JPH02202381A - Planar ultrasonic actuator - Google Patents

Planar ultrasonic actuator

Info

Publication number
JPH02202381A
JPH02202381A JP1017977A JP1797789A JPH02202381A JP H02202381 A JPH02202381 A JP H02202381A JP 1017977 A JP1017977 A JP 1017977A JP 1797789 A JP1797789 A JP 1797789A JP H02202381 A JPH02202381 A JP H02202381A
Authority
JP
Japan
Prior art keywords
vibration
vibrating body
piezoelectric
cantilever
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1017977A
Other languages
Japanese (ja)
Inventor
Osamu Kawasaki
修 川崎
Yukihiko Ise
伊勢 悠紀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1017977A priority Critical patent/JPH02202381A/en
Publication of JPH02202381A publication Critical patent/JPH02202381A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To simplify the structure and to reduce the thickness of an actuator by securing one end of a beam having square cross section closely to the antinode of flex vibration of a planar vibration body adhered with a piezoelectric body then arranging a plurality of vibration bodies two dimensionally and arranging a moving body at the other free end of a cantilever vibration beam body adhered with a piezoelectric body such that the moving body can move two dimensionally. CONSTITUTION:A plurality of cantilever vibration beam bodies 102a, 102b... having square cross section and adhered with piezoelectric bodies onto two adjacent rectangular faces thereof are arranged, with same two dimensional interval, in the vicinity of the antinode of flex vibration of a planar vibration body 101 applied with piezoelectric bodies, and a moving body is arranged at the free ends of the vibration bodies 102a, 102b.... Vertical vibration is produced through flex vibration of the vibration body 101 while lateral vibration is produced through the vibration bodies 102a, 102b..., where two vibrations are excited simultaneously to describe an elliptical locus at the free end so as to move the moving body two dimensionally. By such arrangement, the structure of actuator is simplified and the thickness thereof can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電セラミックなどの圧電体により励振した
弾性振動を駆動力とする平面型超音波アクチュエータに
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a planar ultrasonic actuator whose driving force is elastic vibration excited by a piezoelectric material such as a piezoelectric ceramic.

従来の技術 近年、圧電セラミック等の圧電体により構成した振動体
に弾性振動を励振し、これを駆動力とした超音波モータ
や超音波リニアモータ等の超音波アクチュエータが注目
されている。
2. Description of the Related Art In recent years, ultrasonic actuators such as ultrasonic motors and ultrasonic linear motors have attracted attention, in which elastic vibrations are excited in a vibrating body made of a piezoelectric material such as a piezoelectric ceramic, and this is used as a driving force.

以下、図面を参照しながら従来の超音波アクチュエータ
について説明を行う。
Hereinafter, a conventional ultrasonic actuator will be explained with reference to the drawings.

第6図は円環型超音波モータの概観図であり、スリット
を入れた円環形の弾性体1に円環形の圧電セラミック等
の圧電体2を接着することにより振動体3を構成し、耐
摩耗性の摩擦材4と弾性体5より移動体6を構成する。
FIG. 6 is a general view of a toroidal ultrasonic motor, in which a vibrating body 3 is constructed by bonding a toroidal piezoelectric body 2 such as a toroidal piezoelectric ceramic to a toroidal elastic body 1 with slits. A movable body 6 is composed of an abrasive friction material 4 and an elastic body 5.

振動体3に移動体6を加圧して設置し、圧電体2に交流
電圧を印加すれば、振動体3に周方向に進行する撓み振
動の進行波が励振され、移動体6は進行波により駆動さ
れて回転する。
When the movable body 6 is pressurized and installed on the vibrating body 3 and an AC voltage is applied to the piezoelectric body 2, a traveling wave of bending vibration that advances in the circumferential direction is excited in the vibrating body 3, and the movable body 6 is caused by the traveling wave. Driven and rotated.

