JPH1012043A - Conductive composition and boundary layer ceramic capacitor - Google Patents

Conductive composition and boundary layer ceramic capacitor

Info

Publication number
JPH1012043A
JPH1012043A JP16159396A JP16159396A JPH1012043A JP H1012043 A JPH1012043 A JP H1012043A JP 16159396 A JP16159396 A JP 16159396A JP 16159396 A JP16159396 A JP 16159396A JP H1012043 A JPH1012043 A JP H1012043A
Authority
JP
Japan
Prior art keywords
conductive composition
conductive
glass frit
semiconductor ceramic
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16159396A
Other languages
Japanese (ja)
Inventor
Shigeo Makita
重雄 蒔田
Kiyoshi Nakano
清 中野
Tamotsu Tokuda
有 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16159396A priority Critical patent/JPH1012043A/en
Publication of JPH1012043A publication Critical patent/JPH1012043A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive composition which can improve the joining strength to a semiconductor ceramic without deteriorating the property of the semiconductor ceramic and provide a boundary layer ceramic capacitor with excellent and reliable electrostatic capacitance, dielectric loss, insulation resistance, break down voltage, and adhesion strength to a lead wire. SOLUTION: This conductive composition contains a conductive powder, glass frit consisting of at least two kinds of oxides of Pb, Bi, B, and Si and having softening point within 380-500 deg.C range, and an organic vehicle. Also, this boundary layer ceramic capacitor is produced by forming a thick film electrode on the surface of a boundary layer semiconductor ceramic by baking the conductive composition on the surface, the semiconductor ceramic being produced by forming insulating layers in the grain boundaries of a semiconductor ceramic consists of mainly strontium titanate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性組成物およ
び粒界絶縁型半導体磁器コンデンサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive composition and a grain boundary insulating semiconductor ceramic capacitor.

【0002】[0002]

【従来の技術】従来より、チタン酸バリウム系、チタン
酸ストロンチウム系などからなる半導体磁器の粒界に絶
縁層を形成させることにより、これまでの磁器コンデン
サに比べて見掛け誘電率を大きくした粒界絶縁型半導体
磁器コンデンサが得られることが知られている。この中
で、チタン酸ストロンチウムを主成分とするものはチタ
ン酸バリウムを主成分とするものに比べて静電容量の温
度変化率が小さく、誘電体損失も小さいという特徴をも
っている。
2. Description of the Related Art Conventionally, an insulating layer is formed at a grain boundary of a semiconductor porcelain made of barium titanate, strontium titanate, or the like, so that an apparent dielectric constant is increased as compared with a conventional porcelain capacitor. It is known that an insulated semiconductor ceramic capacitor can be obtained. Among them, those containing strontium titanate as a main component are characterized in that the rate of change in capacitance with temperature and the dielectric loss are smaller than those containing barium titanate as a main component.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
粒界絶縁型半導体磁器コンデンサでは次のような問題点
があった。すなわち、半導体磁器の主平面には、銀粉末
を導電成分としたペースト状の導電性組成物を、表面に
塗布、焼き付けした厚膜電極が形成されているが、導電
性組成物中に接合材として金属酸化物であるBi23
用いると半導体磁器と厚膜電極との接合が悪く、接合強
度の劣化を引き起こす場合がある。この結果、湿中負荷
試験で信頼性が劣化するという問題が生じていた。
However, the conventional grain boundary insulating semiconductor ceramic capacitor has the following problems. That is, a thick-film electrode formed by applying and baking a paste-like conductive composition containing silver powder as a conductive component is formed on the main surface of the semiconductor porcelain. When Bi 2 O 3 which is a metal oxide is used, the bonding between the semiconductor porcelain and the thick film electrode is poor, and the bonding strength may be deteriorated in some cases. As a result, there has been a problem that the reliability is deteriorated in the wet load test.

【0004】本発明の目的は、半導体磁器の特性を劣化
させることなく、半導体磁器との接合強度を向上させる
ことが可能な導電性組成物を提供することにある。
An object of the present invention is to provide a conductive composition capable of improving the bonding strength with a semiconductor porcelain without deteriorating the characteristics of the semiconductor porcelain.

【0005】また、本発明の目的は、静電容量、誘電体
損失、絶縁抵抗、破壊電圧、リード線の接着強度が良好
で信頼性の高い粒界絶縁型半導体磁器コンデンサを提供
することにある。
Another object of the present invention is to provide a highly reliable grain boundary insulated semiconductor porcelain capacitor having good capacitance, dielectric loss, insulation resistance, breakdown voltage, and adhesive strength of a lead wire. .

