JPH02244760A - 半導体記憶装置 - Google Patents

半導体記憶装置

Info

Publication number
JPH02244760A
JPH02244760A JP1063915A JP6391589A JPH02244760A JP H02244760 A JPH02244760 A JP H02244760A JP 1063915 A JP1063915 A JP 1063915A JP 6391589 A JP6391589 A JP 6391589A JP H02244760 A JPH02244760 A JP H02244760A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
pair
applying
transistors
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1063915A
Other languages
English (en)
Inventor
Yasushi Ema
泰示 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1063915A priority Critical patent/JPH02244760A/ja
Publication of JPH02244760A publication Critical patent/JPH02244760A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔概要〕 高抵抗負荷型スタティック・ランダム・アクセス・メモ
リ (static  random  aecess
  mernory:SRAM)と呼ばれる半導体記憶
装置の改良に関し、 負荷として用いられる高抵抗膜を立体的に構成すること
で、その平面上の長さを短縮しても、所望の抵抗値を実
現できるようにすることを目的とし、 ゲートとドレインがたすき接続された一対のドライバ・
トランジスタと、8亥一対のドライバ・トランジスタの
ドレインにそれぞれ別個に接続された高抵抗と、該ドラ
イバ・トランジスタと液高抵抗との接続点にそれぞれ別
個に接続された一対のトランスファ・ゲート・トランジ
スタと、該ドライバ・トランジスタ及び高抵抗の直列接
続体の一対が間に介挿される正側電源ライン及び接地側
電源ラインとを備え、該高抵抗は絶縁膜を介して積層さ
れ一個所で導通されることで直列接続された複数の多結
晶シリコン膜からなっているよう構成する。
〔産業上の利用分野〕
本発明は、高抵抗負荷型スタティック・ランダム・アク
セス・メモリ(static  random、  a
ccess  memory:SRA、M)と呼ばれる
半導体記憶装置の改良に関する。
〔従来の技術〕
第12図は高抵抗負荷型SRAMの要部回路図を表して
いる。
図に於いて、QDはドライバ・トランジスタ、RLは負
荷である高抵抗、Q、Gはトランスファ・ゲート・トラ
ンジスタ、WLはワード線、vecは正側電源電圧、■
3.は接地側電源電圧、■乃至■は他の図との対応を明
らかにする為の主要個所をそれぞれ示している。
第13図は第12図に見られる高抵抗負荷型SRAMの
具体的構成を説明する為の要部平面図を表し、第12図
に於いて用いた記号と同記号は同部分を表すか或いは同
じ意味を持つものとする。
第14図は第13図に見られる線Y−Yに沿う要部切断
側面図を表している。
図に於いて、1はp型シリコン半導体基板、2は二酸化
シリコン(S102)からなるフィールド絶縁膜、3は
S i O2からなるゲート絶縁膜、4tcはn1型に
ドーピングされた多結晶シリコンからなるトランスファ
・ゲート・トランジスタのゲート電極、4D11は同じ
くn+型にドーピングされた多結晶シリコンからなるド
ライバ・トランジスタのゲート電極、5Sはトランスフ
ァ・ゲート・トランジスタのn1型ソース領域、5Dは
同じくトランスファ・ゲート・トランジスタのn+型ト
ドレイン領域SSSは接地側電源電圧VSSを供給する
電源ラインであるn1型不純物拡散領域、6はSiO2