第7図は超音波リニアモータの概観図であり、円板膨圧
電体7および8を、円筒形の弾性体9および10で挟ん
で固定することにより振動体11を構成している。圧電
体7および8に、振動体11の共振周波数近傍の交流電
界を印加すれば、同図中の矢印で示されるように、振動
体11は縦振動モードで上下方向に振動する。
FIG. 7 is a general view of an ultrasonic linear motor, in which a vibrating body 11 is constructed by sandwiching and fixing disc expansion piezoelectric bodies 7 and 8 between cylindrical elastic bodies 9 and 10. When an alternating current electric field near the resonant frequency of the vibrating body 11 is applied to the piezoelectric bodies 7 and 8, the vibrating body 11 vibrates in the vertical vibration mode in a longitudinal vibration mode, as shown by the arrow in the figure.

振動体11の振動面から見た機械インピーダンスは、ホ
ーン12によりインピーダンス変換されて、伝送棒13
の撓み振動に対する機械インピーダンスに整合される。
The mechanical impedance seen from the vibration surface of the vibrating body 11 is impedance-converted by the horn 12 and transmitted to the transmission rod 13.
mechanical impedance for flexural vibrations.

ホーン12の先端は伝送棒13の一端に近い一部に音響
的に結合される。従って、振動体11の上下振動は、ホ
ーン12により効率良く伝送棒13に伝えられ、伝送棒
13は撓み振動する。この撓み振動は、伝送棒13の一
端から他端に向かって進行する。
The tip of the horn 12 is acoustically coupled to a portion of the transmission rod 13 near one end. Therefore, the vertical vibration of the vibrating body 11 is efficiently transmitted to the transmission rod 13 by the horn 12, and the transmission rod 13 bends and vibrates. This bending vibration progresses from one end of the transmission rod 13 to the other end.

伝送棒13の他端に近い一部では、一端と同様にホーン
14の先端が音響的に結合されている。
At a portion near the other end of the transmission rod 13, the tip of the horn 14 is acoustically coupled, similar to the one end.

円板膨圧電体15および16を、円筒形の弾性体17お
よび18で挟んで固定することにより、振動体11と全
く同じ振動体19を構成している。
A vibrating body 19, which is exactly the same as the vibrating body 11, is constructed by sandwiching and fixing the disk expansion piezoelectric bodies 15 and 16 between cylindrical elastic bodies 17 and 18.

ホーン14には、この振動体19が接続されている。従
って、伝送棒の一端から他端に向かって進行してきた撓
み振動は、ホーン14により振動体19に伝えられ、振
動体19の上下振動に変換される。圧電体15および1
6には、インピーダンス整合した負荷Rが接続され、上
記の上下振動は負荷Rによって消費される。故に、伝送
棒13には撓み振動が進行波としてのみ存在する。
This vibrating body 19 is connected to the horn 14. Therefore, the bending vibration that has progressed from one end of the transmission rod toward the other end is transmitted to the vibrating body 19 by the horn 14 and converted into vertical vibration of the vibrating body 19. Piezoelectric bodies 15 and 1
6 is connected to an impedance-matched load R, and the above-mentioned vertical vibration is consumed by the load R. Therefore, the bending vibration exists only as a traveling wave in the transmission rod 13.

20は移動体であり、伝送棒13を進行する撓み振動に
より駆動され、進行波の進行方向とは逆の方向に運動す
る。上の説明では、移動体20の進行方向は一方向とし
ているが、駆動端を逆にすれば、逆の方向にも進行する
A moving body 20 is driven by the bending vibration traveling through the transmission rod 13, and moves in a direction opposite to the traveling direction of the traveling wave. In the above description, the moving direction of the moving body 20 is assumed to be one direction, but if the driving end is reversed, the moving body 20 also moves in the opposite direction.

第8図は、撓みの弾性進行波が、移動体を駆動する原理
を示している。振動体(または伝送棒)21の撓み振動
により、振動体21の表面の点(例えば点A)は、縦方
向W・横方向Uの楕円軌跡を描く。この楕円軌跡の頂点
での速度は、波の進行方向とは反対である。振動体21
の上に移動体22を加圧設置すれば、移動体22は波の
頂点近傍でのみ振動体21に接触する。従って、振動体
21と移動体22との摩擦力と、楕円軌跡の横方向の速
度によって、波の進行方向と逆の方向に移動体22が駆
動される。また、同図中の23は、上記楕円軌跡の横方
向成分を、効率良く取り出すための耐磨耗性の摩擦材で
ある。
FIG. 8 shows the principle by which a traveling elastic wave of deflection drives a moving body. Due to the bending vibration of the vibrating body (or transmission rod) 21, a point (for example, point A) on the surface of the vibrating body 21 draws an elliptical locus in the vertical direction W and the horizontal direction U. The velocity at the apex of this elliptical trajectory is opposite to the direction of travel of the wave. Vibrating body 21
If the movable body 22 is installed under pressure on the wave, the movable body 22 will come into contact with the vibrating body 21 only near the peak of the wave. Therefore, the movable body 22 is driven in a direction opposite to the direction in which the waves travel due to the frictional force between the vibrating body 21 and the movable body 22 and the speed in the lateral direction of the elliptical trajectory. Further, numeral 23 in the figure is a wear-resistant friction material for efficiently extracting the lateral component of the elliptical locus.

発明が解決しようとする課題 以上、説明した従来の超音波アクチュエータは、移動体
の運動は回転か直線であった。これらの超音波アクチュ
エータで、移動体が平面上を任意の方向に移動する平面
型超音波アクチュエータを構成しようとすれば、複数の
超音波モータか超音波リニアモータが必要となり、従っ
て、構造が複雑になり、寸法が大きくなるという課題が
あった。
Problems to be Solved by the Invention As described above, in the conventional ultrasonic actuators described above, the movement of the moving body is rotational or linear. If you use these ultrasonic actuators to construct a planar ultrasonic actuator in which a moving object moves in any direction on a plane, you will need multiple ultrasonic motors or ultrasonic linear motors, resulting in a complicated structure. The problem was that the size became larger.

課題を解決するための手段 平板弾性体に圧電体Aを接着して平板形振動体を構成し
、上記圧電体Aに電圧を印加して上記平板形振動体に撓
み振動を励振し、上記の撓み振動の腹近傍の位置に正方
形断面を有する梁をその一端を固定することにより平板
形振動体上に設置し、上記梁の隣合う2つの長方形面に
それぞれ圧電体Bを接着して片持ち梁形振動体を構成し
、上記圧電体Bに電圧を印加して上記片持ち梁形振動体
に互いに直交する2つの撓み振動を励振し、上記片持ち
梁形振動体の他端の自由端に移動体を加圧接触して設置
し、上記移動体を2次元に移動させるよう構成する。
Means for Solving the Problem A piezoelectric body A is adhered to a flat elastic body to form a flat vibrating body, and a voltage is applied to the piezoelectric body A to excite bending vibration in the flat vibrating body. A beam with a square cross section is fixed at one end near the antinode of the flexural vibration, and a piezoelectric material B is glued to each of the two adjacent rectangular surfaces of the beam to create a cantilever structure. A beam-shaped vibrating body is configured, and a voltage is applied to the piezoelectric body B to excite two bending vibrations perpendicular to each other in the cantilever-shaped vibrating body, and the other free end of the cantilever-shaped vibrating body is A movable body is placed in pressurized contact with the movable body, and the movable body is configured to move in two dimensions.

作用 平板形振動体の撓み振動により、上下方向の振動を得、
片持ち梁形振動体により横方向の振動を得、2つの振動
を同時に励振することにより、梁の自由端に楕円軌跡を
描かせて、梁の自由端に接触した移動体を2次元に移動
させるることにより、構造の簡単な、薄型の平面型超音
波アクチュエータを提供する。
Vibration in the vertical direction is obtained by the bending vibration of the working flat plate vibrating body,
By obtaining lateral vibration using a cantilever vibrator and exciting two vibrations at the same time, the free end of the beam draws an elliptical trajectory, and the moving object in contact with the free end of the beam is moved in two dimensions. By doing so, a thin planar ultrasonic actuator with a simple structure is provided.

実施例 以下、図面に従って本発明の一実施例について詳細な説
明を行う。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の1実施例の平面型超音波アクチュエ
ータの概観図である。同図において、101は平板形の
振動体であり、裏面に圧電セラミックなどの圧電体が貼
り付けである。102 a。
FIG. 1 is a schematic diagram of a planar ultrasonic actuator according to an embodiment of the present invention. In the figure, 101 is a flat plate-shaped vibrating body, and a piezoelectric material such as piezoelectric ceramic is pasted on the back surface. 102 a.

102 bll 02 c、  ・・・・・・は、それ
ぞれ正方形断面を有し、隣合う2つの長方形面にそれぞ
れ圧電体を接着して構成した片持ち梁形振動体である。
102 bll 02 c, . . . are cantilever vibrating bodies each having a square cross section and each having a piezoelectric material adhered to two adjacent rectangular surfaces.

103 a、  104 aは圧電体であり、弾性体1
05aと共に片持ち梁形振動体102aを構成する。
103 a and 104 a are piezoelectric bodies, and the elastic body 1
Together with 05a, the cantilever vibrating body 102a is configured.

以下の圧電体103b1104b、  ・・・・・・、
および弾性体105 bl  ・・・・・・等も同様で
ある。なお、同図には片持ち梁形振動体は7つしか記さ
れていないが、実際には平板形振動体の撓み振動の腹近
傍に2次元に等間隔に配列されている。
The following piezoelectric bodies 103b1104b,...
The same applies to the elastic body 105 bl . . . . Although only seven cantilever vibrators are shown in the figure, they are actually arranged two-dimensionally at equal intervals near the antinode of the bending vibration of the flat plate vibrator.

第2図は、平面型超音波アクチュエータに用いる平板形
振動体の構成と動作を示す図である。106は小電極を
有する圧電体であり、小電極は厚さ方向に図中の正負の
符号のように、交互に逆方向に分極されている。この圧
電体106は、平板形の弾性体に接着され、平板形の振
動体101を構成する。駆動時には、圧電体10Bの各
小電極は短絡されて、平板形振動体の共振周波数近傍の
交流電圧を印加される。平板形振動体101は、同図中
の振動の変位分布で示される撓み振動をする。第1図に
示した片持ち梁形振動体102は、この撓み振動の腹の
近傍に設置される。
FIG. 2 is a diagram showing the configuration and operation of a flat vibrating body used in a flat ultrasonic actuator. 106 is a piezoelectric material having small electrodes, and the small electrodes are alternately polarized in opposite directions in the thickness direction, as shown by the positive and negative signs in the figure. This piezoelectric body 106 is adhered to a flat plate-shaped elastic body to constitute a flat plate-shaped vibrating body 101. During driving, each small electrode of the piezoelectric body 10B is short-circuited, and an alternating current voltage near the resonance frequency of the flat vibrating body is applied. The plate-shaped vibrating body 101 undergoes bending vibration as shown by the vibration displacement distribution in the figure. The cantilever vibrating body 102 shown in FIG. 1 is installed near the antinode of this bending vibration.

第3図は、平面型超音波アクチュエータに用いる片持ち
梁形振動体の構成と動作を示す図である。
FIG. 3 is a diagram showing the configuration and operation of a cantilever vibrating body used in a planar ultrasonic actuator.

103および104は厚さ方向に分極された圧電体Bで
、正方形断面を有する弾性体105に接着されて片持ち
梁形振動体102を構成する。圧電体103に、片持ち
梁形振動体102の共振周波数近傍の交流電圧を印加す
ると、片持ち梁形振動体102は矢印Cの方向に撓み振
動をする。圧電体104に、片持ち梁形振動体102の
共振周波数近傍の交流電圧を印加すると、片持ち梁形振
動体102は矢印りの方向に撓み振動をする。また、1
08は平板形振動体101への取り付は用のネジ部であ
る。
103 and 104 are piezoelectric bodies B polarized in the thickness direction, which are bonded to an elastic body 105 having a square cross section to form a cantilever vibrating body 102. When an AC voltage near the resonant frequency of the cantilever vibrating body 102 is applied to the piezoelectric body 103, the cantilever vibrating body 102 bends and vibrates in the direction of arrow C. When an AC voltage near the resonance frequency of the cantilever vibrating body 102 is applied to the piezoelectric body 104, the cantilever vibrating body 102 bends and vibrates in the direction of the arrow. Also, 1
Reference numeral 08 denotes a screw portion for attachment to the flat plate vibrating body 101.

第4図は、本発明の1実施例の平面型超音波アクチュエ
ータの動作説明図である。片持ち梁形振動体102は、
平板形振動体101の撓み振動の腹近傍の位置にネジ止
めされているので、確実に片持ち梁として動作する。そ
して、片持ち梁形振動体102と平板形振動体101の
共振周波数はほぼ同じになるように調整されている。平
板形振動体を構成する圧電体に共振周波数近傍の交流電
圧を印加すると、平板形振動体101は矢印Fの方向(
上下方向)に変位をする撓み振動をし、片持ち梁形振動
体を構成する圧電体に同様に共振周波数近傍の交流電圧
を印加すると、片持ち梁形振動体102は矢印Eの方向
(横方向)に変位をする撓み振動をする。従って、圧電
体を互いに90度位相の異なる交流電圧で同時に駆動す
れば、片持ち梁形振動体102の自由端は、図に示すよ
うに楕円軌跡を描いて振動する。図中の実線はある時間
の振動状態であり、点線はそれから4分の1周期後の振
動状態である。また、同様にして、片持ち梁形振動体1
02の自由端に、上記の楕円軌跡と直行する面内で楕円
軌跡を描いて運動させることもできる。
FIG. 4 is an explanatory diagram of the operation of a planar ultrasonic actuator according to one embodiment of the present invention. The cantilever vibrating body 102 is
Since it is screwed to a position near the antinode of the bending vibration of the flat plate vibrating body 101, it operates reliably as a cantilever beam. The resonant frequencies of the cantilever vibrating body 102 and the flat plate vibrating body 101 are adjusted to be approximately the same. When an AC voltage near the resonant frequency is applied to the piezoelectric material constituting the flat vibrating body 101, the flat vibrating body 101 moves in the direction of arrow F (
When an AC voltage near the resonant frequency is similarly applied to the piezoelectric body constituting the cantilever-shaped vibrating body, the cantilever-shaped vibrating body 102 vibrates in the direction of arrow E (horizontal direction). flexural vibration that causes displacement in the direction). Therefore, if the piezoelectric bodies are simultaneously driven with alternating current voltages that are 90 degrees out of phase with each other, the free end of the cantilever vibrating body 102 vibrates in an elliptical locus as shown in the figure. The solid line in the figure represents the vibration state at a certain time, and the dotted line represents the vibration state one quarter period later. Similarly, the cantilever vibrating body 1
It is also possible to move the free end of 02 by drawing an elliptical locus in a plane perpendicular to the above-mentioned elliptical locus.

故に、平板形振動体101上に設置した片持ち梁形振動
体102a1102b1102c1 ・・・・・・の各
々の自由端に接触するように、移動体を設置すれば移動
体は平面内の任意の方向に移動することができる。
Therefore, if the movable body is installed so as to contact the free end of each of the cantilever vibrating bodies 102a1102b1102c1 installed on the flat plate vibrating body 101, the movable body can move in any direction within the plane. can be moved to.

上記の実施例では、平板形振動体の1方向にだけ撓み振
動を励振したが、第5図に示すように直行する2方向に
撓み振動を励振することもできる。
In the above embodiment, bending vibrations were excited only in one direction of the flat plate vibrating body, but bending vibrations can also be excited in two orthogonal directions as shown in FIG.

第5図は平板形振動体の構成と動作を示す図である。1
09は正方形の小電極を有する圧電体であり、厚さ方向
に図中の正負の符号のように、隣合う小電極部が互いに
逆方向になるように分極されている。この圧電体109
は、平板形の弾性体110に接着され、平板形の振動体
111を構成する。駆動時には、圧電体106の各小電
極は短絡されて、平板形振動体の共振周波数近傍の交流
電圧を印加される。平板形振動体111は、同図中の振
動の変位分布で示されるように、互いに直交した撓み振
動をする。横方向の振動をする片持ち梁形振動体は、こ
の撓み振動の腹の近傍に設置される。
FIG. 5 is a diagram showing the configuration and operation of the flat plate vibrating body. 1
09 is a piezoelectric body having square small electrodes, and is polarized in the thickness direction so that adjacent small electrode portions are in opposite directions, as shown by the positive and negative signs in the figure. This piezoelectric body 109
is bonded to the flat plate-shaped elastic body 110 to constitute a flat plate-shaped vibrating body 111. During driving, each small electrode of the piezoelectric body 106 is short-circuited, and an alternating current voltage near the resonance frequency of the flat vibrating body is applied. The plate-shaped vibrating body 111 makes bending vibrations perpendicular to each other, as shown by the vibration displacement distribution in the figure. A cantilever vibrating body that vibrates in the transverse direction is installed near the antinode of this bending vibration.

発明の効果 本発明によれば、簡単な構造で、厚さの薄い平面型超音
波アクチュエータを提供できる。
Effects of the Invention According to the present invention, a planar ultrasonic actuator with a simple structure and a small thickness can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の平面型超音波アクチュエー
タの斜視図、第2図(a)及び(b)は各々、第1図の
実施例の平面型超音波アクチュエータに用いる平板形振
動体の構成を示す平面図と動作を示す変位分布図、第3
図は第1図の実施例の平面型超音波アクチュエータに用
いる片持ち梁形振動体の斜視図、第4図は本発明の一実
施例の平面型超音波アクチュエータの動作説明図、第5
図(a)、(b)及び(c)は各々、平面型超音波アク
チュエータに用いる他の平板形振動体の構成を示す平面
図、縦方向及び横方向の動作を示す変位分布図、第6図
は従来の円板型超音波モータの概観図、第7図は従来の
超音波リニアモータの概観図、第8図は移動体を駆動す
る原理を示 撓みの弾性進行波が、 す説明図である。 101・・・・・・平板形振動体、 102・・・・・・片持ち梁形振動体、103.104
・・・・・・圧電体、 105・・・・・・弾性体、106・・・・・・圧電体
。 107・・・・・・弾性体、108・・・・・・ネジ部
、109・・・・・・圧電体、110・・・・・・弾性
体、111・・・・・・平板形振動体。 代理人の氏名 弁理士 粟野重孝 ほか1名l 凶 第 3 図 42 図 嘉 4 図 Cb) 10/乎!形展勿体 第 凶 (bン 窮 図 第 凶 名 図 移!屯V進行方同
FIG. 1 is a perspective view of a planar ultrasonic actuator according to an embodiment of the present invention, and FIGS. A plan view showing the structure of the body and a displacement distribution diagram showing the movement, Part 3
The figures are a perspective view of a cantilever vibrating body used in the planar ultrasonic actuator of the embodiment shown in Fig. 1, FIG.
Figures (a), (b), and (c) are a plan view showing the configuration of another flat vibrating body used in a flat ultrasonic actuator, a displacement distribution diagram showing vertical and horizontal movements, and a sixth figure. Figure 7 is an overview of a conventional disc-type ultrasonic motor, Figure 7 is an overview of a conventional ultrasonic linear motor, and Figure 8 is an explanatory diagram showing the principle of driving a moving body by elastic traveling waves of flexure. It is. 101... Flat plate type vibrating body, 102... Cantilever type vibrating body, 103.104
...Piezoelectric body, 105...Elastic body, 106...Piezoelectric body. 107...Elastic body, 108...Screw part, 109...Piezoelectric body, 110...Elastic body, 111...Flat plate vibration body. Name of agent Patent attorney Shigetaka Awano and 1 other person Figure 42 Figure 4 Figure Cb) 10/乎! Shape exhibition buttai first bad luck

Claims (2)

【特許請求の範囲】[Claims] (1)平板弾性体に圧電体Aを接着して平板形振動体を
構成し、上記圧電体Aに電圧を印加して上記平板形振動
体に撓み振動を励振し、上記の撓み振動の腹近傍の位置
に正方形断面を有する梁をその一端を固定することによ
り平板形振動体上に複数個2次元に配置し、上記梁の隣
合う2つの長方形面にそれぞれ圧電体Bを接着して片持
ち梁形振動体を構成し、上記圧電体Bに電圧を印加して
上記片持ち梁形振動体に互いに直交する2つの撓み振動
を励振し、上記片持ち梁形振動体の他端の自由端に移動
体を設置して、上記移動体を2次元に移動させることを
特徴とする平面型超音波アクチュエータ。
(1) A piezoelectric body A is adhered to a flat elastic body to form a flat vibrating body, and a voltage is applied to the piezoelectric body A to excite bending vibration in the flat vibrating body, and the antinode of the bending vibration is By fixing one end of a beam with a square cross section in a nearby position, a plurality of beams are arranged two-dimensionally on a flat vibrating body, and a piezoelectric material B is adhered to each of two adjacent rectangular surfaces of the beam to form a piece. A beam-shaped vibrating body is constructed, and a voltage is applied to the piezoelectric body B to excite two bending vibrations perpendicular to each other in the cantilever-shaped vibrating body, and the other end of the cantilever-shaped vibrating body is free. A planar ultrasonic actuator, characterized in that a moving body is installed at an end and the moving body is moved two-dimensionally.
(2)片持ち梁形振動体の一端にネジを構成して、上記
ネジを介して上記片持ち梁形振動体を平板形振動体に固
着したことを特徴とする請求項1記載の平面型超音波ア
クチュエータ。
(2) A planar type according to claim 1, characterized in that a screw is provided at one end of the cantilever vibrating body, and the cantilever vibrating body is fixed to the flat plate vibrating body via the screw. Ultrasonic actuator.
JP1017977A 1989-01-27 1989-01-27 Planar ultrasonic actuator Pending JPH02202381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017977A JPH02202381A (en) 1989-01-27 1989-01-27 Planar ultrasonic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017977A JPH02202381A (en) 1989-01-27 1989-01-27 Planar ultrasonic actuator

Publications (1)

Publication Number Publication Date
JPH02202381A true JPH02202381A (en) 1990-08-10

Family

ID=11958784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017977A Pending JPH02202381A (en) 1989-01-27 1989-01-27 Planar ultrasonic actuator

Country Status (1)

Country Link
JP (1) JPH02202381A (en)

Similar Documents

Publication Publication Date Title
US5039899A (en) Piezoelectric transducer
US4912351A (en) Piezoelectric motor
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPS62259485A (en) Piezoelectric driving apparatus
JPH01264582A (en) Ultrasonic linear motor
JPH02202381A (en) Planar ultrasonic actuator
JPH02202379A (en) Planar ultrasonic actuator
JP2538026B2 (en) Planar ultrasonic actuator
JP2538033B2 (en) Planar ultrasonic actuator
JPH08182351A (en) Ultrasonic actuator
JP2538027B2 (en) Planar ultrasonic actuator
JPH02202380A (en) Planar ultrasonic actuator
JPH02202378A (en) Planar ultrasonic actuator
JPH02228272A (en) Plane type ultrasonic actuator
JPH02241378A (en) Ultrasonic wave linear motor
JPH05122949A (en) Linear actuator
JPH02228271A (en) Plane type ultrasonic actuator
JP2543149B2 (en) Ultrasonic linear motor
JPH02214480A (en) Planar type ultrasonic actuator
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH02202382A (en) Planar ultrasonic actuator
JP2012120370A (en) Ultrasonic transducer and ultrasonic motor
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JPH0246180A (en) Ultrasonic linear motor
JP2543163B2 (en) Ultrasonic linear motor