JPH02228270A - Plane type ultrasonic actuator - Google Patents

Plane type ultrasonic actuator

Info

Publication number
JPH02228270A
JPH02228270A JP1047631A JP4763189A JPH02228270A JP H02228270 A JPH02228270 A JP H02228270A JP 1047631 A JP1047631 A JP 1047631A JP 4763189 A JP4763189 A JP 4763189A JP H02228270 A JPH02228270 A JP H02228270A
Authority
JP
Japan
Prior art keywords
vibrating body
vibrators
vibration
shaped
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1047631A
Other languages
Japanese (ja)
Other versions
JP2538033B2 (en
Inventor
Osamu Kawasaki
修 川崎
Kazuhiro Tanaka
一裕 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1047631A priority Critical patent/JP2538033B2/en
Publication of JPH02228270A publication Critical patent/JPH02228270A/en
Application granted granted Critical
Publication of JP2538033B2 publication Critical patent/JP2538033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To decrease the vibration loss by fixing beam-shaped vibrators near the flexural vibration nodes of plane vibrators and generating transverse vibration of the free ends thereof and at the same time vertical vibration by longitudinal vibration with both the ends free. CONSTITUTION:A plurality of beam-shaped vibrators 102, which are arranged in matrix form, are fixed near the flexural vibration nodes of plane vibrators 101 at the center thereof. The resonance frequency (f) of longitudinal vibration of the vibrators 102 and that of flexural vibration of the vibrators 101 are regulated to approximately the same value. When alternating voltage of frequency of about (f) is applied to piezoelectric bodies which construct the vibrators 101, the tips of the vibrators 102 are displaced transversely by flexural vibration of the vibrators 101. When alternating voltage of frequency of about (f) is applied to piezoelectric bodies which construct the vibrators 102, the vibrators 102 are displaced vertically and vibrates longitudinally. When the piezoelectric bodies are driven by alternating voltage of a 90 deg. difference in phase simultaneously, the free ends of the vibrators 102 vibrate with an ellipsoidal trajectory. A moving body 111 can be moved in an arbitrary direction on a plane if brought in contact with the free ends of the vibrators 102 by pressurization.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電セラミックなどの圧電体により励振した
弾性振動を駆動力とする平面型超音波アクチュエータに
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a planar ultrasonic actuator whose driving force is elastic vibration excited by a piezoelectric material such as a piezoelectric ceramic.

従来の技術 近年、圧電セラミック等の圧電体により構成した振動体
に弾性振動を励振し、これを駆動力とした超音波モータ
や超音波リニアモータ等の超音波アクチュエータが注目
されている。
2. Description of the Related Art In recent years, ultrasonic actuators such as ultrasonic motors and ultrasonic linear motors have attracted attention, in which elastic vibrations are excited in a vibrating body made of a piezoelectric material such as a piezoelectric ceramic, and this is used as a driving force.

以下、図面を参照しながら従来の超音波アクチュエータ
について説明を行う。
Hereinafter, a conventional ultrasonic actuator will be explained with reference to the drawings.

第5図は円環型超音波モータの概観図であり、スリット
を入れた円環形の弾性体1に円環形の圧電セラミック等
の圧電体2を接着することにより振動体3を構成し、耐
摩耗性の摩擦材4と弾性体5より移動体6を構成する。
FIG. 5 is a general view of a toroidal ultrasonic motor, in which a vibrating body 3 is constructed by bonding a toroidal piezoelectric body 2 such as a toroidal piezoelectric ceramic to a toroidal elastic body 1 with slits. A movable body 6 is composed of an abrasive friction material 4 and an elastic body 5.

振動体3に移動体6を加圧して設置し、圧電体2に交流
電圧を印加すれば、振動体3に周方向に進行する撓み振
動の進行波が励振され、移動体6は進行波により駆動さ
れて回転する。
When the movable body 6 is pressurized and installed on the vibrating body 3 and an AC voltage is applied to the piezoelectric body 2, a traveling wave of bending vibration that advances in the circumferential direction is excited in the vibrating body 3, and the movable body 6 is caused by the traveling wave. Driven and rotated.