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
目的に鑑みてなされたものである。本発明の導電性組成
物は、導電粉末と、Pb、Bi、B、Siの酸化物のう
ち少なくとも2種からなり、軟化点が380〜500℃
の範囲内であるガラスフリットとを含有することに特徴
がある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned objects. The conductive composition of the present invention comprises a conductive powder and at least two kinds of oxides of Pb, Bi, B, and Si, and has a softening point of 380 to 500 ° C.
And a glass frit which is within the range.

【0007】また、本発明の導電性組成物においては、
前記ガラスフリット組成に加え、Liの酸化物を含有す
ることが好ましい。
Further, in the conductive composition of the present invention,
It is preferable to contain an oxide of Li in addition to the glass frit composition.

【0008】また、本発明の導電性組成物においては、
前記Liの酸化物を、前記ガラスフリット100wt%
のうち5wt%以下含有することが好ましい。
Further, in the conductive composition of the present invention,
100% by weight of the glass oxide frit with the Li oxide
Of these, it is preferable to contain 5 wt% or less.

【0009】また、本発明の導電性組成物においては、
前記導電性組成物100wt%のうち、前記ガラスフリ
ットを0.2〜1.0wt%含有することが好ましい。
Further, in the conductive composition of the present invention,
It is preferable that the glass frit is contained in an amount of 0.2 to 1.0 wt% based on 100 wt% of the conductive composition.

【0010】また、本発明の導電性組成物においては、
前記導電粉末は、AgとPdとの合金粉末からなり、前
記合金粉末100wt%のうち、Pdを30wt%以下
含有することが好ましい。
Further, in the conductive composition of the present invention,
The conductive powder is made of an alloy powder of Ag and Pd, and preferably contains 30 wt% or less of Pd in 100 wt% of the alloy powder.

【0011】さらに、本発明の粒界絶縁型半導体磁器コ
ンデンサは、チタン酸ストロンチウムを主成分とする半
導体磁器の結晶粒界に絶縁層を形成した粒界絶縁型半導
体磁器の表面に、上記いずれかに記載の導電性組成物を
焼き付けた厚膜電極を形成したことに特徴がある。
Further, according to the present invention, there is provided a grain boundary insulated semiconductor porcelain comprising: a semiconductor porcelain comprising strontium titanate as a main component; Is characterized in that a thick-film electrode formed by baking the conductive composition described in (1) is formed.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明の導電性組成物は、導電粉末と、P
b、Bi、B、Siの酸化物のうち少なくとも2種から
なり、軟化点が380〜500℃の範囲内であるガラス
フリットとを含有するものである。このような構成を有
することによって、半導体磁器の特性を劣化させること
なく、半導体磁器との接合強度を向上させることが可能
となる。
Embodiments of the present invention will be described below. The conductive composition of the present invention comprises a conductive powder, P
It contains at least two kinds of oxides of b, Bi, B, and Si, and contains a glass frit having a softening point in a range of 380 to 500 ° C. With such a configuration, it is possible to improve the bonding strength with the semiconductor porcelain without deteriorating the characteristics of the semiconductor porcelain.

【0013】すなわち、従来のBi23を使用したもの
と異なり、上記4つの元素のうち少なくとも2種からな
るガラスフリットを用いることによって、半導体磁器と
の充分な接合強度を得ることができる。また、上記ガラ
スフリットは、半導体磁器と反応、変色を引き起こさ
ず、導電成分と半導体磁器との密着力を高め、かつ、良
好な電気的特性、信頼性を示す。
That is, unlike the conventional one using Bi 2 O 3, by using a glass frit made of at least two of the above four elements, a sufficient bonding strength with the semiconductor porcelain can be obtained. Further, the glass frit does not cause a reaction or discoloration with the semiconductor porcelain, enhances the adhesion between the conductive component and the semiconductor porcelain, and shows good electrical characteristics and reliability.

【0014】ここで、ガラスフリットの軟化点の範囲を
規定したのは、次のような理由による。すなわち、軟化
点が低い場合には、静電容量や破壊電圧が低く、また、
軟化点が高い場合には、誘電体損失が大きく、リード線
接着強度が劣化する傾向がある。さらに、どちらの場合
にも湿中負荷試験後の絶縁抵抗の劣化が生じる。従っ
て、ガラスの軟化点の範囲を規定することによって、そ
のような問題が生じることを防止することができる。そ
れは使用するガラスの品質管理につながる。
Here, the range of the softening point of the glass frit is defined for the following reason. That is, when the softening point is low, the capacitance and breakdown voltage are low, and
When the softening point is high, the dielectric loss tends to be large, and the adhesive strength of the lead wire tends to deteriorate. Further, in both cases, the insulation resistance is deteriorated after the wet and medium load test. Therefore, by defining the range of the softening point of the glass, it is possible to prevent such a problem from occurring. It leads to quality control of the glass used.

【0015】本発明では、具体的に軟化点を380〜5
00℃の範囲内と規定している。このような軟化点の範
囲内であれば、どの特性も劣化なく、信頼性の高い半導
体磁器が得られる。軟化温度が380℃未満の場合に
は、ガラス成分の半導体磁器中への浸透が大きくなり、
破壊電圧が劣化するため用いることができない。一方、
軟化温度が500℃を超える場合には、厚膜電極と半導
体磁器との接合強度が劣化して、耐水分のシール性、誘
電体損失、電極密着強度の低下を生じる。
In the present invention, specifically, the softening point is 380-5.
It is specified to be within the range of 00 ° C. As long as the softening point is within such a range, a semiconductor porcelain having high reliability without any deterioration is obtained. When the softening temperature is lower than 380 ° C., the penetration of the glass component into the semiconductor porcelain increases,
It cannot be used because the breakdown voltage deteriorates. on the other hand,
If the softening temperature exceeds 500 ° C., the bonding strength between the thick-film electrode and the semiconductor porcelain deteriorates, resulting in moisture-proof sealability, dielectric loss, and lower electrode adhesion strength.

【0016】また、本発明においては、上記ガラスフリ
ット組成に加えて、Liの酸化物を含有することが好ま
しい。なぜなら、Liの酸化物を添加すれば半導体磁器
が性能劣化することなく、半田付け性を向上させること
ができるからである。
In the present invention, it is preferable that an oxide of Li is contained in addition to the above glass frit composition. This is because the addition of an oxide of Li can improve the solderability without deteriorating the performance of the semiconductor porcelain.

【0017】上記Liの酸化物の配合量は、半導体磁器
が性能劣化することなく、半田付け性を向上させること
ができる範囲内であればよく、従って必ずしも限定され
るものではないが、好ましい配合量は、ガラスフリット
全量100wt%のうち5wt%以下である。このよう
な範囲内であれば上記のような目的が達成できることを
実験により確認している。
The compounding amount of the above-mentioned Li oxide may be within a range in which the solderability can be improved without deteriorating the performance of the semiconductor porcelain, and is not necessarily limited. The amount is 5% by weight or less of the total amount of 100% by weight of the glass frit. It has been confirmed by experiments that the above object can be achieved within such a range.

【0018】なお、本発明においては、ガラス溶融、粉
砕時にコンタミネーションとして混ざり得るAlの酸化
物またはZrの酸化物を含有してもよい。特に、ガラス
フリット全量100wt%のうち5wt%以下であれ
ば、半導体磁器の性能を落とさないことを実験により確
認している。
In the present invention, an oxide of Al or an oxide of Zr which may be mixed as contamination during melting and pulverization of glass may be contained. In particular, it has been confirmed by an experiment that the performance of the semiconductor porcelain is not deteriorated when the total amount of the glass frit is not more than 5 wt% of 100 wt%.

【0019】また、Zn、Baの酸化物は半導体磁器と
反応して静電容量等の特性劣化を引き起こすことを実験
により確認している。
It has also been confirmed by experiments that Zn and Ba oxides react with semiconductor porcelain to cause deterioration of characteristics such as capacitance.

【0020】また、上記ガラスフリットの添加量は、半
導体磁器と厚膜電極との充分な接着強度を有する添加量
であれば特に限定されない。ただし、好ましくは、0.
2〜1.0wt%の範囲内である。添加量が0.2wt
%未満の場合には、厚膜電極と半導体磁器の間で充分な
接合強度が得られず、すなわち添加効果に乏しいので好
ましくない。一方、1.0wt%を超える場合には、ガ
ラスの半導体磁器中への浸透量が過大になるので好まし
くない。
The amount of the glass frit is not particularly limited as long as it has sufficient adhesive strength between the semiconductor ceramic and the thick film electrode. However, it is preferable that 0.
It is in the range of 2 to 1.0 wt%. 0.2 wt.
%, It is not preferable because sufficient bonding strength cannot be obtained between the thick film electrode and the semiconductor ceramic, that is, the effect of addition is poor. On the other hand, if it exceeds 1.0 wt%, the amount of glass penetrating into the semiconductor porcelain becomes excessive, which is not preferable.

【0021】また、本発明においては、導電粉末の組成
は必ずしも限定されるものではない。導電粉末の具体例
としては、Ag粉末やAg−Pdの合金粉末などが挙げ
られる。Ag−Pd合金粉末を用いた場合には、Agの
半導体磁器への拡散をPdが抑制することができる。ま
た、好ましくは、合金粉末100wt%のうち、Pdを
30wt%以下含有するものである。Pd粉末が30w
t%を越える場合には、Ag−Pd厚膜電極が焼結して
緻密化する温度が上昇し、従来の825℃での電極焼き
付けでは、厚膜電極が緻密化せず、半田付け性および湿
中負荷試験後の絶縁抵抗が劣化するため好ましくない。
なお、電極焼き付け温度を上げると、半導体磁器の粒界
に拡散させた金属酸化物が流れ出し、グレイン間の結合
が弱くなって生じると考えられる破壊電圧等の劣化が起
こるため適当でない。
In the present invention, the composition of the conductive powder is not necessarily limited. Specific examples of the conductive powder include Ag powder and Ag-Pd alloy powder. When the Ag-Pd alloy powder is used, Pd can suppress the diffusion of Ag into the semiconductor porcelain. Preferably, the alloy powder contains 30 wt% or less of Pd in 100 wt% of the alloy powder. 30w Pd powder
When the amount exceeds t%, the temperature at which the Ag-Pd thick film electrode is sintered and densified increases. In the conventional electrode baking at 825 ° C, the thick film electrode is not densified, and the solderability and the solderability are improved. It is not preferable because the insulation resistance after the wet and medium load test deteriorates.
If the electrode baking temperature is increased, the metal oxide diffused into the grain boundaries of the semiconductor porcelain flows out, and the bonding between the grains becomes weak.

【0022】また、本発明の導電性組成物を用いて半導
体磁器の厚膜電極を製造する場合には、従来の導電性組
成物を用いる方法と同様の方法を用いればよく、例え
ば、上記の導電性組成物のペーストを半導体磁器上にス
クリーン印刷し、100〜160℃で1〜5分間乾燥さ
せた後、750〜850℃で30〜90分間焼き付けを
行えばよい。
When a thick film electrode of a semiconductor ceramic is manufactured by using the conductive composition of the present invention, a method similar to a method using a conventional conductive composition may be used. The paste of the conductive composition may be screen-printed on semiconductor porcelain, dried at 100 to 160 ° C for 1 to 5 minutes, and then baked at 750 to 850 ° C for 30 to 90 minutes.

【0023】さらに、本発明に係る粒界絶縁型半導体磁
器を製造する場合には、まず、チタン酸ストロンチウム
を主原料とし、必要に応じて酸化イットリア、酸化ネオ
ジウム、酸化チタンなどの各種原料を配合し、粉砕混
合、脱水乾燥、射出成形を経て、所望の形状に加工す
る。続いて、これを大気中770〜830℃で1〜3時
間仮焼後、還元性雰囲気において1350〜1470℃
で1〜3時間焼成を行い、半導体磁器を得る。さらに、
酸化鉛、酸化ビスマス、酸化銅などの金属酸化物を上記
半導体磁器の全面に均一な厚さとなるように塗布し、乾
燥後、大気中1100〜1200℃で1〜2時間焼き付
けをする。この操作によって、結晶粒界に金属酸化物が
拡散して誘電体層を形成する。
Further, in producing the grain boundary insulating semiconductor porcelain according to the present invention, first, strontium titanate is used as a main raw material, and various raw materials such as yttria oxide, neodymium oxide and titanium oxide are blended as required. Then, it is processed into a desired shape through pulverization, mixing, dehydration and drying, and injection molding. Subsequently, this was calcined at 770 to 830 ° C. in the air for 1 to 3 hours, and then reduced to 1350 to 1470 ° C. in a reducing atmosphere.
For 1 to 3 hours to obtain semiconductor porcelain. further,
A metal oxide such as lead oxide, bismuth oxide, or copper oxide is applied to the entire surface of the semiconductor porcelain so as to have a uniform thickness, dried, and baked in the atmosphere at 1100 to 1200 ° C. for 1 to 2 hours. By this operation, the metal oxide diffuses into the crystal grain boundaries to form a dielectric layer.

【0024】このように、上記粒界絶縁型半導体磁器の
表面に、上記導電性組成物を焼き付けた厚膜電極を形成
してなる本発明の粒界絶縁型半導体磁器コンデンサは、
静電容量、誘電体損失、絶縁抵抗、破壊電圧、リード線
の接着強度が良好で信頼性の高いものとなる。
As described above, the grain boundary insulated semiconductor porcelain capacitor of the present invention in which the thick film electrode formed by baking the conductive composition is formed on the surface of the grain boundary insulated semiconductor porcelain,
The capacitance, the dielectric loss, the insulation resistance, the breakdown voltage, and the bonding strength of the lead wire are good and highly reliable.

【0025】次に、本発明を実施例に基づき、さらに具
体的に説明するが、本発明はかかる実施例のみに限定さ
れるものではない。
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to only these examples.

【0026】[0026]

【実施例】【Example】

(実施例1)半導体磁器を構成する半導体磁器組成物と
してSrTiO3主原料にY23、Nd23の原子価制
御元素およびTiO2の各原料を適宜配合し、湿式ポッ
トミルで粉砕混合ののち、脱水、乾燥した。これを成形
するためにポリ酢酸ビニル樹脂を約10wt%添加して
約50メッシュに造粒、整粒し、油圧プレスを用いて直
径12mm、肉厚0.6mmの円板に加工した。これを
大気中800℃で約2時間仮焼焼成後、続いて水素1v
ol%、窒素99vol%からなる還元性雰囲気におい
て1450℃で2時間1次焼成を行い、直径10mm、
肉厚0.5mmのチタン酸ストロンチウム系半導体磁器
試料を得た。
(Example 1) semiconductor ceramic Y 2 O 3, Nd 2 O 3 in the raw materials of the valence control elements and TiO 2 were appropriately incorporated into SrTiO 3 main raw material as the semiconductor porcelain composition constituting the grinding mixed in a wet pot mill After that, it was dehydrated and dried. To mold this, about 10 wt% of polyvinyl acetate resin was added, granulated to about 50 mesh, sized, and processed into a disk having a diameter of 12 mm and a wall thickness of 0.6 mm using a hydraulic press. This is calcined and fired at 800 ° C. in the atmosphere for about 2 hours.
ol% and 99 vol% of nitrogen in a reducing atmosphere at 1450 ° C. for 2 hours for primary calcination, with a diameter of 10 mm.
A strontium titanate-based semiconductor porcelain sample having a thickness of 0.5 mm was obtained.

【0027】次いで、上記試料にPb34、Bi23
らなる金属酸化物ペーストを試料の全面に一様な厚さに
塗布し、これを乾燥させた後に大気中1150℃で約1
時間焼き付けを行った。この操作によって結晶粒界に金
属酸化物が拡散して誘電体層を形成した。表1に、半導
体磁器(モル%)および金属酸化物(wt%)の組成を
示す。
Next, a metal oxide paste composed of Pb 3 O 4 and Bi 2 O 3 is applied to the sample to a uniform thickness over the entire surface of the sample.
Baking for hours. By this operation, the metal oxide diffused into the crystal grain boundaries to form a dielectric layer. Table 1 shows the compositions of the semiconductor porcelain (mol%) and the metal oxide (wt%).

【0028】[0028]

【表1】 [Table 1]

【0029】続いて、ペースト状の導電性組成物を直径
8mmのパターンでスクリーン印刷し、825℃で1時
間焼き付けして粒界絶縁型半導体磁器コンデンサを作製
した。ここで、導電性組成物は、銀粉49.5wt%
と、ガラスフリット0.5wt%と、エチルセルロー
ス、ブチルセルソルブ、アルキド樹脂を有機溶剤に溶解
してなる有機ビヒクル50wt%とを使用した。表2、
表3に、上記半導体磁器試料に対する導電性組成物の組
成とガラスフリットの軟化点Ts(℃)を示す。
Subsequently, the paste-like conductive composition was screen-printed in a pattern having a diameter of 8 mm and baked at 825 ° C. for 1 hour to produce a grain boundary insulating semiconductor ceramic capacitor. Here, the conductive composition contained 49.5 wt% of silver powder.
And 0.5 wt% of glass frit, and 50 wt% of an organic vehicle obtained by dissolving ethyl cellulose, butyl cellosolve, and alkyd resin in an organic solvent. Table 2,
Table 3 shows the composition of the conductive composition and the softening point Ts (° C.) of the glass frit with respect to the semiconductor ceramic sample.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】そして、以上の工程を経て作製した粒界絶
縁型半導体磁器コンデンサの静電容量(Cap)、誘電
体損失(tanδ)、絶縁抵抗値(IR)、破壊電圧
(BDV)、半田付け性、リード線接着強度(N)、お
よび湿中負荷試験後の絶縁抵抗不良発生率(%)を測定
した。その結果を表4、表5に示す。なお、それぞれの
判定はEIAJ規格に準ずるものである。
Then, the capacitance (Cap), dielectric loss (tan δ), insulation resistance (IR), breakdown voltage (BDV), solderability of the grain boundary insulated semiconductor ceramic capacitor manufactured through the above steps , The lead wire adhesive strength (N), and the rate of occurrence of insulation resistance failure (%) after the humidity and medium load test were measured. The results are shown in Tables 4 and 5. Each determination is based on the EIAJ standard.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】さらに、表6に、ガラスフリットの添加量
(wt%)を変化させた導電性組成物を、上記と同様に
粒界絶縁型半導体磁器コンデンサの厚膜電極として加工
した。ここで、導電性組成物の導電粉末は銀粉45wt
%であり、有機ビヒクルは上記の組成で残りの量であ
る。得られた結果を表7に示す。なお、それぞれの判定
は上記と同様である。
Further, in Table 6, a conductive composition in which the amount of glass frit added (wt%) was changed was processed as a thick film electrode of a grain boundary insulating semiconductor ceramic capacitor in the same manner as described above. Here, the conductive powder of the conductive composition was silver powder 45 wt.
% And the organic vehicle is the remaining amount in the above composition. Table 7 shows the obtained results. Each determination is the same as above.

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】なお、静電容量、誘電体損失は、0.1
V、1kHz条件で測定し、絶縁抵抗は100V印加で
測定を行った。また、半田付け性は、試料を半田槽に浸
漬して半田の付着状態を目視により判断したもので、半
田が電極面積の90%以上付着したものを○、それ以下
を×として示した。リード線接着強度は電極面上に直径
8mmの大きさで円状に半田を付着し、この中央にリー
ド線を電極面に対し垂直に半田付けしてリード線を引っ
張り、その強度を測定した。また、湿中負荷試験は、作
製した粒界絶縁型半導体磁器コンデンサを湿度90〜9
5Rh%、温度70℃の試験槽中に100V(DC)の
電圧をかけながら1000時間放置後の絶縁抵抗を測
り、EIAJ規格に準じない試料の割合を算出した。組
成を変えたガラスフリットはそれぞれ軟化状態の目安と
なる軟化点を示差熱分析により求めた。
The capacitance and dielectric loss are 0.1
V and 1 kHz, and the insulation resistance was measured with 100 V applied. The solderability was determined by immersing the sample in a solder bath and visually observing the state of adhesion of the solder. When the solder adhered to 90% or more of the electrode area, it was indicated by ○, and by less than that, ×. The bonding strength of the lead wire was such that solder was adhered in a circle having a diameter of 8 mm on the electrode surface, the lead wire was soldered to the center of the electrode perpendicular to the electrode surface, the lead wire was pulled, and the strength was measured. In addition, the humidity and medium load test was conducted by placing the produced grain boundary insulated semiconductor ceramic capacitor at a humidity of 90 to 9%.
The insulation resistance was measured after being left for 1000 hours while applying a voltage of 100 V (DC) in a test vessel at a temperature of 5 ° C. and a temperature of 70 ° C., and the proportion of the sample not conforming to the EIAJ standard was calculated. The softening point of each glass frit having a different composition was determined by differential thermal analysis as a measure of the softened state.

【0039】(実施例2)実施例1における半導体磁器
試料番号Aについて、実施例1と同様にSrTiO3
半導体磁器を作製した。これに銀とパラジウムの金属配
分比を変えたペーストを直径8mmのパターンでスクリ
ーン印刷して粒界絶縁型半導体磁器コンデンサを作製し
た。導電性組成物は有機ビヒクル50wt%と、Pb3
4、B23、SiO2、Bi23からなるガラスフリッ
トを0.5wt%と、銀とパラジウム粉からなる金属粉
49.5wt%とからなり、3本ロールを用いて分散処
理して作製した。ここで、銀とパラジウムからなる金属
100wt%のうち、パラジウムを0〜50wt%と変
化させて試料の作製を行った。表8にその組成を示す。
(Example 2) An SrTiO 3 based semiconductor porcelain was prepared in the same manner as in Example 1 for the semiconductor ceramic sample number A in Example 1. A paste in which the metal distribution ratio of silver and palladium was changed was screen-printed in a pattern having a diameter of 8 mm to produce a grain boundary insulated semiconductor ceramic capacitor. The conductive composition comprises 50% by weight of an organic vehicle and Pb 3
Dispersion treatment using 0.5% by weight of glass frit composed of O 4 , B 2 O 3 , SiO 2 and Bi 2 O 3 and 49.5% by weight of metal powder composed of silver and palladium powder using three rolls. It was produced. Here, a sample was prepared by changing palladium from 0 to 50 wt% of 100 wt% of a metal composed of silver and palladium. Table 8 shows the composition.

【0040】[0040]

【表8】 [Table 8]

【0041】次に、825℃で1時間厚膜電極を焼き付
け処理した後、作製した粒界絶縁型半導体磁器コンデン
サの静電容量(Cap)、誘電体損失(tanδ)、絶
縁抵抗値(IR)、破壊電圧(BDV)、半田付け性、
リード線接着強度、および湿中負荷試験後の絶縁抵抗不
良発生率(%)を測定した。その結果を表9に示す。な
お、測定条件は実施例1と同様である。
Next, after baking the thick film electrode at 825 ° C. for 1 hour, the capacitance (Cap), dielectric loss (tan δ), and insulation resistance (IR) of the produced grain boundary insulated semiconductor ceramic capacitor were obtained. , Breakdown voltage (BDV), solderability,
The lead wire adhesive strength and the rate of occurrence of insulation resistance failure (%) after the humidity and medium load test were measured. Table 9 shows the results. The measurement conditions are the same as in Example 1.

【0042】[0042]

【表9】 [Table 9]

【0043】[0043]

【発明の効果】本発明の導電性組成物を用いれば、半導
体磁器の特性を劣化させることなく、半導体磁器との接
合強度を向上させることが可能である。また、本発明の
粒界絶縁型半導体磁器コンデンサを用いれば、静電容
量、誘電体損失、絶縁抵抗、破壊電圧、リード線の接着
強度が良好で信頼性の高い粒界絶縁型半導体磁器コンデ
ンサを提供することが可能である。従って、粒界絶縁型
半導体磁器コンデンサとして、更なる品質の安定を図る
ことが可能である。
By using the conductive composition of the present invention, it is possible to improve the bonding strength with the semiconductor ceramic without deteriorating the characteristics of the semiconductor ceramic. Further, by using the grain boundary insulated semiconductor ceramic capacitor of the present invention, it is possible to obtain a highly reliable grain boundary insulated semiconductor ceramic capacitor having good capacitance, dielectric loss, insulation resistance, breakdown voltage, and lead wire bonding strength. It is possible to provide. Therefore, it is possible to further stabilize the quality as a grain boundary insulating semiconductor ceramic capacitor.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 導電粉末と、Pb、Bi、B、Siの酸
化物のうち少なくとも2種からなり、軟化点が380〜
500℃の範囲内であるガラスフリットと、有機ビヒク
ルとを含有することを特徴とする導電性組成物。
1. A conductive powder comprising at least two of oxides of Pb, Bi, B, and Si, and having a softening point of 380 to 380.
A conductive composition comprising a glass frit having a temperature in the range of 500 ° C. and an organic vehicle.
【請求項2】 前記ガラスフリット組成に加え、Liの
酸化物を含有することを特徴とする請求項1に記載の導
電性組成物。
2. The conductive composition according to claim 1, further comprising an oxide of Li in addition to the glass frit composition.
【請求項3】 前記Liの酸化物を、前記ガラスフリッ
ト100wt%のうち5wt%以下含有することを特徴
とする請求項2に記載の導電性組成物。
3. The conductive composition according to claim 2, wherein the Li oxide contains 5 wt% or less of 100 wt% of the glass frit.
【請求項4】 前記導電性組成物100wt%のうち、
前記ガラスフリットを0.2〜1.0wt%含有するこ
とを特徴とする請求項1から請求項3のいずれかに記載
の導電性組成物。
4. The composition of claim 2, wherein
The conductive composition according to any one of claims 1 to 3, wherein the glass frit is contained in an amount of 0.2 to 1.0 wt%.
【請求項5】 前記導電粉末は、AgとPdとの合金粉
末からなり、前記合金粉末100wt%のうち、Pdを
30wt%以下含有することを特徴とする請求項1から
請求項4のいずれかに記載の導電性組成物。
5. The conductive powder comprises an alloy powder of Ag and Pd, and contains 30% by weight or less of Pd in 100% by weight of the alloy powder. 3. The conductive composition according to 1.).
【請求項6】 チタン酸ストロンチウムを主成分とする
半導体磁器の結晶粒界に絶縁層を形成した粒界絶縁型半
導体磁器の表面に、請求項1から請求項5のいずれかに
記載の導電性組成物を焼き付けた厚膜電極を形成したこ
とを特徴とする粒界絶縁型半導体磁器コンデンサ。
6. The conductive material according to claim 1, wherein an insulating layer is formed on a crystal grain boundary of the semiconductor porcelain containing strontium titanate as a main component. A grain boundary insulated semiconductor porcelain capacitor characterized by forming a thick film electrode baked with a composition.
JP16159396A 1996-06-21 1996-06-21 Conductive composition and boundary layer ceramic capacitor Pending JPH1012043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16159396A JPH1012043A (en) 1996-06-21 1996-06-21 Conductive composition and boundary layer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16159396A JPH1012043A (en) 1996-06-21 1996-06-21 Conductive composition and boundary layer ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH1012043A true JPH1012043A (en) 1998-01-16

Family

ID=15738097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16159396A Pending JPH1012043A (en) 1996-06-21 1996-06-21 Conductive composition and boundary layer ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH1012043A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974558A2 (en) * 1998-07-24 2000-01-26 Murata Manufacturing Co., Ltd. Electrically conductive paste and glass substrate having a circuit thereon
US7112819B2 (en) 2003-04-23 2006-09-26 Hitachi, Ltd. Semiconductor device and manufacturing method thereof
JPWO2005015573A1 (en) * 2003-08-08 2006-10-05 住友電気工業株式会社 Conductive paste
WO2011033945A1 (en) * 2009-09-18 2011-03-24 株式会社ノリタケカンパニーリミテド Paste composition for solar battery electrode
US8889040B2 (en) 2010-07-02 2014-11-18 Noritake Co., Limited Conductive paste composition for solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974558A2 (en) * 1998-07-24 2000-01-26 Murata Manufacturing Co., Ltd. Electrically conductive paste and glass substrate having a circuit thereon
EP0974558A3 (en) * 1998-07-24 2000-07-19 Murata Manufacturing Co., Ltd. Electrically conductive paste and glass substrate having a circuit thereon
US7112819B2 (en) 2003-04-23 2006-09-26 Hitachi, Ltd. Semiconductor device and manufacturing method thereof
JPWO2005015573A1 (en) * 2003-08-08 2006-10-05 住友電気工業株式会社 Conductive paste
JP4600282B2 (en) * 2003-08-08 2010-12-15 住友電気工業株式会社 Conductive paste
WO2011033945A1 (en) * 2009-09-18 2011-03-24 株式会社ノリタケカンパニーリミテド Paste composition for solar battery electrode
JP2011066354A (en) * 2009-09-18 2011-03-31 Noritake Co Ltd Electrode paste composition for solar cell
US8889039B2 (en) 2009-09-18 2014-11-18 Noritake Co., Limited Paste composition for solar battery electrode
US8889040B2 (en) 2010-07-02 2014-11-18 Noritake Co., Limited Conductive paste composition for solar cell

Similar Documents

Publication Publication Date Title
US4015230A (en) Humidity sensitive ceramic resistor
KR920003225B1 (en) Semiconductive ceramic composition
JPH113834A (en) Multilayer ceramic capacitor and its manufacture
US4535064A (en) Ceramic compositions for a reduction-reoxidation type semiconducting capacitor
JP3471839B2 (en) Dielectric porcelain composition
JPH1012043A (en) Conductive composition and boundary layer ceramic capacitor
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPS6249977B2 (en)
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JPH03129810A (en) Laminated type ceramic chip capacitor and manufacture thereof
JPH0945581A (en) Laminated capacitor
JPS6249976B2 (en)
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JP3189341B2 (en) Composite varistor
KR920009172B1 (en) Semiconductive ceramic composition and semiconductive ceramic capacitor
JPS6312373B2 (en)
JPS6249975B2 (en)
JPH08222468A (en) Ceramic element and manufacture thereof
JP2605314B2 (en) Semiconductor porcelain material
JPH0734413B2 (en) Semiconductor ceramic capacitor and manufacturing method thereof
JP2679065B2 (en) Semiconductor porcelain material
JPH0734414B2 (en) Semiconductor ceramic capacitor and manufacturing method thereof
JP2642390B2 (en) Thick film capacitors
JPH0670935B2 (en) Material for forming electrodes of grain boundary insulated porcelain semiconductor capacitors
JPS59127826A (en) Grain boundary insulating semiconductor porcelain capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A02 Decision of refusal

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A02