JPH02202382A - Planar ultrasonic actuator - Google Patents
Planar ultrasonic actuatorInfo
- Publication number
- JPH02202382A JPH02202382A JP1017978A JP1797889A JPH02202382A JP H02202382 A JPH02202382 A JP H02202382A JP 1017978 A JP1017978 A JP 1017978A JP 1797889 A JP1797889 A JP 1797889A JP H02202382 A JPH02202382 A JP H02202382A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- piezoelectric
- bodies
- flat
- vibrating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005452 bending Methods 0.000 claims description 16
- 239000000284 extract Substances 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002783 friction material Substances 0.000 description 2
- 210000000080 chela (arthropods) Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、圧電セラミックなどの圧電体により励振した
弾性振動を駆動力とする平面型超音波アクチュエータに
関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a planar ultrasonic actuator whose driving force is elastic vibration excited by a piezoelectric material such as a piezoelectric ceramic.
従来の技術
近年、圧電セラミック等の圧電体により構成した振動体
に弾性振動を励振し、これを駆動力とした超音波モータ
や超音波リニアモータ等の超音波アクチュエータが注目
されている。2. Description of the Related Art In recent years, ultrasonic actuators such as ultrasonic motors and ultrasonic linear motors have attracted attention, in which elastic vibrations are excited in a vibrating body made of a piezoelectric material such as a piezoelectric ceramic, and this is used as a driving force.
以下、図面を参照しながら従来の超音波アクチュエータ
について説明を行う。Hereinafter, a conventional ultrasonic actuator will be explained with reference to the drawings.
第5図は円環型超音波モータの概観図であり、スリット
を入れた円環形の弾性体1に円環形の圧電セラミック等
の圧電体2を接着することにより振動体3を構成し、耐
摩耗性の摩擦材4と弾性体5より移動体6を構成する。FIG. 5 is a general view of a toroidal ultrasonic motor, in which a vibrating body 3 is constructed by bonding a toroidal piezoelectric body 2 such as a toroidal piezoelectric ceramic to a toroidal elastic body 1 with slits. A movable body 6 is composed of an abrasive friction material 4 and an elastic body 5.
振動体3に移動体6を加圧して設置し、圧電体2に交流
電圧を印加すれば、振動体3に周方向に進行する撓み振
動の進行波が励振され、移動体6は進行波により駆動さ
れて回転する。When the movable body 6 is pressurized and installed on the vibrating body 3 and an AC voltage is applied to the piezoelectric body 2, a traveling wave of bending vibration that advances in the circumferential direction is excited in the vibrating body 3, and the movable body 6 is caused by the traveling wave. Driven and rotated.
第6図は超音波リニアモータの概観図であり、円板膨圧
電体7および8を、円筒形の弾性体9および10で挟ん
で固定することにより振動体11を構成している。圧電
体7および8に、振動体11の共振周波数近傍の交流電
界を印加すれば、同図中の矢印で示されるように、振動
体11は縦振動モードで上下方向に振動する。FIG. 6 is a general view of an ultrasonic linear motor, in which a vibrating body 11 is constructed by sandwiching and fixing disc expansion piezoelectric bodies 7 and 8 between cylindrical elastic bodies 9 and 10. When an alternating current electric field near the resonant frequency of the vibrating body 11 is applied to the piezoelectric bodies 7 and 8, the vibrating body 11 vibrates in the vertical vibration mode in a longitudinal vibration mode, as shown by the arrow in the figure.
振動体11の振動面から見た機械インビーダンスは、ホ
ー712によりインピーダンス変換されて、伝送棒13
の撓み振動に対する機械インピーダンスに整合される。The mechanical impedance seen from the vibration surface of the vibrating body 11 is impedance-converted by the ho 712 and transmitted to the transmission rod 13.
mechanical impedance for flexural vibrations.
ホーン12の先端は伝送棒13の一端に近い一部に音響
的に結合される。従って、振動体11の上下振動は、ホ
ーン12により効率良く伝送棒13に伝えられ、伝送棒
13は撓み振動する。この撓み振動は、伝送棒13の一
端から他端に向かって進行する。The tip of the horn 12 is acoustically coupled to a portion of the transmission rod 13 near one end. Therefore, the vertical vibration of the vibrating body 11 is efficiently transmitted to the transmission rod 13 by the horn 12, and the transmission rod 13 bends and vibrates. This bending vibration progresses from one end of the transmission rod 13 to the other end.
伝送棒13の他端に近い一部では、一端と同様にホーン
14の先端が音響的に結合されている。At a portion near the other end of the transmission rod 13, the tip of the horn 14 is acoustically coupled, similar to the one end.
円板形圧電体15および16を、円筒形の弾性体17お
よび18で挟んで固定することにより、振動体11と全
く同じ振動体19を構成している。A vibrating body 19, which is exactly the same as the vibrating body 11, is constructed by sandwiching and fixing the disc-shaped piezoelectric bodies 15 and 16 between the cylindrical elastic bodies 17 and 18.
ホーン14には、この振動体19が接続されている。従
って、伝送棒の一端から他端に向かって進行してきた撓
み振動は、ホーン14により振動体19に伝えられ、振
動体19の上下振動に変換される。圧電体15および1
6には、インピーダンス整合した負荷Rが接続され、上
記の上下振動は負荷Rによって消費される。故に、伝送
棒13には撓み振動が進行波としてのみ存在する。This vibrating body 19 is connected to the horn 14. Therefore, the bending vibration that has progressed from one end of the transmission rod toward the other end is transmitted to the vibrating body 19 by the horn 14 and converted into vertical vibration of the vibrating body 19. Piezoelectric bodies 15 and 1
6 is connected to an impedance-matched load R, and the above-mentioned vertical vibration is consumed by the load R. Therefore, the bending vibration exists only as a traveling wave in the transmission rod 13.
20は移動体であり、伝送棒13を進行する撓み振動に
より駆動され、進行波の進行方向とは逆の方向に運動す
る。上の説明では、移動体20の進行方向は一方向とし
ているが、駆動端を逆にすれば、逆の方向にも進行する
。A moving body 20 is driven by the bending vibration traveling through the transmission rod 13, and moves in a direction opposite to the traveling direction of the traveling wave. In the above description, the moving direction of the moving body 20 is assumed to be one direction, but if the driving end is reversed, the moving body 20 also moves in the opposite direction.
第7図は、撓みの弾性進行波が、移動体を駆動する原理
を示している。振動体(または伝送棒)21の撓み振動
により、振動体21の表面の点(例えば点A)は、縦方
向W・横方向Uの楕円軌跡を描く。この楕円軌跡の頂点
での速度は、波の進行方向とは反対である。振動体21
の上に移動体22を加圧設置すれば、移動体22は波の
頂点近傍でのみ振動体21に接触する。従って、振動体
21と移動体22との摩擦力と、楕円軌跡の横方向の速
度によって、波の進行方向と逆の方向に移動体22が駆
動される。また、同図中の23は、上記楕円軌跡の横方
向成分を、効率良く取り出すための耐磨耗性の摩擦材で
ある。FIG. 7 shows the principle by which a traveling elastic wave of deflection drives a moving body. Due to the bending vibration of the vibrating body (or transmission rod) 21, a point (for example, point A) on the surface of the vibrating body 21 draws an elliptical locus in the vertical direction W and the horizontal direction U. The velocity at the apex of this elliptical trajectory is opposite to the direction of travel of the wave. Vibrating body 21
If the movable body 22 is installed under pressure on the wave, the movable body 22 will come into contact with the vibrating body 21 only near the peak of the wave. Therefore, the movable body 22 is driven in a direction opposite to the direction in which the waves travel due to the frictional force between the vibrating body 21 and the movable body 22 and the speed in the lateral direction of the elliptical trajectory. Further, numeral 23 in the figure is a wear-resistant friction material for efficiently extracting the lateral component of the elliptical locus.
発明が解決しようとする課題
以上、説明した従来の超音波アクチュエータは、移動体
の運動は回転か直線であった。これらの超音波アクチュ
エータで、移動体が平面上を任意の方向に移動する平面
型超音波アクチュエータを構成しようとすれば、複数の
超音波モータか超音波リニアモータが必要となり、従っ
て、構造が複雑になり、寸法が大きくなるという課題が
あった。Problems to be Solved by the Invention As described above, in the conventional ultrasonic actuators described above, the movement of the moving body is rotational or linear. If you use these ultrasonic actuators to construct a planar ultrasonic actuator in which a moving object moves in any direction on a plane, you will need multiple ultrasonic motors or ultrasonic linear motors, resulting in a complicated structure. The problem was that the size became larger.
課題を解決するための手段
平板弾性体に圧電体を接着して平板形振動体を構成し、
上記平板形振動体を2次元に複数個配列し、上記圧電体
に電圧を印加して、上記平板形振動体に撓み振動と拡が
り振動とを同時に励振して、上記の撓み振動の腹近傍の
位置から、出力を取り出すよう構成する。Means for solving the problem A piezoelectric body is bonded to a flat elastic body to form a flat vibrating body,
A plurality of the flat vibrating bodies are arranged two-dimensionally, a voltage is applied to the piezoelectric body, and bending vibration and spreading vibration are simultaneously excited in the flat vibrating body. The configuration is configured to extract an output from the position.
作用
平板弾性体に圧電体を接着して平板形振動体を構成し、
上記平板形振動体を2次元に複数個配列し、上記圧電体
に電圧を印加して、上記平板形振動体に撓み振動と拡が
り振動とを同時に励振して、上記の撓み振動の腹近傍の
位置に楕円運動をさせ、楕円運動をする位置に接触した
移動体を2次元に移動させるることにより、構造の簡単
な、薄型の平面型超音波アクチュエータを提供する。A piezoelectric body is bonded to a working flat elastic body to form a flat plate vibrating body,
A plurality of the flat vibrating bodies are arranged two-dimensionally, a voltage is applied to the piezoelectric body, and bending vibration and spreading vibration are simultaneously excited in the flat vibrating body. To provide a thin planar ultrasonic actuator with a simple structure by causing a position to make an elliptical movement and moving a moving body in contact with the position making the elliptical movement in two dimensions.
実施例
以下、図面に従って本発明の一実施例について詳細な説
明を行う。EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は、本発明の1実施例の平面型超音波アクチュエ
ータの概観図である。同図において、101a1101
b1 ・・・・・・は平板形の振動体であり、圧電セラ
ミックなどの圧電体が貼り付けである。FIG. 1 is a schematic diagram of a planar ultrasonic actuator according to an embodiment of the present invention. In the same figure, 101a1101
b1 . . . is a flat plate-shaped vibrating body to which a piezoelectric material such as piezoelectric ceramic is attached.
平板形振動体101は縦・横2方向に撓み振動をすると
同時に拡がり振動をする。平板形振動体101を基台1
02の上に複数個2次元に設置することにより、平面型
超音波アクチュエータが構成されている。The plate-shaped vibrating body 101 bends and vibrates in two directions, vertically and horizontally, and at the same time vibrates in a spreading manner. The flat plate vibrating body 101 is the base 1
A planar ultrasonic actuator is constructed by two-dimensionally installing a plurality of actuators on the 02.
第2図は、平面型超音波アクチュエータに用いる平板形
振動体101の裏から見た構成と動作を示す図である。FIG. 2 is a diagram showing the configuration and operation of the flat vibrating body 101 used in the flat ultrasonic actuator, viewed from the back.
103as bN CN dは、それぞれ図中の
正負の符号のように厚さ方向に分極された圧電体である
。この圧電体103at b1C%dは、平板形の弾
性体104に接着され、平板形の振動体101を構成す
る。圧電体103a1 b1C% dに、平板形振動
体101の共振周波数近傍の同一交流電圧が印加される
と、平板形振動体101は、同図中の振動の変位分布B
で示されるように縦方向に撓み振動をする。また、圧電
体1゜3a1 dとbl cに、それぞれ平板形振動体
1゜1の共振周波数近傍の逆極性の交流電圧が印加され
ると、平板形振動体101は、同図中の振動の変位分布
Aで示されるように横方向に撓み振動をする。従って、
駆動方法により以上のような2つの撓み振動が励振でき
る。この撓み振動により圧電体の中央部は振動の腹にな
り上下運動をする。103as bN CN d are piezoelectric bodies polarized in the thickness direction as shown by the positive and negative signs in the figure. This piezoelectric body 103at b1C%d is adhered to a flat plate-shaped elastic body 104, and constitutes a flat plate-shaped vibrating body 101. When the same AC voltage near the resonant frequency of the flat vibrating body 101 is applied to the piezoelectric body 103a1b1C%d, the flat vibrating body 101 has a vibration displacement distribution B in the figure.
It vibrates in the vertical direction as shown in . Furthermore, when an AC voltage of opposite polarity near the resonant frequency of the flat vibrating body 1°1 is applied to the piezoelectric bodies 1゜3a1d and blc, the flat vibrating body 101 oscillates as shown in the figure. Flexural vibration occurs in the lateral direction as shown by displacement distribution A. Therefore,
The two types of flexural vibrations described above can be excited depending on the driving method. Due to this bending vibration, the center portion of the piezoelectric body becomes a vibration antinode and moves up and down.
以上の例では、圧電体103a1 bl C1dは独立
した物を用いたが、1枚の圧電体に第2図に示したよう
電極を構成し、同図のように厚さ方向に分極すれば全く
同様である。In the above example, independent piezoelectric bodies 103a1 bl C1d were used, but if electrodes are configured on one piezoelectric body as shown in Figure 2 and polarized in the thickness direction as shown in the figure, no The same is true.
第3図は平面型超音波アクチュエータに用いる平板形振
動体101の表から見た構成と別の動作を示す図である
。同図において、弾性体104の1面に圧電体105が
接着されている。ここで、圧電体は厚さ方向に分極され
ている。圧電体105に平板形振動体101の共振周波
数近傍の交流電圧を印加すると、平板形振動体101は
同図の点線のように拡がり振動モードで振動する。同図
において、106は第2図の撓み振動の腹近傍に設置さ
れた出力取り出し用の突起である。FIG. 3 is a diagram illustrating the structure of the flat vibrating body 101 used in the flat ultrasonic actuator as seen from the front and another operation thereof. In the figure, a piezoelectric body 105 is bonded to one surface of an elastic body 104. Here, the piezoelectric material is polarized in the thickness direction. When an AC voltage near the resonant frequency of the flat vibrating body 101 is applied to the piezoelectric body 105, the flat vibrating body 101 spreads as shown by the dotted line in the figure and vibrates in a vibration mode. In the figure, reference numeral 106 denotes a protrusion for outputting output installed near the antinode of the bending vibration in FIG.
挟み振動と拡がり振動の共振周波数をほぼ一致させ、圧
電体103と105に同時に交流電圧を印加すれば、同
時に撓み振動と拡がり振動を平板形振動体101に励振
することができる。従って、突起体10Bは、撓み振動
によって上下方向の振動をし、拡がり振動によって横方
向の振動をする。By making the resonant frequencies of the pinching vibration and the spreading vibration almost the same and applying an AC voltage to the piezoelectric bodies 103 and 105 at the same time, the bending vibration and the spreading vibration can be simultaneously excited in the flat vibrating body 101. Therefore, the protrusion 10B vibrates in the vertical direction due to bending vibration, and vibrates in the lateral direction due to spreading vibration.
圧電体103と106に印加する電圧の位相を操作する
ことにより(例えば位相差を+90度もしくは一90度
にすることにより)、突起体106の先端に楕円運動を
させることができる。By manipulating the phase of the voltages applied to the piezoelectric bodies 103 and 106 (for example, by setting the phase difference to +90 degrees or 190 degrees), the tip of the protrusion 106 can be caused to move in an elliptical manner.
第4図に示すように、この突起体106の先端に加圧接
触して移動体107を設置すれば、移動体107は突起
体106の先端の楕円軌跡により、同図の矢印の方向に
移動する。紙面に直角の方向にも同様にして移動するこ
とができる。As shown in FIG. 4, if the movable body 107 is placed in pressure contact with the tip of the protrusion 106, the movable body 107 will move in the direction of the arrow in the figure due to the elliptical locus of the tip of the protrusion 106. do. It can also be moved in the same way in a direction perpendicular to the plane of the paper.
発明の効果
本発明は、平板形振動体の撓み振動と拡がり振動を用い
る。そして、一般に拡がり振動は縦振動よりも、同一寸
法で共振周波数が低く、そのため撓み振動の共振周波数
を同じにする平板の厚さを薄くでき、挟み振動の励振が
容易になるという特徴を有する。従って、簡単な構造で
、厚さの薄い平板型超音波アクチュエータを提供できる
。Effects of the Invention The present invention uses bending vibration and spreading vibration of a flat plate vibrating body. Spread vibration generally has a lower resonant frequency than longitudinal vibration when the dimensions are the same, so the thickness of the flat plate that makes the resonant frequency of bending vibration the same can be made thinner, making it easier to excite pincer vibration. Therefore, it is possible to provide a flat plate type ultrasonic actuator with a simple structure and a small thickness.
第1図は本発明の1実施例の平面型超音波アクチュエー
タの斜視図、第2図(a)、(b)及び(C)は各々、
平面型超音波アクチュエータに用いる平板形振動体の構
成を示す平面図と、縦方向及び横方向の動作を示す変位
分布図、第3図は平面型超音波アクチュエータに用いる
平板形振動体の拡がり振動を励振するための構成を示す
平面図と動作を示す変位分布図、第4図は平面型超音波
アクチュエータの動作を示す平面図、第5図は円板型超
音波モータの概観図、第6図は超音波リニアモータの概
観図、第7図は撓みの弾性進行波が移動体を駆動する原
理を示す説明図である。
101・・・・・・平板形振動体、102・旧・・基台
、103・・・・・・圧電体、104・・・・・・弾性
体、105・・・・・・圧電体、106・・・・・・突
起体107・・・・・・移動体。
代理人の氏名 弁理士 粟野重孝 ほか1名賜
図
(ら]
7′2\;ンペ
第
因
49y1方向
名
図
沁
区
藁
図FIG. 1 is a perspective view of a planar ultrasonic actuator according to an embodiment of the present invention, and FIGS. 2(a), (b), and (C) are
A plan view showing the configuration of the flat vibrating body used in the flat ultrasonic actuator, a displacement distribution diagram showing the movement in the vertical and lateral directions, and Figure 3 shows the spreading vibration of the flat vibrating body used in the flat ultrasonic actuator. Fig. 4 is a plan view showing the operation of the planar ultrasonic actuator, Fig. 5 is an overview of the disc-type ultrasonic motor, Fig. 6 is a plan view showing the configuration for exciting the motor, and a displacement distribution diagram showing the operation. The figure is a general view of an ultrasonic linear motor, and FIG. 7 is an explanatory diagram showing the principle by which a traveling elastic wave of deflection drives a moving body. 101... Flat vibrating body, 102... Old base, 103... Piezoelectric body, 104... Elastic body, 105... Piezoelectric body, 106... Protrusion 107... Moving body. Name of agent: Patent attorney Shigetaka Awano and one other person
Claims (1)
上記平板形振動体を2次元に複数個配列し、上記圧電体
に電圧を印加して、上記平板形振動体に撓み振動と拡が
り振動とを同時に励振して、上記のそれぞれの平板形振
動体の撓み振動の腹近傍の位置から、機械出力を取り出
すことを特徴とする平面型超音波アクチュエータ。A flat plate vibrating body is constructed by bonding a piezoelectric body to a flat elastic body.
A plurality of the flat vibrating bodies are two-dimensionally arranged, a voltage is applied to the piezoelectric body, and bending vibration and spreading vibration are simultaneously excited in the flat vibrating body, and each of the flat vibrating bodies is A planar ultrasonic actuator that extracts mechanical output from a position near the antinode of the bending vibration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1017978A JPH02202382A (en) | 1989-01-27 | 1989-01-27 | Planar ultrasonic actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1017978A JPH02202382A (en) | 1989-01-27 | 1989-01-27 | Planar ultrasonic actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02202382A true JPH02202382A (en) | 1990-08-10 |
Family
ID=11958812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1017978A Pending JPH02202382A (en) | 1989-01-27 | 1989-01-27 | Planar ultrasonic actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02202382A (en) |
-
1989
- 1989-01-27 JP JP1017978A patent/JPH02202382A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1577961B1 (en) | Acceleration and deceleration method using a piezoelectric motor | |
US5453653A (en) | Ceramic motor | |
EP0308970A2 (en) | Piezoelectric motor | |
JPH02202382A (en) | Planar ultrasonic actuator | |
JPH01264582A (en) | Ultrasonic linear motor | |
JP2538026B2 (en) | Planar ultrasonic actuator | |
JP2646668B2 (en) | Driving method of ultrasonic motor and vibrator for ultrasonic motor | |
JPH02202379A (en) | Planar ultrasonic actuator | |
JPH02202380A (en) | Planar ultrasonic actuator | |
JP2538033B2 (en) | Planar ultrasonic actuator | |
JPH066989A (en) | Ultrasonic linear motor | |
JPH05122949A (en) | Linear actuator | |
JPH02241378A (en) | Ultrasonic wave linear motor | |
JP2605355B2 (en) | Driving method of ultrasonic motor and vibrator for ultrasonic motor | |
JPH02202378A (en) | Planar ultrasonic actuator | |
JPH02202381A (en) | Planar ultrasonic actuator | |
JP2538027B2 (en) | Planar ultrasonic actuator | |
JPH02228272A (en) | Plane type ultrasonic actuator | |
JPH0246180A (en) | Ultrasonic linear motor | |
JPH07337046A (en) | Ultrasonic motor drive | |
JPH02214480A (en) | Planar type ultrasonic actuator | |
JP2543149B2 (en) | Ultrasonic linear motor | |
JP2543163B2 (en) | Ultrasonic linear motor | |
JPH02228271A (en) | Plane type ultrasonic actuator | |
JPH0246183A (en) | Ultrasonic linear motor |