からなる眉間絶縁膜、7はノン・ドープの多結晶シリコ
ンからなる高抵抗膜、7Aは正側電源電圧VCCを供給
する電源ラインであるn++不純物拡散領域、12は5
i02膜と燐珪酸ガラス(phosphostliea
te  glass:PsG)膜とからなる眉間絶縁膜
、13はAnからなるビット線をそれぞれ示している。
図から明らかなように、この高抵抗負荷型SRAMでは
、ノン・ドープの多結晶シリコンからなる高抵抗膜7が
負荷として用いられ、その一端はフリ・ノブ・フロップ
接続された一方のドライバ・トランジスタQ II)の
ゲート電極4 DRs同じくフロップ・フロップ接続さ
れた他方のドライバ・トランジスタQDのドレイン領域
5D1 トランスファ・ゲート・・トランジスタQTG
のn +型ドレイン領域(第12図及び第13図の■或
いは■を参照)に接続され、他端は同一の多結晶シリコ
ン層で構成されている正側電源電圧VCCを供給する電
源ラインであるn++不純物拡散領域7Aに接続されて
いる。
〔発明が解決しようとする課題〕
第12図乃至第14図について説明した半導体記憶装置
も微細化及び高集積化の方向を歩んでいることは他の半
導体記憶装置と同様である。
この種の半導体記憶装置を微細化し、た場合、多結晶シ
リコンからなる高抵抗膜7も短縮・せざるを得ない。然
しなから、例えば第14図を見ると理解し易いが、n+
+ゲート電極4011及びn++不純物拡散領域7Aか
ら不純物が高抵抗M7に対して熱拡散する距離を短縮す
ることは殆ど不可能である。
第14図に見られるように、高抵抗膜7が抵抗として作
用すべき長さをlとし、不純物が熱拡散する距離をΔβ
とすると、実質的に抵抗として作用する長さはβ−2Δ
βになってしまう。しかも、lを短縮した場合であって
も、Δlは殆ど不変であるから、N−2Δlは大変に短
くなってしまい、従って、負荷の抵抗値が低下して消費
電力が大きくなってしまう旨の問題を生ずる。
本発明は、負荷として用いられる高抵抗膜を立体的に構
成することで、その平面上の長さを短縮しても、所望の
抵抗値を実現できるようにする。
〔課題を解決するための手段〕
本発明に依る半導体記憶装置に於いては、ゲートとドレ
インがたすき接続された一対のドラ・イバ・トランジス
タ(例えばドライバ・トランジスタQD)と、J亥一対
のドライバ・トランジスタのドレインにそれぞれ別個に
接続された高抵抗(例えば負荷である高抵抗RL)と、
該ドライバ・トランジスタと政商抵抗との接続点にそれ
ぞれ別個に接続された一対のトランスファ・ゲート・ト
ランジスタ(例えばトランスファ・ゲート・トランジス
タQ?G)と、該ドライバ・トランジスタ及び高抵抗の
直列接続体の一対が間に介挿される正側電源ライン及び
接地側電源ラインとを備え、政商抵抗は絶縁膜(例えば
層間絶縁膜8.10など)を介して積層され一個所で導
通されることで直列接続された複数の多結晶シリコン膜
(例えば多結晶シリコン膜?、9.11など)で構成さ
れている。
〔作用〕
前記手段を採ることに依り、負荷として用いられる高抵
抗膜の平面的な長さを短縮しても、その抵抗値を大きく
維持することができ、消費電力が増加するなどの問題は
発生せず、従って、半導体記憶装置を微細化及び高集積
化に有効である6C実施例〕 第1図乃、至第10図は本発明一実施例を製造する場合
について解説する為の工程要所に於ける半導体記憶装置
の要部切断側面図を表し、以下、これ等の図を参照しつ
つ説明する。尚、第15図に於いて用いた記号と同記号
は同部分を表すか或いは同じ意味を持つものであり、ま
た、この工程を経て得られる半導体記憶装置を平面で見
た場合のパターンは第12図と同様である。
第1図参照 窒化シリコン(S13N4)膜などを耐酸化性マスクと
する選択的熱酸化(例えば1oca1   oxjda
tiorh   of   5ilic。
n : LOCO3>法を適用することに依り、p型シ
リコン半導体基板1に厚さ例えば3000〔人〕程度の
S t O2からなるフィールド絶縁11!2を形成す
る。
+11−2 耐酸化性マスクとして用いたSi3N4膜などを除去し
、p型シリコン半導体基板1の一部を表出させる。
第2図参照 熱酸化法を適用することに依り、厚さ例えば150〔人
〕程度のS i O2からなるゲート絶縁膜3を形成す
る。
f2)−2 通常のフォト・リソグラフィ技術を適用することに依り
、ゲート絶縁膜3の選択的エツチングを行って電極コン
タクト・ホール3Aを形成する。
第3図参照 化学気相堆積(chemical  vap。
r  deposition:CVD)法を適用するこ
とに依り、厚さ例えば4000  (人〕程度の多結晶
シリコン欣を形成する。
ソース・ガスを例えばPOCl3とする気相拡散法を適
用することに依り、前記多結晶シリコン膜にPの導入を
行う。この場合の不純′JIyJ濃度としては、例えば
l X I Q” (cm−’)程度として良い。
+313 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス並びにエツチング・ガスを0CA4+Ofとする
反応性イオン・エツチング(reactive  io
n  etching: RI E)法を適用すること
に依り、前記多結晶シリコン膜のバターニングを行って
ドライバ・トランジスタのn+型ゲート電極4□及びト
ランスファ・ゲート・トランジスタのn+型ゲート電極
4’rGを形成する。
第4図参照 イオン注入法を適用することに依り、ドーズ量を例えば
I X 10 ” (cm−”)程度、そして、打ぢ込
6エネルギを例えば50 (KeV)程度とPるAsイ
オンの打し込みを行って、トランスファ・ゲート・トラ
ンジスタのn+型ソース領域5S及びn +型ドーズ領
域5D、或いは、接地側電源電圧■。を供給する為の接
地側電源ラインとなるn+型不純物拡散領域5ssなど
を形成する。
+4)−2 CVD法を適用することに依り、厚さ例えば1000 
(人〕程度のS i O2からなる眉間絶縁膜6を形成
する。
エツチング・ガスをCI4 Fユ+0□とするRIE法
を適用することに依り、眉間絶縁膜6の選択的エツチン
グを行って電極コンタクト・ホール6Aを形成する。
第5図参照 CVD法を適用することに依り、厚さ例えば500 (
人〕程度の多結晶シリコン膜7を形成する。
+5)−2 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス並びにエツチング・ガスをCC1a 十〇□とす
るRIE法を適用することに依って多結晶シリコン膜7
のバターニングを行う。
第6図参照 +6l−1 CVD法を適用することに依り、厚さ例えば500〔人
〕程度の5io2からなる眉間絶縁膜8を形成する。
エツチング・ガスをCHF5 +OtとするRIE法を
適用することに依り、層間絶縁膜8の選択的エツチング
を行って電極コンタクト・ホール8Aを形成する。
第7図参照 CVD法を適用することに依り、厚さ例えば500 〔
人〕程度の多結晶シリコン膜9を形成する。
(?)−2 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス並びにエツチング・ガスをCCj!4 +Q、と
するRIE法を適用することに依って多結晶シリコン膜
9のバターニングを行う。
第8図参照 CVD法を適用することに依り、厚さ例えば500〔人
〕程度の5i02からなる眉間絶縁膜10を形成する。
(8i2 エツチング・ガスをCHFj +O□とするRIE法を
適用することに依り、眉間絶縁膜10の選択的エツチン
グを行って電極コンタクト・ホールIOAを形成する。
第9図参照 CVD法を適用することに依り、厚さ例えば500〔人
〕程度の多結晶シリコン膜11を形成する。
+9) −2 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス並びにエツチング・ガスをCC14+ Otとす
るRIE法を適用することに依って多結晶シリコン膜1
1のバターニングを行う。
通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセスを適用することに依り、正側電源ライン形成予定
部分に開口を有するフォト・レジスト膜(図示せず)を
形成する。
イオン注入法を適用することに依り、ドーズ量を例えば
l X I Q 1S(cll−”)程度、そして、打
ち込みエネルギを例えば50(KeV)程度とするAs
イオンの打ち込みを行って、n1型不純物拡散領域11
Aを形成する。
このn+型不純物拡散領域11Aが正側電源電圧■。を
供給する為の正側電源ラインになることは云うまでもな
い。
第10図参照 αトl CVD法を適用することに依り、厚さ例えば500〔人
〕程度の$ i 02からなる眉間絶縁膜及び厚さ例え
ば3000  (人〕程度のPSGからなる眉間絶縁膜
を形成する。
図では、簡略化の為、これ等の層間絶縁膜を記号12で
指示しである。
0ト2 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス並びにエツチング・ガスをCoi 十ozとする
RIE法を適用することに依り、眉間絶縁膜12,10
,8.6及びゲート絶縁膜3の選択的エツチングを行っ
てビット線コンタクト・ホールを形成する。
0ト3 スパッタリング法を適用することに依り、厚さ例えば0
.5 〔μm]程度のAl膜を形成する。
0ト4 通常のフォト・リソグラフィ技術を適用することに依り
、Al膜のバターニングを行ってビット線13を形成す
る。
前記のようにして製造した半導体記憶装置に於いては、
高抵抗負荷としての役割を果たす多結晶シリコンからな
る高抵抗膜は多結晶シリコン膜7゜9.11の三層から
なっていることから、高抵抗膜の長さが短縮されても、
大きな抵抗値を維持することができる。
前記実施例の場合、マスク・プロセスが7回必要であり
、これは、従来技術に依った場合の4回と比較すると3
回も多いが、全体的にそれ程の無理をせずに、高抵抗膜
の抵抗値を低下させることなく微細化が可能であること
は、プロセスが多くなるも止むを得ない。
第11図は本発明に於ける他の実施例を製造する場合を
解説する為の工程要所に於ける半導体記憶装置の要部切
断側面図を表し、以下、この図を参照しつつ説明する。
尚、第1図乃至第11図及び第15図に於いて用いた記
号と同記号は同部分を表すか或いは同じ意味を持つもの
とする。
αト1 前記実施例に於ける工程のうち、第1図乃至第4図につ
いて説明した工程、即ち、工程(4)3までは、本実施
例に於いても同じである為、その次の段階から説明する
CVD法を適用することに依り、厚さ例えば500[人
]程度の多結晶シリコン膜7を形成する。
0ト2 CVD法を適用することに依り、厚さ例えば500〔人
〕程度のS i O2からなる眉間絶縁膜8を形成する
αυ−3 エツチング・ガスをCHF J ÷OtとするRIE法
を通用することに依り、眉間絶縁膜80選択的エツチン
グを行って電極コンタクト・ホールを形成する。
αト4 CVD法を適用することに依り、厚さ例えば500 〔
人〕程度の多結晶シリコンII 9を形成する。
通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス並びにエツチング・ガスをCCZ、+O□ (多
結晶シリコンに対して)及びCHF5 +Q2 csi
ozに対して)とするRIE法を適用することに依って
多結晶シリコン膜9、眉間絶縁膜8、多結晶シリコン膜
7のバターニングを行う。
0υ−6 CVD法を適用することに依り、厚さ例えば500 〔
人〕程度のS i O2からなる眉間絶縁膜lOを形成
する。
0υ−7 エツチング・ガスをCHF、+O□とするR1E法を適
用することに依り、層間絶縁膜10の選択的エツチング
を行って電極コンタクト・ホールを形成する。
aO−8 CVD法を適用することに依り、厚さ例えば500 (
人〕程度の多結晶シリコン膜11を形成する。
(1,1) −9 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス並びにエツチング・ガスをCCl4+O,とする
RIB法を適用することに依って多結晶シリコン膜11
のバターニングを行う。
Ql)−10 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセスを通用することに依り、正側電源ライン形成予定
部分に開口を有するフォト・レジスト膜を形成する。
(1,tl−11 イオン注入法を適用することに依り、ドーズ量を例えば
I X 10 ” (cll−”)程度、そして、打ち
込みエネルギを例えば50[KeV)程度とするAsイ
オンの打ち込みを行って、n+型不純物拡散領域11A
を形成する。
このn+型不純物拡散領域11Aは、前記した通り、正
側電源電圧VCCを供給する為の正側電源ラインになる
0υ−12 CVD法を適用することに依り、厚さ例えば500〔人
〕程度の5i02からなる層間絶縁膜及び厚さ例えば3
000 [人〕程度のPSGからなる眉間絶縁膜を形成
する。これ等の眉間絶縁膜を記号12で指示しである。
αυ−13 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス並びにエツチング・ガスをCHF3+O□とする
RIE法を適用することに依り、眉間絶縁膜12.10
,8.6及びゲート絶縁膜3の選択的エツチングを行っ
てビット線コンタクト・ホールを形成する。
aO−14 スパッタリング法を適用することに依り、厚さ例えば0
.5〔μm〕程度の/l’膜を形成する。
aO−15 通常のフォト・リソグラフィ技術を適用することに依り
、Al膜のバターニングを行ってビット線13を形成す
る。
前記のようにして製造した半導体記憶装置に於いても、
高抵抗負荷としての役割を果たす多結晶シリコンからな
る高抵抗膜は多結晶シリコン膜7゜9.11の三層から
なっていて、高抵抗膜の長さが短縮されても大きな抵抗
値を維持することができる点で、第1図乃至第10図に
ついて説明した工程を経て得られた実施例と変わりなく
、しかも、マスク・プロセスは6回であって、1回少な
くなる。
〔発明の効果〕
本発明に依る半導体記憶装置に於いては、四個のトラン
ジスタと二個の高抵抗からなり、その高抵抗は絶縁膜を
介して積層され一個所で導通されることで直列接続され
た複数の多結晶シリコン膜からなっている。
前記構成を採ることに依り、負荷として用いられる高抵
抗膜の平面的な長さを短縮しても、その抵抗値を大きく
維持することができ、消費電力が増加するなどの問題は
発生せず、従って、装置を微細化及び高集積化するのに
有効である。
【図面の簡単な説明】
第1図乃至第10図は本発明一実施例を製造する場合に
ついて説明する為の工程要所に於ける半導体記憶装置の
要部切断側面図、第11図は他の実施例を製造する場合
について説明する為の工程要所に於ける半導体記憶装置
の要部切断側面図、第12図は高抵抗負荷型SRAMの
要部回路図、第13図は高抵抗負荷型SRAMの具体的
構成を説明する為の要部平面図、第14図は第13図に
見られる線Y−Yに沿う要部切断側面図をそれぞれ表し
ている。 図に於いて、1はp型シリコン半導体基板、2は5i0
2からなるフィールド絶縁膜、3は5t02からなるゲ
ート絶縁膜、4T、2はn+型に1−一ピングされた多
結晶シリコンからなるトランスファ・ゲート・トランジ
スタのゲート電極、4D11は同じくn+型にドーピン
グされた多結晶シリコンからなるドライバ・トランジス
タのゲート電極、5Sはトランスファ・ゲート・トラン
ジスタのn+型ソース領域、5Dは同じくトランスファ
・ゲート・トランジスタのn+型ドレイン領域、51.
は接地側電源電圧■。を供給する電源ラインであるn+
型不純物拡散領域、6はS t O2からなる眉間絶縁
膜、7はノン・ドープの多結晶シリコンからなる高抵抗
膜、7Aは正側電源電圧VCCを供給する電源ラインで
あるn+型不純物拡散領域、8及び10はS i02か
らなる眉間絶縁膜、9及び11は多結晶シリコン膜、1
2は5102膜とPSG膜とからなる層間絶縁膜、13
はAβからなるビット線をそれぞれ示している。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − 第4図 半導体装置の要部切断側面図 第5図 第2図 半導体装置の要部切断側面図 第3図 半導体装置の要部切断側面図 第6図 半導体装置の要部切断側面図 第7図 第8図 高抵抗負荷型SRAMの要部回路図 第12図 1A 半導体装置の要部切断側面刃 第10図 説明する為の要部平面図 第13図

Claims (1)

  1. 【特許請求の範囲】 ゲートとドレインがたすき接続された一対のドライバ・
    トランジスタと、 該一対のドライバ・トランジスタのドレインにそれぞれ
    別個に接続された高抵抗と、 該ドライバ・トランジスタと該高抵抗との接続点にそれ
    ぞれ別個に接続された一対のトランスファ・ゲート・ト
    ランジスタと、 該ドライバ・トランジスタ及び高抵抗の直列接続体の一
    対が間に介挿される正側電源ライン及び接地側電源ライ
    ンと を備え、 該高抵抗は絶縁膜を介して積層され一個所で導通される
    ことで直列接続された複数の多結晶シリコン膜で構成さ
    れてなること を特徴とする半導体記憶装置。
JP1063915A 1989-03-17 1989-03-17 半導体記憶装置 Pending JPH02244760A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1063915A JPH02244760A (ja) 1989-03-17 1989-03-17 半導体記憶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063915A JPH02244760A (ja) 1989-03-17 1989-03-17 半導体記憶装置

Publications (1)

Publication Number Publication Date
JPH02244760A true JPH02244760A (ja) 1990-09-28

Family

ID=13243116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063915A Pending JPH02244760A (ja) 1989-03-17 1989-03-17 半導体記憶装置

Country Status (1)

Country Link
JP (1) JPH02244760A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440790B1 (en) 1997-02-14 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor device having an insulating film positioned between two similarly shaped conductive films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440790B1 (en) 1997-02-14 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor device having an insulating film positioned between two similarly shaped conductive films
KR100363352B1 (ko) * 1997-02-14 2003-01-24 미쓰비시덴키 가부시키가이샤 Sram메모리셀

Similar Documents

Publication Publication Date Title
US6093597A (en) SRAM having P-channel TFT as load element with less series-connected high resistance
JPS61183952A (ja) 半導体記憶装置及びその製造方法
US5792683A (en) Method for manufacturing of an SRAM device
KR100214708B1 (ko) 저접촉저항을 갖는 반도체장치 및 그의 제조방법
JPH06112503A (ja) 半導体記憶装置およびその製法
JPH02250373A (ja) 半導体装置
JPS5910581B2 (ja) 半導体装置の製造方法
KR100221439B1 (ko) 반도체 메모리
KR920000383B1 (ko) 반도체 스태틱 랜덤 억세스 메모리장치
TW546783B (en) Semiconductor memory device and manufacturing method thereof
JP2004103851A (ja) スタティック型半導体記憶装置
JPS6243547B2 (ja)
JP2003031698A (ja) 半導体記憶装置
US5410183A (en) Contact structure of semiconductor device and method of manufacturing the same
KR930006275B1 (ko) 다층저항층 구조의 반도체장치
JPH02244760A (ja) 半導体記憶装置
US6525382B1 (en) Semiconductor memory device and method of manufacturing the same
KR19980071810A (ko) 엑세스 속도를 높일 수 있는 스태틱 반도체 메모리 디바이스
KR100282242B1 (ko) 부하저항층의부분이전원선으로기능하는반도체장치와그에대한방법
JPH10284618A (ja) 半導体装置及びその製造方法
JPH0992731A (ja) Lddトランジスタを有する半導体装置
US6150228A (en) Method of manufacturing an SRAM with increased resistance length
US6180994B1 (en) Array of sidewall-contacted antifuses having diffused bit lines
JP2773205B2 (ja) 半導体メモリ
JPH05145073A (ja) 相補型薄膜トランジスタ