第6図は超音波リニアモータの概観図であり、円板膨圧
電体7および8を、円筒形の弾性体9および10で挟ん
で固定することにより振動体11を構成している。圧電
体7および8に、振動体11の共振周波数近傍の交流電
界を印加すれば、同図中の矢印で示されるように、振動
体11は縦振動モードで上下方向に振動する。
FIG. 6 is a general view of an ultrasonic linear motor, in which a vibrating body 11 is constructed by sandwiching and fixing disc expansion piezoelectric bodies 7 and 8 between cylindrical elastic bodies 9 and 10. When an alternating current electric field near the resonant frequency of the vibrating body 11 is applied to the piezoelectric bodies 7 and 8, the vibrating body 11 vibrates in the vertical vibration mode in a longitudinal vibration mode, as shown by the arrow in the figure.

振動体11の振動面から見た機械インピーダンスは、ホ
ーン12によりインピーダンス変換されて、伝送棒13
の撓み振動に対する機械インピーダンスに整合される。
The mechanical impedance seen from the vibration surface of the vibrating body 11 is impedance-converted by the horn 12 and transmitted to the transmission rod 13.
mechanical impedance for flexural vibrations.

ホーン12の先端は伝送棒13の一端に近い一部に音響
的に結合される。従って、振動体11の上下振動は、ホ
ーン12により効率良く伝送棒13に伝えられ、伝送棒
13は撓み振動する。この撓み振動は、伝送棒13の一
端から他端に向かって進行する。
The tip of the horn 12 is acoustically coupled to a portion of the transmission rod 13 near one end. Therefore, the vertical vibration of the vibrating body 11 is efficiently transmitted to the transmission rod 13 by the horn 12, and the transmission rod 13 bends and vibrates. This bending vibration progresses from one end of the transmission rod 13 to the other end.

伝送棒13の他端に近い一部では、一端と同様にホーン
14の先端が音響的に結合されている。
At a portion near the other end of the transmission rod 13, the tip of the horn 14 is acoustically coupled, similar to the one end.

円板膨圧電体15および16を、円筒形の弾性体17お
よび18で挟んで固定することにより、振動体11と全
く同じ振動体19を構成している。
A vibrating body 19, which is exactly the same as the vibrating body 11, is constructed by sandwiching and fixing the disk expansion piezoelectric bodies 15 and 16 between cylindrical elastic bodies 17 and 18.

ホーン14には、この振動体19が接続されている。従
って、伝送棒の一端から他端に向かって進行してきた撓
み振動は、ホーン14により振動体19に伝えられ、振
動体19の上下振動に変換される。圧電体15および1
8には、インピーダンス整合した負荷Rが接続され、上
記の上下振動は負荷Rによって消費される。故に、伝送
棒13には挟み振動が進行波としてのみ存在する。
This vibrating body 19 is connected to the horn 14. Therefore, the bending vibration that has progressed from one end of the transmission rod toward the other end is transmitted to the vibrating body 19 by the horn 14 and converted into vertical vibration of the vibrating body 19. Piezoelectric bodies 15 and 1
8 is connected to an impedance-matched load R, and the above vertical vibration is consumed by the load R. Therefore, the pinch vibration exists in the transmission rod 13 only as a traveling wave.

20は移動体であり、伝送棒13を進行する撓み振動に
より駆動され、進行波の進行方向とは逆の方向に運動す
る。上の説明では、移動体20の進行方向は一方向とし
ているが、駆動端を逆にすれば、逆の方向にも進行する
A moving body 20 is driven by the bending vibration traveling through the transmission rod 13, and moves in a direction opposite to the traveling direction of the traveling wave. In the above description, the moving direction of the moving body 20 is assumed to be one direction, but if the driving end is reversed, the moving body 20 also moves in the opposite direction.

第7図は、撓みの弾性進行波が、移動体を駆動する原理
を示している。振動体(または伝送棒)21の撓み振動
により、振動体21の表面の点(例えば点A)は、縦方
向W・横方向Uの楕円軌跡を描く。この楕円軌跡の頂点
での速度は、波の進行方向とは反対である。振動体21
の上に移動体22を加圧設置すれば、移動体22は波の
頂点近傍でのみ振動体21に接触する。従って、振動体
21と移動体22との摩擦力と、楕円軌跡の横方向の速
度によって、波の進行方向と逆の方向に移動体22が駆
動される。また、同図中の23は、上記楕円軌跡の横方
向成分を、効率良く取り出すための耐磨耗性の摩擦材で
ある。
FIG. 7 shows the principle by which a traveling elastic wave of deflection drives a moving body. Due to the bending vibration of the vibrating body (or transmission rod) 21, a point (for example, point A) on the surface of the vibrating body 21 draws an elliptical locus in the vertical direction W and the horizontal direction U. The velocity at the apex of this elliptical trajectory is opposite to the direction of travel of the wave. Vibrating body 21
If the movable body 22 is installed under pressure on the wave, the movable body 22 will come into contact with the vibrating body 21 only near the peak of the wave. Therefore, the movable body 22 is driven in a direction opposite to the direction in which the waves travel due to the frictional force between the vibrating body 21 and the movable body 22 and the speed in the lateral direction of the elliptical trajectory. Further, numeral 23 in the figure is a wear-resistant friction material for efficiently extracting the lateral component of the elliptical locus.

発明が解決しようとする課題 以上、説明した従来の超音波アクチュエータは、移動体
の運動は回転か直線であった。これらの超音波アクチュ
エータで、移動体が平面上を任意の方向に移動する平面
型超音波アクチュエータを構成しようとすれば、複数の
超音波モータか超音波リニアモータが必要となり、従っ
て、構造が複雑になり、寸法が大きくなるという課題が
あった。
Problems to be Solved by the Invention As described above, in the conventional ultrasonic actuators described above, the movement of the moving body is rotational or linear. If you use these ultrasonic actuators to construct a planar ultrasonic actuator in which a moving object moves in any direction on a plane, you will need multiple ultrasonic motors or ultrasonic linear motors, resulting in a complicated structure. The problem was that the size became larger.

課題を解決するための手段 平板弾性体に圧電体Aを接着して平板形振動体を構成し
、梁形弾性体に圧電体Bを接着して梁形振動体を構成し
、圧電体Aに電圧を印加して平板形振動体の2方向に撓
み振動を励振し、圧電体Bに電圧を印加して梁形振動体
に縦振動を励振し、平板形振動体の撓み振動の節近傍の
位置にネジ穴を開け、梁形振動体の中央部に構成したネ
ジをネジ穴にねじ込むか、平板形゛振動体の撓み振動の
節近傍の位置に穴を開け、梁形振動体の中央部に構成し
た円柱部を上記穴に圧入することにより、平板形振動体
の撓み振動の節近傍の位置に梁形振動体を中央部近傍を
固定することにより複数個2次元に配置し、2つの振動
を同時に励振して梁形振動体の自由端に楕円軌跡をつく
り、自由端の少なくても1端に加圧接触して移動体を設
置して、移動体を2次元に移動させる。
Means for Solving the Problem A piezoelectric body A is adhered to a flat elastic body to form a flat vibrating body, a piezoelectric body B is adhered to a beam-shaped elastic body to constitute a beam-shaped vibrating body, and a piezoelectric body A is bonded to the piezoelectric body A. A voltage is applied to excite the bending vibration in two directions of the flat plate-shaped vibrating body, a voltage is applied to the piezoelectric body B to excite longitudinal vibration in the beam-shaped vibrating body, and Either drill a screw hole in the center of the beam-shaped vibrating body and screw the screw configured in the center of the beam-shaped vibrating body into the screw hole, or drill a hole in the vicinity of the bending vibration node of the flat plate-shaped vibrating body and insert it into the center of the beam-shaped vibrating body. By press-fitting the columnar part configured in Vibrations are simultaneously excited to create an elliptical locus at the free end of the beam-shaped vibrating body, a moving body is placed in pressure contact with at least one of the free ends, and the moving body is moved two-dimensionally.

作用 平板形振動体の撓み振動の振動の節近傍の位置にネジ穴
を開け、梁形振動体の中央部に構成したネジをネジ穴に
ねじ込むか、平板形振動体の撓み振動の節近傍の位置に
穴を開け、梁形振動体の中央部に構成した円柱部を上記
穴に圧入することにより、平板形振動体の挟み振動の振
動の節近傍の位置に振動損失の小さい固定法により梁形
振動体を設置して、梁形振動体の自由端に横方向の振動
を得、梁形振動体の両端自由の縦振動により上下方向の
振動を得、2つの振動を同時に励振することにより、梁
形振動体の自由端に楕円軌跡を描かせて、梁形振動体の
自由端に接触した移動体を2次元に移動させることによ
り、構造の簡単な、薄型の平面型超音波アクチユエータ
を提供する。
Action Either drill a screw hole at a position near the vibration node of the flexural vibration of the flat plate vibrating body, and screw the screw configured in the center of the beam-shaped vibrator into the screw hole, or By drilling a hole at a position and press-fitting a cylindrical part configured at the center of the beam-shaped vibrating body into the hole, the beam can be fixed at a position near the vibration node of the pinched vibration of the flat plate-shaped vibrating body using a method of fixing the beam with low vibration loss. By installing a shaped vibrating body, obtaining horizontal vibration at the free end of the beam-shaped vibrating body, and obtaining vertical vibration by vertical vibration of both ends of the beam-shaped vibrating body, and exciting the two vibrations at the same time. By making the free end of the beam-shaped vibrating body draw an elliptical locus and moving the moving body in contact with the free end of the beam-shaped vibrating body in two dimensions, a thin planar ultrasonic actuator with a simple structure was created. provide.

実施例 以下、図面に従って本発明の一実施例について詳細な説
明を行う。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の1実施例の平面型超音波アクチュエ
ータの概観図である。同図において、101は平板形の
振動体であり、裏面に圧電セラミックなどの圧電体が貼
り付けである。平板形振動体101は縦・横2方向に撓
み振動をする。102as  102bs  102c
t−−−・−1i、ソれツレ梁形振動体であり、平板形
振動体101の撓み振動の振動の節近傍の位置にネジ穴
を開け、梁形振動体102の中央部に構成したネジをネ
ジ穴にねじ込むか、平板形振動体101の撓み振動の節
近傍の位置に穴を開け、梁形振動体102の中央部に構
成した円柱部を上記穴に圧入す、ることにより、平板形
振動体101の撓み振動の節の近傍に設置されている。
FIG. 1 is a schematic diagram of a planar ultrasonic actuator according to an embodiment of the present invention. In the figure, 101 is a flat plate-shaped vibrating body, and a piezoelectric material such as piezoelectric ceramic is pasted on the back surface. The plate-shaped vibrating body 101 bends and vibrates in two directions: vertically and horizontally. 102as 102bs 102c
t----・-1i, it is a solitary beam-shaped vibrating body, and a screw hole is bored at a position near the vibration node of the bending vibration of the flat plate-shaped vibrating body 101, and it is configured in the center of the beam-shaped vibrating body 102. By screwing a screw into a screw hole or by drilling a hole at a position near the bending vibration node of the flat plate vibrating body 101 and press-fitting the cylindrical part formed at the center of the beam vibrating body 102 into the hole, It is installed near the bending vibration node of the flat plate vibrating body 101.

なお、同図には梁形振動体は9つしか記されていないが
、実際には平板形振動体101に複数個マトリックス状
に設置されている。
Note that although only nine beam-shaped vibrating bodies are shown in the figure, in reality, a plurality of beam-shaped vibrating bodies are installed in a matrix on the flat plate-shaped vibrating body 101.

第2図は、平面型超音波アクチュエータに用いる平板形
振動体の構成と動作を示す図である。同図(a)は平板
形振動体の平面図である。103は駆動用の小電極を有
する圧電体であり、厚さ方向に図中の正負の符号のよう
に、隣合った小電極部は交互に逆方向に分極されている
。この圧電体103は、平板形の弾性体104に接着さ
れ、平板形の振動体101を構成する。駆動時には、圧
電体103の各小電極は短絡されて、平板形振動体10
1の共振周波数近傍の交流電圧を印加される。平板形振
動体101は、同図中の振動の変位分布(b)及び(C
)で示されるように平面内の2方向に撓み振動をする。
FIG. 2 is a diagram showing the configuration and operation of a flat vibrating body used in a flat ultrasonic actuator. FIG. 2(a) is a plan view of the flat plate-shaped vibrating body. 103 is a piezoelectric body having small electrodes for driving, and adjacent small electrode portions are alternately polarized in opposite directions in the thickness direction as shown by the positive and negative signs in the figure. This piezoelectric body 103 is adhered to a flat plate-shaped elastic body 104 to constitute a flat plate-shaped vibrating body 101. During driving, each small electrode of the piezoelectric body 103 is short-circuited, and the flat vibrating body 10
An alternating current voltage near the resonance frequency of 1 is applied. The flat plate-shaped vibrating body 101 has vibration displacement distributions (b) and (C) in the figure.
), it causes flexural vibration in two directions within the plane.

すなわち、図に示されている時間には、同図中の正の符
号の場所は谷になり、負の符号の場所は山になるような
撓み振動をし、次の瞬間には、正の符号の場所は山にな
り、負の符号の場所は谷になるような撓み振動をする。
In other words, at the time shown in the figure, the places with positive signs in the figure become valleys, and the places with negative signs become mountains, and at the next moment, the places with positive signs vibrate. Places with a sign become mountains, and places with a negative sign make troughs, resulting in flexural vibration.

そして、正負の境界の位置a1、bl・・・・・・は撓
み振動の節になる。梁形振動体102は、第1図に示す
ように、その中央を固定することにより撓み振動の節の
近傍に複数個2次元に設置される。
Positions a1, bl, . . . of the positive and negative boundaries become nodes of bending vibration. As shown in FIG. 1, a plurality of beam-shaped vibrating bodies 102 are two-dimensionally installed in the vicinity of bending vibration nodes by fixing their centers.

第3図に梁形振動体の構成と動作を示す。同図(a)に
おいて、106はその中央部に円柱部107を持った円
柱形の弾性体であり、4つの側面が作られ、それぞれの
側面に圧電体105が計4枚接着されて、梁形振動体1
02を構成している。
Figure 3 shows the configuration and operation of the beam-shaped vibrator. In the same figure (a), 106 is a cylindrical elastic body with a cylindrical part 107 in its center, four side surfaces are made, and a total of four piezoelectric bodies 105 are bonded to each side surface. shaped vibrating body 1
02.

ここで、圧電体は厚さ方向に分極されており、すべて同
じ方向に接着されている。4枚の圧電1体105に、梁
形振動体102の縦振動の共振周波数近傍の交流電圧を
印可すれば、梁形振動体102は図中の矢印の方向に横
効果の縦振動モードで振動する。同図(b)は、縦振動
の変位分布図である。即ち、梁形振動体102はその両
端で最大変位を示し、その中央部で縦方向の振動が0と
なる。
Here, the piezoelectric bodies are polarized in the thickness direction and are all bonded in the same direction. When an AC voltage near the resonance frequency of the longitudinal vibration of the beam-shaped vibrating body 102 is applied to the four piezoelectric bodies 105, the beam-shaped vibrating body 102 vibrates in the longitudinal vibration mode of the transverse effect in the direction of the arrow in the figure. do. FIG. 5B is a displacement distribution diagram of longitudinal vibration. That is, the beam-shaped vibrating body 102 exhibits maximum displacement at both ends, and the vertical vibration becomes zero at the center.

従って、その中央部の円柱部107を平板形振動体10
1の振動の節部に設けられた穴に圧入することにより固
定すれば、損失の少ない固定が可能である。また、ここ
では弾性体10Bの4面に圧電体が接着されているが、
少なくても工面に圧電体を接着すれば同様に縦振動を励
振することができる。
Therefore, the central cylindrical portion 107 is connected to the flat plate-shaped vibrating body 10.
If it is fixed by press-fitting it into a hole provided in the vibration node of No. 1, it is possible to fix it with less loss. Also, here, piezoelectric bodies are bonded to four sides of the elastic body 10B, but
At least if a piezoelectric material is attached to the work surface, longitudinal vibration can be excited in the same way.

第4図に別の梁形振動体の構成を示す。同図において、
108はその中央部にネジ部109を持った角柱形の弾
性体であり、4つの長方形側面のそれぞれに圧電体11
0が接着されて、梁形振動体102を構成している。こ
こで、圧電体は厚さ方向に分極されており、すべて同じ
方向に接着されている。4枚の圧電体110に、梁形振
動体102の縦振動の共振周波数近傍の交流電圧を印可
すれば、梁形振動体102は図中の矢印の方向に横効果
の縦振動モードで振動する。即ち、第3図(b)に示し
たのと同様に、梁形振動体102はその両端で最大変位
を示し、その中央部で縦方向の振動がOとなる。従って
、その中央部の円柱部を平板形振動体101の振動の節
部に設けられたネジ穴にねじ込むことにより固定すれば
、損失の少ない固定が可能である。また、ここでは弾性
体108の4面に圧電体が接着されているが、少なくて
も1面に圧電体を接着すれば同様に縦振動を励振するこ
とができる。
FIG. 4 shows the configuration of another beam-shaped vibrating body. In the same figure,
108 is a prismatic elastic body with a threaded part 109 in the center, and a piezoelectric body 11 is attached to each of the four rectangular sides.
0 is adhered to form a beam-shaped vibrating body 102. Here, the piezoelectric bodies are polarized in the thickness direction and are all bonded in the same direction. When an AC voltage near the resonant frequency of the longitudinal vibration of the beam-shaped vibrating body 102 is applied to the four piezoelectric bodies 110, the beam-shaped vibrating body 102 vibrates in the direction of the arrow in the figure in a transverse effect longitudinal vibration mode. . That is, as shown in FIG. 3(b), the beam-shaped vibrating body 102 exhibits maximum displacement at both ends, and the vertical vibration becomes O at its center. Therefore, by screwing the central cylindrical part into the screw hole provided at the vibration node of the flat plate-shaped vibrating body 101, fixing with less loss is possible. Further, here, piezoelectric bodies are bonded to four surfaces of the elastic body 108, but if a piezoelectric body is bonded to at least one surface, longitudinal vibration can be similarly excited.

第5図は平面型超音波アクチュエータの動作説明のため
の側面図である。梁形振動体102は、その中央部で平
板形振動体101の撓み振動の部近傍にネジ止めあるい
は圧入で固定されている。
FIG. 5 is a side view for explaining the operation of the planar ultrasonic actuator. The beam-shaped vibrating body 102 is fixed at its center near the bending vibration part of the flat plate-shaped vibrating body 101 by screwing or press-fitting.

そして、梁形振動体102の縦振動と平板形振動体10
1の撓み振動の共振周波数はほぼ同じになるように調整
されている。平板形振動体101を構成する圧電体に共
振周波数近傍の交流電圧を印加すると、梁形振動体10
2の先端は平板形振動体101の撓み振動によって横方
向に変位をし、梁形振動体102を構成する圧電体に同
様に共振周波数近傍の交流電圧を印加すると、梁形振動
体102は上下方向に変位をする縦振動をする。従って
、圧電体を互いに90度位相の異なる交流電圧で同時に
駆動すれば、梁形振動体102の自由端は、同図に示す
ように楕円軌跡を描いて振動する。ここで、実線はある
時間における超音波アクチュエータの振動状態であり、
点線は4分の1周期後における振動状態である。ここで
説明した動作を図2のalの位置での動作とすれば、図
2のblの位置での同様の動作によって、梁形振動体の
自由端に、上記の楕円軌跡と直行する面内で楕円軌跡を
描いて運動させることも容易にできる。
The longitudinal vibration of the beam-shaped vibrating body 102 and the flat plate-shaped vibrating body 10
The resonant frequencies of the bending vibrations of No. 1 are adjusted to be almost the same. When an AC voltage near the resonant frequency is applied to the piezoelectric material constituting the flat plate vibrating body 101, the beam-shaped vibrating body 10
The tip of the plate-shaped vibrating body 101 is laterally displaced by the bending vibration of the plate-shaped vibrating body 101, and when an AC voltage near the resonance frequency is similarly applied to the piezoelectric body constituting the beam-shaped vibrating body 102, the beam-shaped vibrating body 102 moves up and down. It produces longitudinal vibration that causes displacement in the direction. Therefore, if the piezoelectric bodies are simultaneously driven with alternating current voltages that are 90 degrees out of phase with each other, the free end of the beam-shaped vibrating body 102 vibrates in an elliptical locus as shown in the figure. Here, the solid line is the vibration state of the ultrasonic actuator at a certain time,
The dotted line is the vibration state after one-quarter cycle. If the operation explained here is assumed to be the operation at the position al in Fig. 2, then by the same operation at the position bl in Fig. 2, the free end of the beam-shaped vibrating body is You can also easily move it by drawing an elliptical trajectory.

故に、平板形振動体101上に設置した梁形振動体10
2の1方の自由端に接触するように移動体107を設置
すれば、移動体111を平面内で移動させることができ
る。従って、第1図において、平板形振動体101上に
設置した梁形振動体102 a、  102 bl  
・・・・・・の自由端に接触するように、移動体111
を加圧接触して設置すれば、移動体を平面内の任意の方
向に移動させることができる。
Therefore, the beam-shaped vibrating body 10 installed on the flat plate-shaped vibrating body 101
If the movable body 107 is installed so as to be in contact with one free end of the movable body 111, it is possible to move the movable body 111 within a plane. Therefore, in FIG. 1, the beam-shaped vibrating bodies 102 a and 102 bl installed on the flat plate-shaped vibrating body 101
. . . The moving body 111 is moved so as to contact the free end.
If they are placed in pressure contact with each other, the movable body can be moved in any direction within the plane.

ここでは、梁形振動体として第3図に示した横効果の縦
振動を使用した時の平面型超音波アクチュエータの動作
を説明したが、ランジュバン振動子などの縦効果の縦振
動を使用した時も同様の効果が得られる。
Here, we have explained the operation of a planar ultrasonic actuator when using longitudinal vibration with a transverse effect as shown in Figure 3 as a beam-shaped vibrator, but when using longitudinal vibration with a longitudinal effect such as a Langevin vibrator, A similar effect can be obtained.

発明の効果 本発明によれば、梁形振動体の中央部を平板形振動体に
圧入またはネジ止めにより固定しているので、振動損失
が少ない固定が実現でき、また−体加工よりも精度が出
し易く量産が容易である。
Effects of the Invention According to the present invention, since the central part of the beam-shaped vibrating body is fixed to the flat plate-shaped vibrating body by press-fitting or screwing, it is possible to achieve fixation with less vibration loss, and also to achieve higher accuracy than body processing. It is easy to release and mass-produce.

加えて、簡単な構造で、厚さの薄い、しかも効率の良い
平面型超音波アクチュエータが実現できる。
In addition, a planar ultrasonic actuator with a simple structure, thin thickness, and high efficiency can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の平面型超音波アクチュエー
タの概観図、第2図(a、)は平面型超音波アクチュエ
ータに用いる平板形振動体の構成を示す平面図で同図(
b)(c)は動作を示す変位分布図、第3図(a)は平
面型超音波アクチュエータに用いる梁形振動体の構成を
示す斜視図であり同図(b)は動作を示す変位分布図、
第4図は平面型超音波アクチュエータに用いる別の梁形
振動体の構成を示す斜視図、第5図信平面型超音波アク
チュエータの動作説明のための側面図、第6図は円環型
超音波モータの概観図、第7図は超音波リニアモータの
概観図、第8図は撓みの弾性進行波が移動体を駆動する
原理を示す説明図である。 101・・・・・・平板形振動体、 102・・・・・・梁形振動体、 103・・・・・・圧電体、104・・・・・・弾性体
、105・・・・・・圧電体、10θ・・・・・・弾性
体、107・・・・・・円柱部、108・・・川蝉性体
、109・・・・・・ネジ部、 110・・・・・・圧
電体、111・・・・・・移動体。 代理人の氏名 弁理士 粟野重孝 ほか1名莞 図 (b) 第 凶 系 図 (α) (bJ 第 図 を 第 ■ 第 図
FIG. 1 is an overview diagram of a planar ultrasonic actuator according to an embodiment of the present invention, and FIG.
b) (c) is a displacement distribution diagram showing the operation, Figure 3 (a) is a perspective view showing the configuration of a beam-shaped vibrator used in a planar ultrasonic actuator, and Figure 3 (b) is a displacement distribution diagram showing the operation. figure,
Fig. 4 is a perspective view showing the configuration of another beam-shaped vibrating body used in a planar ultrasonic actuator, Fig. 5 is a side view for explaining the operation of the planar ultrasonic actuator, and Fig. 6 is a toroidal ultrasonic actuator. FIG. 7 is an overview diagram of a sonic motor, FIG. 7 is an overview diagram of an ultrasonic linear motor, and FIG. 8 is an explanatory diagram showing the principle of elastic traveling waves of deflection driving a moving body. 101... Flat plate type vibrating body, 102... Beam type vibrating body, 103... Piezoelectric body, 104... Elastic body, 105...・Piezoelectric body, 10θ...Elastic body, 107... Cylindrical part, 108... Cicada body, 109... Screw part, 110... Piezoelectricity Body, 111...Moving body. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (1)

【特許請求の範囲】[Claims]  平板弾性体に圧電体Aを接着して平板形振動体を構成
し、梁形弾性体に圧電体Bを接着して梁形振動体を構成
し、上記圧電体Aに電圧を印加して上記平板形振動体の
2方向に撓み振動を励振し、上記圧電体Bに電圧を印加
して上記梁形振動体に縦振動を励振し、上記平板形振動
体の撓み振動の節近傍の位置に梁形振動体を中央部近傍
を固定することにより複数個2次元に配置し、上記梁形
振動体の自由端の少なくても1端に加圧接触して移動体
を設置して、上記移動体を2次元に移動させる平面型超
音波アクチュエータにおいて、上記平板形振動体の撓み
振動の節近傍の位置にネジ穴を開け、梁形振動体の中央
部に構成したネジを上記ネジ穴にねじ込むか、上記平板
形振動体の撓み振動の節近傍の位置に穴を開け、梁形振
動体の中央部に構成した円柱部を上記穴に圧入すること
により、上記平板形振動体に上記梁形振動体を固定する
ことを特徴とする平面型超音波アクチュエータ。
Piezoelectric body A is adhered to a flat plate elastic body to form a flat plate-shaped vibrating body, piezoelectric body B is adhered to a beam-shaped elastic body to constitute a beam-shaped vibrating body, and a voltage is applied to the piezoelectric body A to produce the above-mentioned Flexural vibrations are excited in two directions of the flat vibrating body, and a voltage is applied to the piezoelectric body B to excite longitudinal vibration in the beam vibrating body, so that the vibration is applied to the piezoelectric body B at a position near the bending vibration node of the flat vibrating body. A plurality of beam-shaped vibrating bodies are arranged two-dimensionally by fixing the vicinity of the central part, and a movable body is installed in pressurized contact with at least one free end of the beam-shaped vibrating body, and the above-mentioned movement is performed. In a planar ultrasonic actuator that moves a body in two dimensions, a screw hole is drilled at a position near the bending vibration node of the flat vibrating body, and a screw configured in the center of the beam vibrating body is screwed into the screw hole. Alternatively, by drilling a hole in the vicinity of the bending vibration node of the flat plate vibrating body and press-fitting a cylindrical part formed in the center of the beam vibrating body into the hole, the beam shape can be applied to the flat plate vibrating body. A planar ultrasonic actuator characterized by a fixed vibrating body.
JP1047631A 1989-02-28 1989-02-28 Planar ultrasonic actuator Expired - Fee Related JP2538033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1047631A JP2538033B2 (en) 1989-02-28 1989-02-28 Planar ultrasonic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1047631A JP2538033B2 (en) 1989-02-28 1989-02-28 Planar ultrasonic actuator

Publications (2)

Publication Number Publication Date
JPH02228270A true JPH02228270A (en) 1990-09-11
JP2538033B2 JP2538033B2 (en) 1996-09-25

Family

ID=12780572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1047631A Expired - Fee Related JP2538033B2 (en) 1989-02-28 1989-02-28 Planar ultrasonic actuator

Country Status (1)

Country Link
JP (1) JP2538033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570295B2 (en) * 2000-08-17 2003-05-27 Sick Ag Ultrasound converter
JP2008029063A (en) * 2006-07-19 2008-02-07 Casio Comput Co Ltd Piezoelectric actuator, and transfer device and camera shake correction device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570295B2 (en) * 2000-08-17 2003-05-27 Sick Ag Ultrasound converter
JP2008029063A (en) * 2006-07-19 2008-02-07 Casio Comput Co Ltd Piezoelectric actuator, and transfer device and camera shake correction device using the same

Also Published As

Publication number Publication date
JP2538033B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
US5039899A (en) Piezoelectric transducer
JP2690907B2 (en) Composite piezoelectric motor
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPS62259485A (en) Piezoelectric driving apparatus
JPH02228270A (en) Plane type ultrasonic actuator
JP2538026B2 (en) Planar ultrasonic actuator
JPH02202379A (en) Planar ultrasonic actuator
JPH08182351A (en) Ultrasonic actuator
JPH02241378A (en) Ultrasonic wave linear motor
JP2538027B2 (en) Planar ultrasonic actuator
JPH08242592A (en) Ultrasonic actuator
JPH02202378A (en) Planar ultrasonic actuator
JPH02228272A (en) Plane type ultrasonic actuator
JPH02202380A (en) Planar ultrasonic actuator
JPH02202381A (en) Planar ultrasonic actuator
JPH02228271A (en) Plane type ultrasonic actuator
JP2543149B2 (en) Ultrasonic linear motor
JPH0270277A (en) Ultrasonic motor
CN113595439B (en) Circular patch type bipedal linear ultrasonic motor and stator thereof
JP2543163B2 (en) Ultrasonic linear motor
JPH02214480A (en) Planar type ultrasonic actuator
JPH0246180A (en) Ultrasonic linear motor
JPH02211072A (en) Ultrasonic linear motor
JPH02202382A (en) Planar ultrasonic actuator
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees