の一部を亜酸化チタン(Tie  、二三酸化チタ
ン)とし、それによって正の抵@温度特性に影響を及ぼ
すことなく、常温における比抵択値を低下したことを特
徴とするチタン酸バリウム半導体磁器材料である。
The present invention provides a barium titanate-based semiconductor ceramic material containing a barium titanate semiconductor additive, in which a part of the titanium oxide component is titanium suboxide (Tie, titanium ditrioxide), thereby increasing the positive resistance @ temperature. This barium titanate semiconductor ceramic material is characterized by a reduced specific resistance value at room temperature without affecting its properties.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明のチタン酸バリウム系半導体磁器材料は、炭酸バ
リウムのバリウム成分、酸化チタンおよび亜酸化チタン
(Tie、二三酸化チタン)のチタニウム成分およびチ
タン酸バリウムの半導体化添加剤の粉末を混合し、成形
して材料混合物の成形体とし、その成形体を焼成するこ
とによって、つくられる。
The barium titanate-based semiconductor ceramic material of the present invention is obtained by mixing a barium component of barium carbonate, a titanium component of titanium oxide and titanium suboxide (Tie, titanium ditrioxide), and a semiconductor additive powder of barium titanate, It is produced by molding a material mixture into a molded body and firing the molded body.

本発明のチタン酸バリウム系半導体磁器材器におけるチ
タン酸バリウムの半導体化添加剤は、チタン酸バリウム
に正の抵抗温度特性を付与するものであれだ、これまで
に知られたどのようなものであっても、これを用いるこ
とができるが、希土類元素、マンガン、アンチモン、酸
化ケイ素(SiO)を用いることができる。
The semiconducting additive for barium titanate in the barium titanate-based semiconductor porcelain material of the present invention may be any known additive that imparts positive resistance-temperature characteristics to barium titanate. If present, this can be used, but rare earth elements, manganese, antimony, and silicon oxide (SiO) can be used.

本発明のチタン酸バリウム系半導体磁器材料において、
材料混合物に、ストロンチウム化合物を加え、それによ
ってチタン酸バリウム系半導体磁器材料の正の抵抗温度
特性(PTC特性)を示す温度を低温側に移動し、また
鉛化合物を加え、それによってその正の抵@温度特性(
PTC特性)を示す温度を高温側に移動し、さらにこの
両者の添加量の調整によって、チタン酸バリウム系半導
体磁器材料の正の抵抗温度特性(PTC特性)を示す温
度を調整することができる。
In the barium titanate-based semiconductor ceramic material of the present invention,
A strontium compound is added to the material mixture, thereby shifting the temperature at which the barium titanate-based semiconductor ceramic material exhibits a positive resistance-temperature characteristic (PTC characteristic) to a lower temperature side, and a lead compound is added, thereby increasing the positive resistance. @Temperature characteristics (
By moving the temperature at which the barium titanate-based semiconductor ceramic material exhibits the positive resistance-temperature characteristic (PTC characteristic) to a higher temperature side and further adjusting the amounts of both, it is possible to adjust the temperature at which the barium titanate-based semiconductor ceramic material exhibits the positive resistance-temperature characteristic (PTC characteristic).

本発明のチタン酸バリウム系半導体磁器材料のIII造
において、前記の成形体の焼結における加熱条件は、チ
タン酸バリウムの半導体化を達成しうる温度および時間
のどのような条件であってもよいが、1300〜150
0℃において少なくとも1時間程度であるのが好ましい
In the third production of the barium titanate-based semiconductor ceramic material of the present invention, the heating conditions for sintering the molded body may be any temperature and time conditions that can achieve the conversion of barium titanate into a semiconductor. But 1300-150
Preferably, the heating time is at least about 1 hour at 0°C.

以下において、本発明を実施例および比較例によりさら
に詳しく説明する。
In the following, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 高純度炭酸バリウム (口acO、堺化学製)        679.94
 /i高純度炭酸ストロンチウム (SrCO、本荘ケミカル社製)    26.77.
9酸化チタン (TIO、東邦チタニウム社製)   288.33 
/1酸化アンチモン(99,9%) (sbo、レアメタリック社製1   1.0572 
/1炭酸マンガン(99,9%) (Mnco  、和光純薬社製)       0.2
0849酸化ケイ素(99,9%) (StO、レアメタリック社製)    1.0896
9亜酸化チタン (TI303、東邦チタニウム社製)    2.60
76 Fをナイロン製ボールミル用ポット(容量 : 
57りに入れ、これにイオン交換水37!を入れ、さら
に鉄心入りナイロンボール(25朋φ)40個を入れ、
ボールミル用ポットの蓋を閉ぢて密閉し、ボールミル混
合を24時間行なった。ボールミルの中味を濾紙により
濾過してペースト状の混合物を取得し、これを蒸発皿に
移し、乾燥器に入れて+30’(:において16時間乾
燥して、乾O粉末1ooo gを得た。
Example 1 High purity barium carbonate (ACO, manufactured by Sakai Chemical) 679.94
/i High purity strontium carbonate (SrCO, manufactured by Honjo Chemical Co., Ltd.) 26.77.
Titanium 9 oxide (TIO, manufactured by Toho Titanium Co., Ltd.) 288.33
/antimony oxide (99.9%) (sbo, manufactured by Rare Metallic Co., Ltd. 1 1.0572
/1 Manganese carbonate (99.9%) (Mnco, manufactured by Wako Pure Chemical Industries) 0.2
0849 Silicon oxide (99.9%) (StO, manufactured by Rare Metallic) 1.0896
9 Titanium suboxide (TI303, manufactured by Toho Titanium Co., Ltd.) 2.60
76F in a nylon ball mill pot (capacity:
Add 37 liters of ion-exchanged water to this! Then add 40 nylon balls (25 mm φ) with iron core,
The lid of the ball mill pot was closed and airtight, and ball mill mixing was performed for 24 hours. The contents of the ball mill were filtered through a filter paper to obtain a pasty mixture, which was transferred to an evaporating dish and dried in an oven at +30' for 16 hours to obtain 100 g of dry O powder.

乾燥粉末を乳鉢に入れて粉砕し、メツシュ(4251J
rrL)を通した。メツシュを通過した乾燥粉末を粉末
成形金型に入れ、300 Kg / caの加圧の下に
成形して、円盤状の成形体を得た。この成形体を電気炉
に入れ、1150℃において2時間熱処理(焼結)を行
なった。
Place the dry powder in a mortar, crush it, and use mesh (4251J).
rrL). The dry powder that had passed through the mesh was put into a powder molding mold and molded under a pressure of 300 Kg/ca to obtain a disc-shaped molded body. This molded body was placed in an electric furnace and heat treated (sintered) at 1150°C for 2 hours.

成形体を冷却し、乳鉢において粗粉砕した後、振動ボー
ルミルのナイロンポット0.71容の容器2個に等分し
て入れ、さらにこれにイオン交換水0.41を入れ、焼
成物の湿式粉砕を行ない、スラリー状の粉体0.61を
得た。
After cooling the molded body and coarsely pulverizing it in a mortar, it was equally divided into two 0.71-volume nylon pot containers of a vibrating ball mill, and 0.41 ml of ion-exchanged water was added thereto, and the fired product was wet-pulverized. A slurry-like powder of 0.61% was obtained.

このスラリーに15%ポリビニルアルコール(ゴーセノ
ール、日本合成化学社製品)140gを加え、その混合
物を撹拌機において混合した後、そのスラリーをスプレ
ードライヤー(アトマイザ−式L−8型、大川原化工機
社製)により白粉乾燥して、乾Q粒体(数十μm)5o
ogを得た。乾燥粒体を成形用金型(12,5龍(径)
X2mm(深さ)〕に入れ、1 ton /cyiの加
圧においてプレス成形し、得られた円盤状の成形体(1
2,5mg(径)×2■(厚さ)〕をアルミナ板上に積
み重ねて、電気炉に入れ、1360℃において1.5時
間熱処理(焼結)を行なった。焼結後の円盤状の焼結体
は101011I径)Xl、7朋(厚さ)のサイズのも
のであった。
Add 140 g of 15% polyvinyl alcohol (Gohsenol, manufactured by Nippon Gosei Kagaku Co., Ltd.) to this slurry, mix the mixture in a stirrer, and then apply the slurry to a spray dryer (atomizer type L-8 type, manufactured by Okawara Kakoki Co., Ltd.). Dry white powder and dry Q granules (several tens of μm) 50
I got og. A mold for molding the dry granules (12.5 yen (diameter)
x 2 mm (depth)] and press-molded at a pressure of 1 ton/cyi to obtain a disc-shaped molded body (1
2.5 mg (diameter) x 2 mm (thickness)] were stacked on an alumina plate, placed in an electric furnace, and heat-treated (sintered) at 1360° C. for 1.5 hours. The disk-shaped sintered body after sintering had a size of 101011I (diameter) Xl and 7 mm (thickness).

(電気低損の測定) 上記で得た円盤状の焼結体の両面にオーミック電極ペー
スト(デグサー社製)を塗布した後、500℃において
5分加熱してff1Mを焼付け、その電極上にカバー銀
電極ペースト(デグサー社製)を塗布し、500℃にお
いてさらに焼付けを行なって測定用サンプルを得た。
(Measurement of low electrical loss) After applying ohmic electrode paste (manufactured by Degusr) to both sides of the disc-shaped sintered body obtained above, heat it at 500°C for 5 minutes to bake ff1M, and cover the electrode. A silver electrode paste (manufactured by Degusser) was applied and further baked at 500°C to obtain a measurement sample.

測定用サンプルの両面のshにリード線をハンダ付けし
、その測定用サンプルを、測定用恒温槽(ミニサブゼロ
、ダバイ社製)に入れ、リード線は測定用恒温槽外に引
き出し、電気紙VL測定器(マルチメーター、YHP社
製)に結線した。
Solder lead wires to sh on both sides of the measurement sample, place the measurement sample in a thermostatic chamber for measurement (Mini Sub Zero, manufactured by Dabai), pull out the lead wires outside the thermostatic chamber for measurement, and place the electrical paper VL. It was connected to a measuring device (multimeter, manufactured by YHP).

測定用恒温槽の温度を室温から180℃まで上昇し、各
測定温度における測定用サンプルの電気抵抗値を読み取
り、次式によって比抵折を算出した。
The temperature of the thermostatic chamber for measurement was raised from room temperature to 180° C., the electrical resistance value of the measurement sample at each measurement temperature was read, and the specific resistance was calculated using the following formula.

R−ρ− R:電気抵抗の実測値 ρ :比抵抗(Ω・ff1)  (算出値)t:測定用
サンプルの厚み(電極間の距離)(朋)S:電極の面積
(H) 測定の結果は第1図に示すとおりであった。
R-ρ- R: Actual value of electrical resistance ρ: Specific resistance (Ω・ff1) (Calculated value) t: Thickness of measurement sample (distance between electrodes) (B) S: Area of electrode (H) Measurement The results were as shown in Figure 1.

実施例2 実施例1において、円盤状の焼結体の調製における最終
の焼結における焼結の条件を1360℃、1時間とした
こと以外は実施例1と同様にして、測定用サンプルを調
製し、さらに実施例1と同様にして、測定用サンプルの
電気抵抗値を測定し、さらに比抵抗(Ω・Cm)を算出
した。
Example 2 A sample for measurement was prepared in the same manner as in Example 1, except that the sintering conditions in the final sintering in the preparation of the disc-shaped sintered body were 1360 ° C. for 1 hour. Furthermore, in the same manner as in Example 1, the electrical resistance value of the measurement sample was measured, and the specific resistance (Ω·Cm) was calculated.

測定の結果は第2図に示すとおりであった。The measurement results were as shown in Figure 2.

比較例1 (従来法) 高J@度炭酸バリウム (BaCO、堺化学製)       680.72 
g高純度炭酸ストロンチウム (SrCO、本荘ケミカル社製)   26.8071
酸化チタン (TION東邦チタニウム社製)  290.129酸
化アンチモン (SbO、レアメタリック社製)   1.05841
1炭酸マンガン(99,9%) (MnCO、和光純薬社製)      0.2087
1酸化ケイ素(99,9%) (SiO、レアメタリック社製)   +、09081
!を原料としたこと以外は、実施例1と同様にして、測
定用サンプルを調製し、さらに実施例1と同様にして、
電気抵抗値を測定し、さらに比抵抗を算出した。
Comparative Example 1 (Conventional method) High J@degree barium carbonate (BaCO, manufactured by Sakai Chemical) 680.72
gHigh-purity strontium carbonate (SrCO, manufactured by Honjo Chemical Co., Ltd.) 26.8071
Titanium oxide (TION manufactured by Toho Titanium Co., Ltd.) 290.129 Antimony oxide (SbO, manufactured by Rare Metallic Co., Ltd.) 1.05841
Manganese monocarbonate (99.9%) (MnCO, manufactured by Wako Pure Chemical Industries) 0.2087
Silicon monoxide (99.9%) (SiO, manufactured by Rare Metallic) +, 09081
! A sample for measurement was prepared in the same manner as in Example 1, except that the raw material was used, and in the same manner as in Example 1,
The electrical resistance value was measured and the specific resistance was calculated.

測定の結果は第3図に示すとおりであった。The measurement results were as shown in Figure 3.

比較例2 比較例1の原料を使用し、円盤状の焼結体の調製におけ
る最終の焼結の焼結条件を1360’(:、 1時間と
したこと以外は、実皿例1と同様にして、測定用サンプ
ルを調製し、さらに実施例1と同様にして、測定用サン
プルの電気抵抗値を測定し、さらに比抵抗(Ω・cm)
を算出した。
Comparative Example 2 The raw material of Comparative Example 1 was used, and the sintering conditions for the final sintering in the preparation of a disk-shaped sintered body were set to 1360' (:, 1 hour), but the same procedure as in Example 1 was carried out. Then, a measurement sample was prepared, and the electrical resistance value of the measurement sample was measured in the same manner as in Example 1, and the specific resistance (Ω cm) was measured.
was calculated.

測定の結果は第4図に示すとおりであった。The measurement results were as shown in FIG.

実施例1および2 (本発明)、ならびに比較例1およ
び2 (従来法)の測定の結果を比較すると、第1表に
示すとおりであった。
A comparison of the measurement results of Examples 1 and 2 (invention) and Comparative Examples 1 and 2 (conventional method) was as shown in Table 1.

第1表 実施例および比較例における 〔発朗の効果〕 チタン酸バリウム系の半導体磁器材料のPT(特性に影
響を及ぼすことなく、常温における比抵抗を低下するこ
とができる。
Table 1 [Effects of heating] in Examples and Comparative Examples PT of barium titanate-based semiconductor ceramic materials (resistivity at room temperature can be lowered without affecting properties).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1のチタン酸バリウム系半導体磁器材
料の抵抗−温度特性図、第2図は実施例2−のチタン酸
バリウム系半導体磁器材料の抵抗−温度特性図、第3図
は、比較例1のチタン酸バリウム系半導体磁器材料の抵
抗−温度特性図、および第4図は比較例2のチタン酸バ
リウム系半導体磁器材料の抵抗−温度特性図である。 AJセ 4t!  こ S 出願人 積水化成品工業株式会社
FIG. 1 is a resistance-temperature characteristic diagram of the barium titanate-based semiconductor ceramic material of Example 1, FIG. 2 is a resistance-temperature characteristic diagram of the barium titanate-based semiconductor ceramic material of Example 2-, and FIG. , a resistance-temperature characteristic diagram of the barium titanate-based semiconductor ceramic material of Comparative Example 1, and FIG. 4 is a resistance-temperature characteristic diagram of the barium titanate-based semiconductor ceramic material of Comparative Example 2. AJ Se 4t! S Applicant Sekisui Plastics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)チタン酸バリウムの半導体化添加剤を含むチタン
酸バリウム系半導体磁器材料において、酸化チタン成分
の一部が亜酸化チタンであることを特徴とするチタン酸
バリウム系半導体磁器材料。
(1) A barium titanate semiconductor ceramic material containing a barium titanate semiconductor additive, characterized in that a part of the titanium oxide component is titanium suboxide.
JP63269542A 1988-10-27 1988-10-27 Barium titanate semiconductor porcelain material Granted JPH02120277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269542A JPH02120277A (en) 1988-10-27 1988-10-27 Barium titanate semiconductor porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269542A JPH02120277A (en) 1988-10-27 1988-10-27 Barium titanate semiconductor porcelain material

Publications (2)

Publication Number Publication Date
JPH02120277A true JPH02120277A (en) 1990-05-08
JPH0478579B2 JPH0478579B2 (en) 1992-12-11

Family

ID=17473828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269542A Granted JPH02120277A (en) 1988-10-27 1988-10-27 Barium titanate semiconductor porcelain material

Country Status (1)

Country Link
JP (1) JPH02120277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538801U (en) * 1991-10-30 1993-05-25 株式会社村田製作所 Positive characteristic thermistor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538801U (en) * 1991-10-30 1993-05-25 株式会社村田製作所 Positive characteristic thermistor element

Also Published As

Publication number Publication date
JPH0478579B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
US4379319A (en) Monolithic ceramic capacitors and improved ternary ceramic compositions for producing same
WO2008050875A1 (en) Semiconductor ceramic composition and method for producing the same
WO1999013479A1 (en) Method of producing semiconductor ceramic having positive temperature coefficient
JPH0226866A (en) Semiconductor ceramic composition
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
Nam et al. Effect of A-site off-stoichiometry on ferroelectric and piezoelectric properties of BaTiO3–Bi (Mg1/2Ti1/2) O3–BiFeO3 ceramics
US6071842A (en) Barium titanate-based semiconductor ceramic
JPH02120277A (en) Barium titanate semiconductor porcelain material
JPH01143202A (en) Positive temperature coefficient(ptc) thermister for moderate high temperature
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH03155352A (en) Small direct current motor
JP2864731B2 (en) Positive characteristic thermistor and manufacturing method thereof
JPH08124781A (en) Manufacture of semiconductor ceramic
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH0822773B2 (en) Method for manufacturing barium titanate porcelain semiconductor
JP4099979B2 (en) Piezoelectric ceramic composition
KR920001162B1 (en) Barium titanate-baseo semi-conductor porcelain
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JP2690597B2 (en) Method for producing barium titanate porcelain semiconductor
JP2705019B2 (en) Porcelain semiconductor composition and method for producing the same
JPH01230202A (en) Thermistor material having positive characteristics and manufacture thereof
JPH01228103A (en) Thermistor material and manufacture thereof
JPH06196769A (en) Piezoelectric porcelain material
JPS5919442B2 (en) Semiconductor ceramic material and its manufacturing method
JPH02283665A (en) Production of barium titanate porcelain semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees