JP2520699B2 - Method of manufacturing voltage-dependent nonlinear resistor - Google Patents

Method of manufacturing voltage-dependent nonlinear resistor

Info

Publication number
JP2520699B2
JP2520699B2 JP63188290A JP18829088A JP2520699B2 JP 2520699 B2 JP2520699 B2 JP 2520699B2 JP 63188290 A JP63188290 A JP 63188290A JP 18829088 A JP18829088 A JP 18829088A JP 2520699 B2 JP2520699 B2 JP 2520699B2
Authority
JP
Japan
Prior art keywords
sintered body
voltage
polished
nonlinear resistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63188290A
Other languages
Japanese (ja)
Other versions
JPH0239501A (en
Inventor
修 高橋
勝 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63188290A priority Critical patent/JP2520699B2/en
Publication of JPH0239501A publication Critical patent/JPH0239501A/en
Application granted granted Critical
Publication of JP2520699B2 publication Critical patent/JP2520699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電圧依存非直線抵抗体の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for manufacturing a voltage-dependent nonlinear resistor.

(従来の技術) 従来、この種の非直線抵抗体の製造方法としては、チ
タン酸ストロンチウム(SrTiO3)を主成分とした原料を
湿式混合し、これにバインダーを添加して所望形状の成
形体に成形し、該成形体を窒素ガスと水素ガスから成る
混合ガス等の還元性ガス雰囲気中で温度1300〜1450℃で
焼成した後、更に焼結体に空気中で温度800〜1200℃の
熱処理を施し、該焼結体に酸素を拡散させる方法、或い
は、前記方法において、焼成して得られた焼結体に直ち
に熱処理を施す代わりに、該焼結体の表面にNa系ガラス
を塗布し、続いて該焼結体に空気中で温度800〜1200℃
の熱処理を施し、該焼結体にNa系ガラスを拡散させる方
法が知られている。
(Prior Art) Conventionally, as a method of manufacturing this kind of non-linear resistor, a raw material containing strontium titanate (SrTiO 3 ) as a main component is wet-mixed, and a binder is added to this to obtain a molded product having a desired shape. And then heat the formed body in a reducing gas atmosphere such as a mixed gas of nitrogen gas and hydrogen gas at a temperature of 1300 to 1450 ° C., and then heat the sintered body in air at a temperature of 800 to 1200 ° C. And diffusing oxygen into the sintered body, or in the above method, instead of immediately subjecting the sintered body obtained by firing to heat treatment, apply Na-based glass to the surface of the sintered body. Then, the temperature of the sintered body in the air is 800 to 1200 ° C.
There is known a method of subjecting the sintered body to heat treatment to diffuse Na-based glass into the sintered body.

このようにして得られた電圧依存非直線抵抗体いわゆ
るバリスタは大きな静電容量を有するので、電子機器等
を雷などのサージ、誘導性パルス、ノイズ等から保護す
る部品として多用されている。
The voltage-dependent nonlinear resistor so-called varistor thus obtained has a large capacitance, and is therefore widely used as a component for protecting electronic devices and the like from surges such as lightning, inductive pulses, noises, and the like.

(発明が解決しようとする課題) 前記製造方法はいずれの場合も、焼成時の結晶粒成長
に伴って不純物成分が周囲に排斥され、焼結体の表面部
分に内部に比してケイ酸系ガラス質が多く存在する。
(Problems to be solved by the invention) In any of the above-mentioned manufacturing methods, impurity components are repelled to the periphery due to the growth of crystal grains during firing, and a silicic acid-based material is contained in the surface portion of the sintered body as compared with the inside. There is a lot of glass.

その結果、前記製造方法のうち前者の場合、その後の
焼結体への熱処理時にケイ酸系ガラス質が多い表面部分
と該ガラス質の少ない内部とでは熱処理時の酸素拡散速
度が異なるので、得られた電圧依存非直線抵抗体のセラ
ミック素体内抵抗バラツキが発生し、電気的特性の信頼
性劣化が生じるという問題がある。
As a result, in the case of the former of the above manufacturing methods, the oxygen diffusion rate at the time of heat treatment is different between the surface portion having a large amount of silica glass when heat-treating the sintered body and the interior having a small amount of glass, so There is a problem that resistance variation in the ceramic body of the voltage-dependent nonlinear resistor occurs, and reliability of electrical characteristics deteriorates.

また後者の場合、その後の焼結体の表面にNa系ガラス
を塗布し、熱処理時にケイ酸系ガラス質が多い表面部分
と該ガラス質の少ない内部とではNaの拡散が均一に行わ
れないので、得られた電圧依存非直線抵抗体のセラミッ
ク素体内抵抗バラツキが発生し、電気的特性の信頼性劣
化が生じるという問題がある。
Further, in the latter case, Na-based glass is applied to the surface of the sintered body thereafter, and Na is not uniformly diffused between the surface portion having a large amount of silica glass during heat treatment and the inside having a small amount of glass quality. However, there is a problem that the obtained voltage-dependent non-linear resistor causes a variation in resistance within the ceramic body, resulting in deterioration in reliability of electrical characteristics.

本発明は、前記問題点を解消し、電気的特性の信頼性
劣化の生じることのない電圧依存非直線抵抗体を製造す
ることが出来る方法を提供することをその目的とする。
An object of the present invention is to provide a method capable of solving the above-mentioned problems and manufacturing a voltage-dependent nonlinear resistor without causing deterioration in reliability of electric characteristics.

(課題を解決するための手段) 本発明の第1の発明は、酸素拡散型の電圧依存非直線
抵抗体の製造方法に関するもので、チタン酸ストロンチ
ウムを主成分とする原料粉末を所望形状の成形体に形成
し、該成形体を還元性ガス雰囲気中で焼成して焼結体を
作成し、該焼結体の表面を研磨し、該研磨済焼結体に酸
化雰囲気中で温度950〜1200℃の熱処理を施すことを特
徴とする。
(Means for Solving the Problems) A first invention of the present invention relates to a method for producing an oxygen diffusion type voltage-dependent nonlinear resistor, which comprises forming a raw material powder containing strontium titanate as a main component into a desired shape. Formed into a body, the formed body is fired in a reducing gas atmosphere to form a sintered body, the surface of the sintered body is polished, and the polished sintered body is heated in an oxidizing atmosphere at a temperature of 950 to 1200. It is characterized in that it is subjected to a heat treatment at ℃.

また第2の発明は、Na拡散型の電圧依存非直線抵抗体
の製造方法に関するもので、チタン酸ストロンチウムを
主成分とする原料粉末を所望形状の成形体に形成し、該
成形体を還元性ガス雰囲気中で焼成して焼結体を作成
し、該焼結体の表面を研磨し、該研磨済焼結体の表面に
Na系ガラスを被覆して酸化雰囲気中で温度950〜1200℃
の熱処理を施すことを特徴とする。
The second invention relates to a method for manufacturing a Na-diffusion type voltage-dependent nonlinear resistor, which comprises forming a raw material powder containing strontium titanate as a main component into a molded body having a desired shape and reducing the molded body. A sintered body is prepared by firing in a gas atmosphere, the surface of the sintered body is ground, and the surface of the ground sintered body is polished.
Na-based glass is coated and the temperature is 950-1200 ℃ in oxidizing atmosphere.
It is characterized by performing the heat treatment of.

本発明で主成分とするチタン酸ストロンチウムに添加
する添加物としては、WO3,Nb2O5,La2O3,CeO2,Nd2O3,Y2O
3,Sm2O3,Dy2O3,Ag2O,CuO,MnO2のうち少なくとも1種類
と、SiO2,Al2O3のうち少なくとも1種類が用いられ、そ
してチタン酸ストロンチウム100モル部に対する添加量
は夫々一般には0.01〜5.0モル部および0.03〜1.5モル部
程度とする。
As the additive to be added to the strontium titanate as the main component in the present invention, WO 3 , Nb 2 O 5 , La 2 O 3 , CeO 2 , Nd 2 O 3 , Y 2 O
At least one of 3 , Sm 2 O 3 , Dy 2 O 3 , Ag 2 O, CuO and MnO 2 and at least one of SiO 2 and Al 2 O 3 are used, and 100 parts by mol of strontium titanate is used. In general, the addition amount to each is 0.01 to 5.0 parts by mole and 0.03 to 1.5 parts by mole, respectively.

またバインダとしては、ポリビニルアルコール等が用
いられ、そしてチタン酸ストロンチウム100重量部に対
する添加量は一般には1〜10重量部程度とする。
Polyvinyl alcohol or the like is used as the binder, and the addition amount is generally about 1 to 10 parts by weight with respect to 100 parts by weight of strontium titanate.

またNa系ガラスとしては、NaCo3、NaF等のNa化合物
に、エチルセルロース、ニトロセルロース等の有機溶剤
を添加し、混練したものが挙げられ、該有機溶剤を用い
たときの添加量は、Na化合物100重量部に対して一般に
は10〜200重量部程度とする。
Examples of the Na-based glass include NaCo 3 , Na compounds such as NaF, ethyl cellulose, an organic solvent such as nitrocellulose added, and kneaded, and the addition amount when the organic solvent is used is Na compound. Generally, it is about 10 to 200 parts by weight with respect to 100 parts by weight.

尚前記Na系ガラスに泡が発生しその泡によってNa系ガ
ラスの欠如する部分が生じるのを防止するために、有機
溶剤を添加し、混練する際例えばイソプロピルアルコー
ルのような消泡剤を添加してもよく、その場合の添加量
はNa化合物100重量部に対して一般には0.1〜5重量部程
度とする。
Incidentally, in order to prevent the generation of bubbles in the Na-based glass and the lack of Na-based glass due to the bubbles, an organic solvent is added, and an antifoaming agent such as isopropyl alcohol is added during kneading. It may be added, and in that case, the addition amount is generally about 0.1 to 5 parts by weight with respect to 100 parts by weight of the Na compound.

また成形体を還元性ガス雰囲気中で焼成する際のガス
としては例えば窒素ガスと水素ガスの混合ガスを用い、
該混合ガス中の窒素ガスと水素ガスの比率は95〜99容量
%:5〜1容量%とし、また温度は1300℃〜1450℃程度と
する。
As a gas for firing the molded body in a reducing gas atmosphere, for example, a mixed gas of nitrogen gas and hydrogen gas is used,
The ratio of nitrogen gas to hydrogen gas in the mixed gas is 95 to 99% by volume: 5 to 1% by volume, and the temperature is about 1300 ° C to 1450 ° C.

また焼結体の表面研磨は酸素またはNaの均一な拡散を
考慮すれば焼結体の上下の各表面に施すようにする。
The surface of the sintered body is polished on the upper and lower surfaces of the sintered body in consideration of the uniform diffusion of oxygen or Na.

また焼結体を酸化雰囲気中で熱処理する際の雰囲気と
しては例えば空気を用い、また熱処理温度は950℃〜120
0℃程度とする。
Air is used as the atmosphere for heat treatment of the sintered body in an oxidizing atmosphere, and the heat treatment temperature is 950 ° C to 120 ° C.
Keep it at about 0 ° C.

(作用) 焼結体の表面部分のケイ酸系ガラス質の多い層が研磨
によって除去される。そして研磨された焼結体を酸化雰
囲気中で温度950〜1200℃の熱処理を施すことによっ
て、酸素が焼結体中に均一に拡散される。また研磨され
た焼結体の表面にNa系ガラスを被覆した後、該焼結体に
酸化雰囲気中で温度950〜1200℃の熱処理を施すことに
よって、Naが焼結体中に均一に拡散される。
(Function) A layer containing much silicic acid glass on the surface of the sintered body is removed by polishing. Then, by subjecting the polished sintered body to a heat treatment at a temperature of 950 to 1200 ° C. in an oxidizing atmosphere, oxygen is uniformly diffused in the sintered body. Also, after coating the surface of the polished sintered body with Na-based glass, the sintered body is subjected to heat treatment at a temperature of 950 to 1200 ° C. in an oxidizing atmosphere, so that Na is uniformly dispersed in the sintered body. It

(実施例) 次に本発明の具体的実施例を比較例と共に説明する。(Example) Next, a specific example of the present invention will be described together with a comparative example.

実施例1 チタン酸ストロンチウムSrTiO3粉末100モル部にNb2O5
を0.02モル部、SiO2を1.0モル部、Al2O3を0.1モル部夫
々添加し、水を加えてボールミルで15時間混合した後、
脱水乾燥し、更にバインダとしてポリビニルアルコール
を15重量部添加し、混合、造粒して原料粉末を作成し
た。
Example 1 Nb 2 O 5 was added to 100 mol parts of strontium titanate SrTiO 3 powder.
Was added 0.02 mol parts, SiO 2 1.0 mol parts, Al 2 O 3 0.1 mol parts respectively, respectively, after adding water and mixing for 15 hours in a ball mill,
After dehydration and drying, 15 parts by weight of polyvinyl alcohol was added as a binder, mixed and granulated to prepare a raw material powder.

更にこの原料粉末を乾式プレスで金型を用い1500kg/c
m2の圧力で成型して直径11mm厚さ1.5mmの成形体を形成
した。
Furthermore, this raw material powder is 1500 kg / c in a dry press using a die.
Molding was performed under a pressure of m 2 to form a molded body having a diameter of 11 mm and a thickness of 1.5 mm.

続いてこの成形体を窒素ガス95容量%と水素ガス5容
量%とから成る混合ガス雰囲気中で温度1400℃で3時間
焼成して、直径9.0mm厚さ1.2mmの半導体セラミックスか
ら成る焼結体を作成した。
Subsequently, the compact was fired at a temperature of 1400 ° C. for 3 hours in a mixed gas atmosphere containing 95% by volume of nitrogen gas and 5% by volume of hydrogen gas to obtain a sintered body made of semiconductor ceramics having a diameter of 9.0 mm and a thickness of 1.2 mm. It was created.

続いて第1図示のようにラップ盤を用いて焼結体
(1)の上下の各表面を夫々0.2mmづつ研磨して直径9.0
mm厚さ0.8mmの研磨済焼結体(2)を得た。尚図面で
(3)は研磨部分を示す。
Then, using a lapping machine as shown in the first figure, the upper and lower surfaces of the sintered body (1) are polished by 0.2 mm each to have a diameter of 9.0.
A polished sintered body (2) having a thickness of 0.8 mm was obtained. In the drawing, (3) indicates a polished portion.

続いて研磨済焼結体(2)に空気中で温度1100℃、3
時間の熱処理を施して1ロット100個の電圧依存非直線
抵抗体を作成した。
Then, the polished sintered body (2) was heated in air at a temperature of 1100 ° C for 3
Heat treatment was performed for a period of time to prepare 100 voltage-dependent nonlinear resistors in one lot.

次に第2図示のように上記方法で作成した各電圧依存
非直線抵抗体(4)の上下の各表面に銀電極(5)を温
度800℃で焼付け形成し、これを試料1とした。
Next, as shown in FIG. 2, silver electrodes (5) were baked on the upper and lower surfaces of each voltage-dependent nonlinear resistor (4) prepared by the above method at a temperature of 800 ° C., and this was designated as sample 1.

上記方法で作成された1ロット100個の試料1の電気
的特性としてバリスタ電圧の変化率、静電容量の変化率
を調べたところ、表に示す結果が得られた。
When the varistor voltage change rate and the capacitance change rate were examined as the electrical characteristics of 100 samples of one lot prepared by the above method, the results shown in the table were obtained.

尚電気的特性の測定は高温負荷寿命試験法に準じて、
温度85℃でDC40Vを連続1000時間印加し、常温、常湿中
にて12時間放置後行った。
The electrical characteristics are measured according to the high temperature load life test method,
DC40V was continuously applied for 1000 hours at a temperature of 85 ° C., and left at room temperature and normal humidity for 12 hours.

またバリスタ電圧(V1m「V」)の変化率(%)は次
式により求めた。
The rate of change (%) of the varistor voltage (V 1m "V") was calculated by the following formula.

また静電容量(C「pF」)の変化率(%)は次式によ
り求めた。
The rate of change (%) in electrostatic capacity (C "pF") was calculated by the following equation.

比較例1 焼成して得られた焼結体の上下の各表面に研磨処理を
施さずに直ちに熱処理を施した以外は実施例1と同一方
法で試料を作成し、これを試料2とした。
Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that the upper and lower surfaces of the sintered body obtained by firing were immediately subjected to heat treatment without being subjected to polishing treatment, and this was designated as sample 2.

そして試料1と同一方法で試料2の電気的特性を調べ
たところ、表に示す結果が得られた。
When the electrical characteristics of Sample 2 were examined by the same method as that of Sample 1, the results shown in the table were obtained.

実施例2 研磨済焼結体(2)の上下の各表面に下記方法により
作成したNa系ガラスのペーストを1.0重量部塗布し、酸
化雰囲気中で温度250℃で0.5時間乾燥し、続いてNa系ガ
ラスが被覆された焼結体に空気中で温度1100℃、3時間
の熱処理を施した以外は実施例1と同一方法で試料を作
成し、これを試料3とした。
Example 2 1.0 part by weight of a paste of Na-based glass prepared by the following method was applied to each of the upper and lower surfaces of the polished sintered body (2) and dried in an oxidizing atmosphere at a temperature of 250 ° C. for 0.5 hour, followed by Na. A sample was prepared in the same manner as in Example 1 except that the sintered body coated with the system glass was heat-treated in air at a temperature of 1100 ° C. for 3 hours, and this was designated as sample 3.

そして試料1と同一方法で試料3の電気的特性を調べ
たところ、表に示す結果が得られた。尚、Na系ガラスの
ペーストの作成は次の通りとした。
When the electrical characteristics of Sample 3 were examined by the same method as that of Sample 1, the results shown in the table were obtained. The Na-based glass paste was prepared as follows.

まず下記配合から成る混合物を調整した。 First, a mixture having the following composition was prepared.

NaCo3 100重量部 エチルセルロース 20重量部 ブチルカルビトール 80重量部 イソプロピルアルコール 1重量部 次にこの調整された混合物を擂潰機で温度20℃で15時
間混練してペーストを作成した。
NaCo 3 100 parts by weight Ethyl cellulose 20 parts by weight Butyl carbitol 80 parts by weight Isopropyl alcohol 1 part by weight Next, this prepared mixture was kneaded at a temperature of 20 ° C. for 15 hours to prepare a paste.

比較例2 焼成して得られた焼結体の上下の各表面に研磨処理を
施さずに直ちに実施例2と同一のNa系ガラスのペースト
を塗布し、その後熱処理を施した以外は実施例1と同一
方法で試料を作成し、これを試料4とした。
Comparative Example 2 Example 1 was repeated except that the same Na-based glass paste as in Example 2 was immediately applied to the upper and lower surfaces of the sintered body obtained by firing without polishing, and then heat treatment was performed. A sample was prepared by the same method as above, and this was designated as sample 4.

そして試料1と同一方法で試料4の電気的特性を調べ
たところ、表に示す結果が得られた。
When the electrical characteristics of Sample 4 were examined by the same method as that of Sample 1, the results shown in the table were obtained.

表から明らかなように、焼結体の表面を研磨した後に
熱処理を施す本発明の実施例1の方法、および焼結体の
表面を研磨した後にNa系ガラスを被覆して熱処理を施す
本発明の実施例2の方法によって得られた電圧依存非直
線抵抗体のバリスタ電圧および静電容量の変化率は極め
て小さかった。
As is clear from the table, the method of Example 1 of the present invention in which the surface of the sintered body is polished and then heat-treated, and the present invention in which the surface of the sintered body is polished and then Na-based glass is coated and heat-treated The rate of change of the varistor voltage and the electrostatic capacitance of the voltage-dependent nonlinear resistor obtained by the method of Example 2 was extremely small.

これに対して焼結体の表面を研磨することなく直ちに
熱処理を施す比較例1の方法、および焼結体の表面を研
磨することなく直ちに焼結体表面にNa系ガラスを被覆し
て熱処理を施す比較例2の方法によって得られた電圧依
存非直線抵抗体のバリスタ電圧および静電容量の変化率
は大きかった。
On the other hand, the method of Comparative Example 1 in which the heat treatment is performed immediately without polishing the surface of the sintered body, and the heat treatment is performed by immediately coating the surface of the sintered body with the Na-based glass without polishing the surface of the sintered body. The change rate of the varistor voltage and the capacitance of the voltage-dependent nonlinear resistor obtained by the method of Comparative Example 2 to be applied was large.

(発明の効果) このように第1発明の製造方法によるときは、焼成さ
れた焼結体の表面を研磨するようにしたので、焼結体の
表面部分のケイ酸系ガラス質の多い層を除去することが
出来、そして研磨された焼結体に酸化雰囲気中で温度95
0〜1200℃の熱処理を施すようにしたので、酸素を焼結
体中に均一に拡散することが出来るため、セラミック素
体内抵抗バラツキが極めて少ないて電圧依存非直線抵抗
体を容易に製造することが出来る等の効果を有し、ま
た、第2発明の製造方法によるときは、焼成された焼結
体の表面を研磨するようにしたので、焼結体の表面部分
のケイ酸系ガラス質の多い層を除去することが出来、そ
して研磨された焼結体の表面にNa系ガラスを被覆した
後、該焼結体に酸化雰囲気中で温度950〜1200℃の熱処
理を施すようにしたので、Naを焼結体中に均一に拡散す
ることが出来るため、セラミック素体内抵抗バラツキが
極めて少ない電圧依存非直線抵抗体を容易に製造するこ
とが出来る等の効果を有する。
(Effect of the Invention) As described above, according to the manufacturing method of the first invention, since the surface of the fired sintered body is polished, the layer having a large amount of vitreous silicate glass on the surface portion of the sintered body is removed. The sintered body, which can be removed and is polished, has a temperature of 95 in an oxidizing atmosphere.
Since the heat treatment is performed at 0 to 1200 ° C, oxygen can be diffused uniformly in the sintered body, so that the voltage-dependent nonlinear resistor can be easily manufactured because the resistance variation in the ceramic body is extremely small. In addition, according to the manufacturing method of the second invention, since the surface of the fired sintered body is polished, the surface portion of the sintered body is made of the silicate glass material. Since many layers can be removed, and the surface of the polished sintered body is coated with Na-based glass, the sintered body is subjected to heat treatment at a temperature of 950 to 1200 ° C. in an oxidizing atmosphere. Since Na can be uniformly diffused in the sintered body, there is an effect that a voltage-dependent nonlinear resistor having very little resistance variation in the ceramic body can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の製造方法における焼結体の表面の研磨
工程の説明図、第2図は上下両面に銀電極を形成した電
圧依存非直線抵抗体を示し、(A)はその平面図、
(B)はその側面図である。 (1)……焼結体 (2)……研磨済焼結体 (4)……電圧依存非直線抵抗体
FIG. 1 is an explanatory view of a step of polishing the surface of a sintered body in the manufacturing method of the present invention, FIG. 2 shows a voltage-dependent nonlinear resistor having silver electrodes formed on both upper and lower surfaces, and (A) is a plan view thereof. ,
(B) is a side view thereof. (1) …… Sintered body (2) …… Grinded sintered body (4) …… Voltage-dependent nonlinear resistor

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン酸ストロンチウムを主成分とする原
料粉末を所望形状の成形体に形成し、該成形体を還元性
ガス雰囲気中で焼成して焼結体を作成し、該焼結体の表
面を研磨し、該研磨済焼結体に酸化雰囲気中で温度950
〜1200℃の熱処理を施すことを特徴とする電圧依存非直
線抵抗体の製造方法。
1. A raw material powder containing strontium titanate as a main component is formed into a compact having a desired shape, and the compact is fired in a reducing gas atmosphere to prepare a sintered body. The surface is polished, and the polished sintered body is heated at a temperature of 950 in an oxidizing atmosphere.
A method for manufacturing a voltage-dependent nonlinear resistor, characterized by performing a heat treatment at ~ 1200 ° C.
【請求項2】チタン酸ストロンチウムを主成分とする原
料粉末を所望形状の成形体に形成し、該成形体を還元性
ガス雰囲気中で焼成して焼結体を作成し、該焼結体の表
面を研磨し、該研磨済焼結体の表面にNa系ガラスを被覆
して酸化雰囲気中で温度950〜1200℃の熱処理を施すこ
とを特徴とする電圧依存非直線抵抗体の製造方法。
2. A raw material powder containing strontium titanate as a main component is formed into a compact having a desired shape, and the compact is fired in a reducing gas atmosphere to prepare a sintered body. A method for producing a voltage-dependent nonlinear resistor, which comprises polishing the surface, coating the surface of the polished sintered body with Na-based glass, and subjecting the sintered body to a heat treatment at a temperature of 950 to 1200 ° C. in an oxidizing atmosphere.
JP63188290A 1988-07-29 1988-07-29 Method of manufacturing voltage-dependent nonlinear resistor Expired - Fee Related JP2520699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63188290A JP2520699B2 (en) 1988-07-29 1988-07-29 Method of manufacturing voltage-dependent nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63188290A JP2520699B2 (en) 1988-07-29 1988-07-29 Method of manufacturing voltage-dependent nonlinear resistor

Publications (2)

Publication Number Publication Date
JPH0239501A JPH0239501A (en) 1990-02-08
JP2520699B2 true JP2520699B2 (en) 1996-07-31

Family

ID=16221041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63188290A Expired - Fee Related JP2520699B2 (en) 1988-07-29 1988-07-29 Method of manufacturing voltage-dependent nonlinear resistor

Country Status (1)

Country Link
JP (1) JP2520699B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609102A (en) * 1983-06-28 1985-01-18 松下電器産業株式会社 Voltage depending nonlinear resistor porcelain composition
JPS60165710A (en) * 1984-02-07 1985-08-28 株式会社村田製作所 Multifunction element
JPS60170903A (en) * 1984-02-16 1985-09-04 太陽誘電株式会社 Porcelain composition having voltage dependent nonlinear resistance characteristic
JPS6146003A (en) * 1984-08-10 1986-03-06 松下電器産業株式会社 Composite function element

Also Published As

Publication number Publication date
JPH0239501A (en) 1990-02-08

Similar Documents

Publication Publication Date Title
KR100289207B1 (en) Lateral high resistance for zinc oxide varistors, and methods for producing zinc oxide varistors and zinc dioxide varistors using the same
JPH0524646B2 (en)
US4761711A (en) Barrier layer ceramic dielectric capacitor containing barium plumbate
JP2520699B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JPH1012043A (en) Conductive composition and boundary layer ceramic capacitor
JPS6242368B2 (en)
JP2956131B2 (en) Strontium titanate-based semiconductor porcelain and method of manufacturing the same
JP3189341B2 (en) Composite varistor
JPS63219115A (en) Manufacture of laminated semiconductor porcelain electronic component
JPH0812803B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JP2722457B2 (en) Manufacturing method of ceramic capacitor
JP2000182881A (en) Dielectric ceramic material
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JPH0195406A (en) Baking assistant for dielectric ceramic
JPS6312373B2 (en)
JPH0524648B2 (en)
JPH0567590B2 (en)
JPH08293403A (en) Manufacture of voltage nonlinear resistor element
JPS6242365B2 (en)
JPH06227852A (en) Electrically conductive composition
JPS59127826A (en) Grain boundary insulating semiconductor porcelain capacitor
JPH04113601A (en) Method and enclosure for manufacturing nonlinearly voltage-dependent resistance
JPS62270462A (en) Semiconductor ceramic dielectric composition, semiconductor ceramic dielectric and manufacture
JPH02229416A (en) Formation of grain boundary layer of semiconductor porcelain
JPH02194510A (en) Manufacture of semiconductor ceramic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees