JPH0538801U - Positive characteristic thermistor element - Google Patents

Positive characteristic thermistor element

Info

Publication number
JPH0538801U
JPH0538801U JP8931891U JP8931891U JPH0538801U JP H0538801 U JPH0538801 U JP H0538801U JP 8931891 U JP8931891 U JP 8931891U JP 8931891 U JP8931891 U JP 8931891U JP H0538801 U JPH0538801 U JP H0538801U
Authority
JP
Japan
Prior art keywords
electrode
paste
electrodes
ptc element
ptc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8931891U
Other languages
Japanese (ja)
Inventor
淳 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP8931891U priority Critical patent/JPH0538801U/en
Publication of JPH0538801U publication Critical patent/JPH0538801U/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】 【目的】 Agペーストの焼付け温度の如何に関わらず
安定な特性を実現することができ、かつ経時による電極
−素子間の接触抵抗の変動が生じ難い寿命特性に優れた
PTC素子を得る。 【構成】 PTC素体2の両主面に、Ni−B合金めっ
き層よりなる第1の段3a,3bを形成し、第1の電極
3a,3b上にAgペーストを焼き付けることにより第
2の電極4a,4bが形成されているPTC素子1。
(57) [Abstract] [Purpose] A PTC that can realize stable characteristics regardless of the baking temperature of the Ag paste and that has excellent life characteristics in which the contact resistance between the electrode and the element hardly changes over time. Get the element. [Structure] First steps 3a and 3b made of Ni-B alloy plating layers are formed on both main surfaces of a PTC element body 2, and Ag paste is baked onto the first electrodes 3a and 3b to form a second step. A PTC element 1 on which electrodes 4a and 4b are formed.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、半導体磁器の両主面に電極を形成してなる正特性サーミスタ素子に 関し、特に、半導体磁器の比抵抗が低い低抵抗型の正特性サーミスタ素子に関す る。 The present invention relates to a positive characteristic thermistor element having electrodes formed on both main surfaces of a semiconductor ceramic, and more particularly to a low resistance type positive characteristic thermistor element having a low specific resistance of the semiconductor ceramic.

【0002】[0002]

【従来の技術】[Prior Art]

近年、正特性サーミスタ(以下、PTC)素子の低抵抗化が進んでおり、比抵 抗が15Ω・cm以下の低抵抗のPTC素体を用いた低抵抗型のPTC素子が開 発されている。この種の低抵抗型のPTC素子の電極としては、以下のような2 種類の電極が用いられている。 (1)半導体磁器の両主面にNiを無電解めっきし、形成されたNi電極上に Agペーストを塗布し、焼き付けることによりAg電極を形成したもの。 (2)例えばGaのようなオーミック成分を含有するAgペーストを焼き付け て形成された電極。 In recent years, the resistance of positive temperature coefficient thermistors (hereinafter referred to as PTC) elements has been reduced, and low resistance type PTC elements using a low resistance PTC element with a specific resistance of 15 Ω · cm or less have been developed. .. The following two types of electrodes are used as electrodes of this type of low resistance PTC element. (1) Electroless plating of Ni on both main surfaces of a semiconductor porcelain, Ag paste is applied on the formed Ni electrode, and baked to form an Ag electrode. (2) An electrode formed by baking an Ag paste containing an ohmic component such as Ga.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、(1)のNi電極及びAg電極を積層した電極構造では、Ag ペーストを焼き付ける温度によって、電極−素子間の接触抵抗が大きく変化する という問題があった。すなわち、図2に示すように、例えば550℃以上の温度 でAgペーストを焼き付けた場合には、素子抵抗が大幅に上昇するという問題が あった。他方、例えば500℃以下のように比較的低い温度でAgペーストを焼 き付けた場合には、素子抵抗は図2に示すようにさほど変化しないが、Ag電極 の寿命が短縮したり、あるいはAg電極の焼結不十分により耐はんだ喰われ性が 劣化するという問題があった。 However, in the electrode structure of (1) in which the Ni electrode and the Ag electrode are laminated, there is a problem that the contact resistance between the electrode and the element largely changes depending on the temperature at which the Ag paste is baked. That is, as shown in FIG. 2, for example, when the Ag paste is baked at a temperature of 550 ° C. or higher, there is a problem that the element resistance increases significantly. On the other hand, when the Ag paste is baked at a relatively low temperature of, for example, 500 ° C or less, the element resistance does not change so much as shown in Fig. 2, but the life of the Ag electrode is shortened, or There was a problem that solder erosion resistance deteriorates due to insufficient electrode sintering.

【0004】 従って、(1)の電極を形成するにあたっては、Agペーストを焼き付ける温 度を厳格にコントロールしなければならず、信頼性に優れた安定な特性のPTC 素子を生産することが非常に難しかった。 (2)のようにオーミック成分含有Agペーストを塗布し、焼き付けて電極を 形成する場合には、上記のような電極−素子間の接触抵抗の変動は生じ難い。し かしながら、オーミック成分含有Agペーストを焼き付けて形成される電極は、 寿命特性が十分でなく、経時により電極−素子間の接触抵抗が高くなるという問 題があった。特に、低抵抗型のPTC素子では、PTC素体の抵抗が低いため、 電極−素子間の接触抵抗が経時により僅かでも上昇すると、素子全体の抵抗が大 幅に変動しがちであった。Therefore, when forming the electrode of (1), it is necessary to strictly control the temperature at which the Ag paste is baked, and it is very difficult to produce a PTC element with excellent reliability and stable characteristics. was difficult. When the ohmic component-containing Ag paste is applied and baked to form the electrode as in (2), the above-mentioned variation in the contact resistance between the electrode and the element is unlikely to occur. However, there is a problem that the electrode formed by baking the Ag paste containing the ohmic component does not have sufficient life characteristics and the contact resistance between the electrode and the element increases with time. In particular, in a low-resistance type PTC element, the resistance of the PTC element body is low, so that even if the contact resistance between the electrode and the element slightly increases over time, the resistance of the entire element tends to fluctuate significantly.

【0005】 本考案の目的は、特性が安定しており、かつ経時による電極−素子間の接触抵 抗の変動の生じ難い寿命特性に優れたPTC素子を得ることにある。An object of the present invention is to obtain a PTC element having stable characteristics and excellent in life characteristics in which the contact resistance between the electrode and the element hardly changes over time.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、半導体磁器の両主面に電極を形成してなる正特性サーミスタ素子に おいて、上記電極が、Ni−B合金めっき層よりなる第1の電極と、該第1の電 極上に形成されており、かつAgペーストを焼き付けることにより形成された第 2の電極とを備えることを特徴とする。 The present invention provides a positive temperature coefficient thermistor device in which electrodes are formed on both main surfaces of a semiconductor porcelain, wherein the electrodes are a first electrode made of a Ni-B alloy plating layer and a first electrode on the first electrode. And a second electrode formed by baking an Ag paste.

【0007】[0007]

【作用】[Action]

本考案では、第1の電極が、Ni−B合金により構成されている。Ni−B合 金は酸化し難い。従って、上面にAgペーストを焼き付けてもNi−B合金面自 体が安定しているため、Agペーストを焼き付ける温度によって電極抵抗の変化 が生じ難い。よって、Agペーストの焼付け温度を厳格にコントロールすること なく、安定な特性のPTC素子を得ることができる。 しかも、Ni−B合金による第1の電極及びAgペーストを焼き付けることに より形成される第2の電極は、経時による電極抵抗の上昇が生じ難い。従って、 寿命特性に優れたPTC素子が得られる。 In the present invention, the first electrode is made of a Ni-B alloy. Ni-B alloy is difficult to oxidize. Therefore, even if the Ag paste is baked on the upper surface, the Ni-B alloy surface itself is stable, so that the electrode resistance hardly changes depending on the baking temperature of the Ag paste. Therefore, it is possible to obtain a PTC element having stable characteristics without strictly controlling the baking temperature of the Ag paste. In addition, the electrode resistance of the first electrode made of the Ni-B alloy and the second electrode formed by baking the Ag paste hardly increases with time. Therefore, a PTC element having excellent life characteristics can be obtained.

【0008】[0008]

【実施例の説明】 図1は、本考案の一実施例にかかるPTC素子を示す断面図である。PTC素 子1は、チタン酸バリウム系半導体磁器のような半導体セラミックスよりなるP TC素体2を用いて構成されている。PTC素体2は、円板状あるいは角板状等 の任意の形状に構成され得る。PTC素体2の両主面には、BをNiに対して1 重量%以下の割合で含有するNi−B合金からなる第1の電極3a,3bが全面 に形成されている。Ni−B合金からなる第1の電極3a,3bは、PTC素体 2の両主面をNi−B合金で無電解めっきすることにより形成される。 本実施例のPTC素子1では、上記第1の電極3a,3b上に、Agペースト を塗布し、焼き付けることにより、第2の電極4a,4bが形成されている。第 2の電極4a,4bは、Agに有機ビヒクル及びバインダを混練して得られたA gペーストを塗布し、焼き付けるという、従来より公知の電極形成法により形成 される。Description of Embodiments FIG. 1 is a sectional view showing a PTC element according to an embodiment of the present invention. The PTC element 1 is configured by using a PTC element body 2 made of a semiconductor ceramic such as a barium titanate-based semiconductor ceramic. The PTC element body 2 can be formed in any shape such as a disc shape or a square plate shape. First electrodes 3a and 3b made of a Ni-B alloy containing B in an amount of 1% by weight or less with respect to Ni are formed on both main surfaces of the PTC element body 2. The first electrodes 3a and 3b made of a Ni-B alloy are formed by electrolessly plating both main surfaces of the PTC element body 2 with a Ni-B alloy. In the PTC element 1 of this embodiment, the second electrodes 4a and 4b are formed by applying Ag paste on the first electrodes 3a and 3b and baking it. The second electrodes 4a and 4b are formed by a conventionally known electrode forming method in which Ag paste obtained by kneading Ag with an organic vehicle and a binder is applied and baked.

【0009】 本実施例では、第1の電極3a,3bが、酸化し難いNi−B合金よりなる。 従って、Ni−B合金よりなる第1の電極3a,3bの電極が安定しているため 、Agペーストを焼き付けたとしても、電極−素子間の接触抵抗の変動は生じ難 い。この理由を、以下の実験例に基づき説明する。 PTC素体2として、直径14mm×厚さ0.45mm、比抵抗7Ω・cmの 円板状のチタン酸バリウム系セラミックスよりなるものを用意した。該PTC素 体2の両主面に、Ni及びBを、それぞれ、99重量%、及び1重量%の割合で 含有するNi−B合金を無電解めっきし、厚み1.5μmの第1の電極3a,3 bをPTC素体2の両主面の全面に形成した。次に、上記第1の電極3a,3b 上に、Agペーストを塗布し、種々の温度で焼付けて厚み4.5μmの第2の電 極を形成し、該焼付け温度によるPTC素子の両主面の電極間抵抗の変化を測定 した。結果を図3に示す。図3から明らかなように、Agペーストの焼付け温度 の如何に関わらず、PTC素子の抵抗はほぼ一定に保たれることがわかる。In this embodiment, the first electrodes 3a and 3b are made of a Ni—B alloy that is difficult to oxidize. Therefore, since the electrodes of the first electrodes 3a and 3b made of the Ni-B alloy are stable, even if the Ag paste is baked, the variation of the contact resistance between the electrodes and the element is unlikely to occur. The reason for this will be described based on the following experimental examples. As the PTC element body 2, a disc-shaped barium titanate-based ceramics having a diameter of 14 mm × a thickness of 0.45 mm and a specific resistance of 7 Ω · cm was prepared. Ni-B alloys containing 99% by weight and 1% by weight of Ni and B, respectively, were electroless plated on both main surfaces of the PTC element 2 to form a first electrode having a thickness of 1.5 μm. 3a and 3b were formed on the entire surfaces of both main surfaces of the PTC element body 2. Next, an Ag paste is applied on the first electrodes 3a and 3b and baked at various temperatures to form a second electrode having a thickness of 4.5 μm, and both main surfaces of the PTC element depending on the baking temperature. The change in inter-electrode resistance of was measured. Results are shown in FIG. As is clear from FIG. 3, the resistance of the PTC element is kept substantially constant regardless of the baking temperature of the Ag paste.

【0010】 上記実験に用いたPTC素体と同一のPTC素体を用い、前述した(1)及び (2)の従来法で電極を形成してなるPTC素子を、それぞれ、従来例(1)及 び従来例(2)として用意した。上記実施例のPTC素子及び従来例(1),( 2)のPTC素子について、抵抗値を測定し、かつ寿命特性を評価した。寿命特 性は、下記の高温放置試験、湿中放置試験及び常温断続負荷試験を行うことによ り評価した。Using the same PTC element body as the PTC element body used in the above experiment, a PTC element formed by forming electrodes by the conventional method of (1) and (2) described above is respectively prepared in the conventional example (1). And prepared as a conventional example (2). With respect to the PTC elements of the above-mentioned examples and the PTC elements of the conventional examples (1) and (2), resistance values were measured and life characteristics were evaluated. The life characteristics were evaluated by performing the following high temperature storage test, wet storage test, and room temperature intermittent load test.

【0011】 高温放置試験…150℃及び常湿中に1000時間放置し、放置前後の素子 抵抗値の変化率を測定した。 湿中放置試験…60℃及び相対湿度90〜96%の環境に1000時間放置 し、放置前後の素子抵抗値の変化率を測定した。 常温断続負荷試験…25℃及び相対湿度65〜75%において、15Vの電 圧を1分間印加し、5分間放置する工程を1000時間の間繰り返し、試験前後 の素子抵抗値の変化率を測定した。 上記素子抵抗値及び寿命特性評価の結果を、下記の表1に示す。High-temperature storage test: This was left for 1000 hours at 150 ° C. and normal humidity, and the rate of change in element resistance before and after storage was measured. Humidity storage test: The product was left for 1000 hours in an environment of 60 ° C. and relative humidity of 90 to 96%, and the change rate of the element resistance value before and after the storage was measured. Room temperature intermittent load test: The process of applying a voltage of 15 V for 1 minute and leaving it for 5 minutes at 25 ° C. and a relative humidity of 65 to 75% was repeated for 1000 hours, and the change rate of the element resistance value before and after the test was measured. .. The results of the element resistance value and life characteristic evaluation are shown in Table 1 below.

【0012】[0012]

【表1】 [Table 1]

【0013】 表1から明らかなように、実施例のPTC素子では、素子抵抗値のばらつきが 、従来例(1)及び(2)のPTC素子に比べて非常に小さいことがわかる。 また、寿命特性についても、従来例(2)では、高温放置試験、湿中放置試験 及び常温断続負荷試験のいずれにおいても1000時間経過後に素子抵抗が大き く変化しているのに対し、実施例のPTC素子及び従来例(1)のPTCでは、 素子抵抗値はほとんど変化しないことがわかる。 なお、上述した実施例のPTC素子では、PTC素体2の両主面の全面にNi −B合金からなる第1の電極3a,3bを形成し、第1の電極3a,3bの全面 にAgペーストを焼き付けて第2の電極4a,4bを形成していたが、図4に示 すように、第2の電極4a(下面側の第2の電極4bは図示されず。)は、周囲 に所定幅xのギャップ領域5を残すように、第1の電極3aよりも小さな径を有 するように形成してもよい。このように、第2の電極4aを第1の電極3aより も小さくし、上記ギャップ領域5を周縁に残すことにより、Agよりなる両主面 の第2の電極間におけるマイグレーションを確実に防止することができる。As is clear from Table 1, the PTC element of the embodiment has a much smaller variation in element resistance value than the PTC elements of the conventional examples (1) and (2). Regarding the life characteristics, in the conventional example (2), the element resistance greatly changed after 1000 hours in all of the high temperature standing test, the humidity standing test and the room temperature intermittent load test, whereas It can be seen that in the PTC element of 1 and the PTC of the conventional example (1), the element resistance value hardly changes. In the PTC element of the above-described embodiment, the first electrodes 3a and 3b made of Ni-B alloy are formed on the entire surfaces of both main surfaces of the PTC element body 2, and Ag is formed on the entire surfaces of the first electrodes 3a and 3b. Although the paste was baked to form the second electrodes 4a and 4b, as shown in FIG. 4, the second electrode 4a (the second electrode 4b on the lower surface side is not shown) is surrounded. It may be formed to have a diameter smaller than that of the first electrode 3a so as to leave the gap region 5 having a predetermined width x. In this way, the second electrode 4a is made smaller than the first electrode 3a, and the gap region 5 is left on the periphery, so that the migration between the second electrodes on both main surfaces made of Ag is surely prevented. be able to.

【0014】[0014]

【考案の効果】[Effect of the device]

以上のように、本考案では、Ni−B合金めっき層よりなる第1の電極上にA gペーストを焼き付けてなる第2の電極が形成された電極構造を有するため、A gペーストの焼付け温度を厳格にコントロールすることなく、特性の安定なPT C素子を得ることができ、特に、低抵抗型のPTC素子に好適である。 また、本考案のPTC素子は、上記Ni−B合金めっき層よりなる第1の電極 とAgペーストを焼き付けてなる第2の電極とを備えるものであるため、経時に よる電極抵抗の変化も生じ難く、従って寿命特性に優れたPTC素子を得ること ができる。 As described above, the present invention has an electrode structure in which the second electrode formed by baking the Ag paste is formed on the first electrode made of the Ni—B alloy plating layer, and thus the baking temperature of the Ag paste is high. It is possible to obtain a PTC element having stable characteristics without strict control of the temperature, and it is particularly suitable for a low resistance type PTC element. Further, since the PTC element of the present invention comprises the first electrode made of the Ni-B alloy plating layer and the second electrode made by baking the Ag paste, the electrode resistance also changes with time. It is difficult to obtain a PTC element having excellent life characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例のPTC素子の断面図。FIG. 1 is a sectional view of a PTC element according to an embodiment of the present invention.

【図2】従来技術におけるAgペーストの焼付け温度と
PTC素子の抵抗値との関係を示す図。
FIG. 2 is a diagram showing a relationship between a baking temperature of an Ag paste and a resistance value of a PTC element in a conventional technique.

【図3】実施例においてAgペーストの焼付け温度とP
TC素子の抵抗値との関係を示す図。
FIG. 3 shows the baking temperature and P of Ag paste in Examples.
The figure which shows the relationship with the resistance value of TC element.

【図4】本考案が適用される他の形状のPTC素子を説
明するための斜視図。
FIG. 4 is a perspective view illustrating a PTC device having another shape to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1…PTC素子 2…PTC素体 3a,3b…第1の電極 4a,4b…第2の電極 DESCRIPTION OF SYMBOLS 1 ... PTC element 2 ... PTC element body 3a, 3b ... 1st electrode 4a, 4b ... 2nd electrode

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 半導体磁器の両主面に電極を形成してな
る正特性サーミスタ素子において、 前記電極が、Ni−B合金めっき層よりなる第1の電極
と、 前記第1の電極上に形成されており、かつAgペースト
を塗布・焼き付けることにより形成された第2の電極と
を備えることを特徴とする、正特性サーミスタ素子。
1. A positive temperature coefficient thermistor element having electrodes formed on both main surfaces of a semiconductor porcelain, wherein the electrodes are formed on a first electrode made of a Ni—B alloy plating layer, and formed on the first electrode. And a second electrode formed by applying and baking an Ag paste, and a positive temperature coefficient thermistor element.
JP8931891U 1991-10-30 1991-10-30 Positive characteristic thermistor element Pending JPH0538801U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8931891U JPH0538801U (en) 1991-10-30 1991-10-30 Positive characteristic thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8931891U JPH0538801U (en) 1991-10-30 1991-10-30 Positive characteristic thermistor element

Publications (1)

Publication Number Publication Date
JPH0538801U true JPH0538801U (en) 1993-05-25

Family

ID=13967320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8931891U Pending JPH0538801U (en) 1991-10-30 1991-10-30 Positive characteristic thermistor element

Country Status (1)

Country Link
JP (1) JPH0538801U (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130801A (en) * 1983-12-19 1985-07-12 トヨタ自動車株式会社 Positive temperature coefficient thermistor
JPH02120277A (en) * 1988-10-27 1990-05-08 Sekisui Plastics Co Ltd Barium titanate semiconductor porcelain material
JPH02192457A (en) * 1989-01-21 1990-07-30 Chichibu Cement Co Ltd Semiconductor ceramic
JPH02283665A (en) * 1989-04-24 1990-11-21 Sekisui Plastics Co Ltd Production of barium titanate porcelain semiconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130801A (en) * 1983-12-19 1985-07-12 トヨタ自動車株式会社 Positive temperature coefficient thermistor
JPH02120277A (en) * 1988-10-27 1990-05-08 Sekisui Plastics Co Ltd Barium titanate semiconductor porcelain material
JPH02192457A (en) * 1989-01-21 1990-07-30 Chichibu Cement Co Ltd Semiconductor ceramic
JPH02283665A (en) * 1989-04-24 1990-11-21 Sekisui Plastics Co Ltd Production of barium titanate porcelain semiconductor

Similar Documents

Publication Publication Date Title
JP2000150204A (en) Ntc thermistor and chip ntc thermistor
JP2001267174A (en) Ceramic electronic component with lead terminal
JPH0538801U (en) Positive characteristic thermistor element
JP3528972B2 (en) NTC thermistor
JP3166784B2 (en) Positive thermistor element
JPH06314602A (en) Ceramic electronic component
JP2504048B2 (en) Positive characteristic porcelain semiconductor
JP3548586B2 (en) Positive characteristic thermistor device
JP2639098B2 (en) Current limiting element
JPH09162452A (en) Ceramic device and its production
JPS63236785A (en) Electrode formation for ceramic electronic parts
JP2967221B2 (en) Positive thermistor element
JPH04105303A (en) Electrode forming method of porcelain semiconductor element
JPS60701A (en) Ormic electrode
JP3016560B2 (en) Method for manufacturing voltage non-linear resistor
JPH06260302A (en) Chip-type ptc thermistor
JP2504309B2 (en) Method for forming electrode of porcelain semiconductor element
JPS60130801A (en) Positive temperature coefficient thermistor
JP2559524Y2 (en) Positive characteristic thermistor device
JPH0478101A (en) Barium titanate based positive characteristic thermistor and its manufacture
JPS62238602A (en) Positive characteristics porcelain
JPS62199001A (en) Positive characteristics porcelain semiconductor
JPH08306507A (en) Positive temperature coefficient thermistor
JPS6049606A (en) Method of producing barium titanate semiconductor porcelain
JP3348642B2 (en) Manufacturing method of ceramic electronic components