JPH02241378A - Ultrasonic wave linear motor - Google Patents

Ultrasonic wave linear motor

Info

Publication number
JPH02241378A
JPH02241378A JP1061763A JP6176389A JPH02241378A JP H02241378 A JPH02241378 A JP H02241378A JP 1061763 A JP1061763 A JP 1061763A JP 6176389 A JP6176389 A JP 6176389A JP H02241378 A JPH02241378 A JP H02241378A
Authority
JP
Japan
Prior art keywords
vibrating body
linear motor
piezoelectric
vibration
ultrasonic linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1061763A
Other languages
Japanese (ja)
Other versions
JPH0787710B2 (en
Inventor
Osamu Kawasaki
修 川崎
Masanori Sumihara
正則 住原
Takahiro Nishikura
西倉 孝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1061763A priority Critical patent/JPH0787710B2/en
Publication of JPH02241378A publication Critical patent/JPH02241378A/en
Publication of JPH0787710B2 publication Critical patent/JPH0787710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enhance efficiency by reducing the size of a hole for supporting and securing a vibrator smaller than 70% of its section. CONSTITUTION:An ultrasonic wave linear motor has an elastic square column 107 of square section, and piezoelectric ceramics 107a-108b are adhered to the side faces to compose a vibrator. The vibrator has position securing supporting holes 111a-111b, and machine output ends 110a-110b. The holes 111a-111b are reduced smaller than 70% of one side of the square section of the column 107 to efficiently excite secondary deflecting vibration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電セラミックなどの圧電体により励振した
弾性振動を駆動力とする超音波リニアモータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic linear motor whose driving force is elastic vibration excited by a piezoelectric material such as a piezoelectric ceramic.

従来の技術 近年、圧電セラミック等の圧電体により構成した振動体
に弾性振動を励振し、これを駆動力とした超音波リニア
モータが注目されている。
BACKGROUND OF THE INVENTION In recent years, ultrasonic linear motors have attracted attention in which elastic vibrations are excited in a vibrating body made of a piezoelectric material such as a piezoelectric ceramic, and this vibration is used as a driving force.

以下、図面を参照しながら超音波リニアモータの従来技
術について説明を行う。
Hereinafter, the conventional technology of ultrasonic linear motors will be explained with reference to the drawings.

第7図は超音波リニアモータの概観図であり、円板膨圧
電体1および2を、円筒形の弾性体3および4で挟んで
固定することにより振動体5を構成している。圧電体1
および2に、振動体5の共振周波数近傍の交流電界を印
加すれば、同図中の矢印で示されるように、振動体5は
縦振動モードで上下方向に振動する。
FIG. 7 is a general view of an ultrasonic linear motor, in which a vibrating body 5 is constructed by sandwiching and fixing disk expansion piezoelectric bodies 1 and 2 between cylindrical elastic bodies 3 and 4. Piezoelectric body 1
When an alternating current electric field near the resonant frequency of the vibrating body 5 is applied to the vibrating body 5 and 2, the vibrating body 5 vibrates vertically in a longitudinal vibration mode, as shown by the arrow in the figure.

振動体5の振動面から見た機械インピーダンスは、ホー
ン6によりインピーダンス変換されて、伝送棒7の撓み
振動に対する機械インピーダンスに整合される。ホーン
6の先端は伝送棒7の一端に近い一部に音響的に結合さ
れる。従って、振動体5の上下振動は、ホーン6により
効率良く伝送棒7に伝えられ伝送棒7は挟み振動する。
The mechanical impedance seen from the vibration surface of the vibrating body 5 is impedance-converted by the horn 6, and matched to the mechanical impedance for the bending vibration of the transmission rod 7. The tip of the horn 6 is acoustically coupled to a portion of the transmission rod 7 near one end. Therefore, the vertical vibration of the vibrating body 5 is efficiently transmitted to the transmission rod 7 by the horn 6, and the transmission rod 7 vibrates in a pinched manner.

この撓み振動は、伝送棒7の一端から他端に向かって進
行する。
This bending vibration progresses from one end of the transmission rod 7 to the other end.

伝送棒7の他端に近い一部では、一端と同様にホーン8
の先端が音響的に結合されている。円板形圧電体9およ
び10を、円筒形の弾性体11および12で挟んで固定
することにより、振動体5と全く同じ構成の振動体13
を構成している。ホーン8には、この振動体13が接続
されている。
In a part near the other end of the transmission rod 7, the horn 8 is connected as in the one end.
The tips of the two are acoustically coupled. By sandwiching and fixing the disk-shaped piezoelectric bodies 9 and 10 between the cylindrical elastic bodies 11 and 12, a vibrating body 13 having exactly the same configuration as the vibrating body 5 is created.
It consists of This vibrating body 13 is connected to the horn 8.

従って、伝送棒の一端から他端に向かって進行してきた
撓み振動は、ホーン8により振動体13に伝えられ、振
動体13の上下振動に変換される。
Therefore, the bending vibration that has progressed from one end of the transmission rod toward the other end is transmitted to the vibrating body 13 by the horn 8, and is converted into vertical vibration of the vibrating body 13.

圧電体9および10には、インピーダンス整合した負荷
Rが接続され、上記の上下振動は負荷Rによって消費さ
れる。故に、伝送棒7には撓み振動が進行波としてのみ
存在する。
A load R with impedance matching is connected to the piezoelectric bodies 9 and 10, and the above-mentioned vertical vibration is consumed by the load R. Therefore, the bending vibration exists in the transmission rod 7 only as a traveling wave.

14は移動体であり、伝送棒7を進行する撓み振動によ
り駆動され、進行波の進行方向とは逆の方向に運動する
。上の説明では、移動体14の進行方向は一方向として
いるが、駆動端を逆にすれば、逆の方向にも進行する。
A moving body 14 is driven by the bending vibration traveling through the transmission rod 7, and moves in a direction opposite to the traveling direction of the traveling wave. In the above description, the moving direction of the moving body 14 is assumed to be one direction, but if the driving end is reversed, the moving body 14 also moves in the opposite direction.

第8図は、撓みの弾性進行波が移動体を駆動する原理を
示している。伝送棒7の撓み振動により、伝送棒7の表
面の点(例えば点A)は、縦方向W・横方向Uの楕円軌
跡を描(。この楕円軌跡の頂点での速度は、波の進行方
向とは反対である。伝送棒7の上に移動体14を加圧設
置すれば、移動体14は波の頂点近傍でのみ伝送棒7に
接触する。
FIG. 8 shows the principle by which a traveling elastic wave of deflection drives a moving body. Due to the bending vibration of the transmission rod 7, a point on the surface of the transmission rod 7 (for example, point A) draws an elliptical locus in the vertical direction W and the horizontal direction U (the velocity at the apex of this elliptical trajectory is This is the opposite.If the movable body 14 is installed under pressure on the transmission rod 7, the movable body 14 will come into contact with the transmission rod 7 only near the top of the wave.

従って、伝送棒7と移動体14との摩擦力と、楕円軌跡
の横方向の速度によって、波の進行方向と逆の方向に移
動体14が駆動される。また、同図中の15は、上記楕
円軌跡の横方向成分を、効率良く取り出すための耐磨耗
性の摩擦材である。
Therefore, the movable body 14 is driven in the direction opposite to the direction in which the waves travel due to the frictional force between the transmission rod 7 and the movable body 14 and the speed in the lateral direction of the elliptical trajectory. Further, 15 in the figure is a wear-resistant friction material for efficiently extracting the lateral component of the elliptical locus.

発明が解決しようとする課題 以上、説明した従来の超音波リニアモータは、ランジュ
バン構造の振動体を縦振動モードで励振し、上記振動体
の振動面の振動をホーンによって伝送棒に撓み振動を励
振しているため、振動面とホーン、ホーンと伝送棒との
間の機械インピーダンスの整合を正確にとらねばならな
い。現実には、このことは非常に困難であり、幾分かの
損失を生じる。
Problems to be Solved by the Invention As described above, the conventional ultrasonic linear motor described above excites a vibrating body with a Langevin structure in a longitudinal vibration mode, and uses a horn to transmit vibrations on the vibration surface of the vibrating body to a transmission rod to excite bending vibrations. Therefore, it is necessary to accurately match the mechanical impedance between the vibration surface and the horn, and between the horn and the transmission rod. In reality, this is very difficult and results in some losses.

また、伝送棒に進行波のみを励振するために、一方から
入力した振動エネルギーは、他方で完全に消失しなれけ
ばならない。
Furthermore, in order to excite only traveling waves in the transmission rod, the vibration energy input from one side must completely disappear from the other side.

加えて、比較的小さな移動体を移動するためにも、振動
体と伝送棒を振動させなければならない。
In addition, in order to move a relatively small moving body, the vibrating body and transmission rod must be vibrated.

従って、効率が低い、寸法が大きくなるという課題があ
った。
Therefore, there were problems of low efficiency and large dimensions.

課題を解決するための手段 正方形断面を有する弾性体角柱の少なくとも隣合う2つ
の長方形側面に圧電体を接着して振動体を構成し、上記
圧電体に電圧を印加して上記振動体にお互いに振動面が
直交する両端自由の2次の撓み振動を励振し、上記振動
体の中央部近傍に設置された穴を介して上記振動体を支
持Φ固定し、振動の腹の位置から機械出力を取り出す超
音波リニアモータにおいて、上記振動体の支持・固定用
穴の大きさを上記正方形断面の70%よりも小さクシ、
上記穴を上記長方形側面に直角に直交して設ける。
Means for Solving the Problem A vibrating body is constructed by bonding a piezoelectric body to at least two adjacent rectangular side surfaces of an elastic prism having a square cross section, and a voltage is applied to the piezoelectric body to cause the vibrating body to mutually Excite a second-order bending vibration free at both ends with the vibration planes perpendicular to each other, support and fix the vibrating body through a hole installed near the center of the vibrating body, and output mechanical output from the antinode position of the vibration. In the ultrasonic linear motor to be taken out, the size of the hole for supporting and fixing the vibrating body is smaller than 70% of the square cross section,
The hole is provided perpendicularly to the rectangular side surface.

作用 振動体の支持・固定用穴の大きさが正方形断面の70%
よりも小さすることにより、2次の撓み振動を効率よく
励振し、上記穴を上記長方形側面に直角に直交して開け
ることにより、お互いに振動面が直交する両端自由の2
次の撓み振動に対する上記穴の影響を同じにして、2つ
の撓み振動の共振周波数をほぼ一致させる。
The size of the hole for supporting and fixing the working vibrating body is 70% of the square cross section.
By making the hole smaller than , secondary flexural vibration can be efficiently excited, and by opening the hole perpendicularly to the side surface of the rectangle, two free ends with vibration planes orthogonal to each other can be created.
The influence of the hole on the next bending vibration is made the same, so that the resonance frequencies of the two bending vibrations are almost matched.

実施例 以下、図面に従って本発明の実施例について詳細な説明
を行う。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の1実施例の超音波リニアモ−タの概
観図である。同図において、101と102は正方形断
面をぢする弾性体角柱の少なくとも隣合う2つの長方形
測面に圧電体を接着して構成された振動体であり、中央
部の支持穴に支持棒104を通して、加圧用バネ105
と加圧調整ネジ106とにより、レール103を両端近
傍で挟み込んで加圧接触して設置される。
FIG. 1 is a schematic diagram of an ultrasonic linear motor according to an embodiment of the present invention. In the figure, 101 and 102 are vibrating bodies constructed by bonding piezoelectric bodies to at least two adjacent rectangular surfaces of an elastic prism with a square cross section, and a support rod 104 is passed through a support hole in the center. , pressure spring 105
The rail 103 is placed in pressure contact with the rail 103 by sandwiching the rail 103 near both ends with the pressure adjustment screw 106 and the pressure adjustment screw 106 .

上記圧電体に振動体の共振周波数近傍の電圧を印加する
と、第2図に示すように、振動体は両端自由の2次の撓
み振動モードで振動する。第1図に示すように、圧電体
は角棒の直交する長方形測面に接着されているので、第
2図に示す挟み振動に直交する面内でも、同様に両端自
由の2次の撓み振動モードを励振することができる。従
って、2つの撓み振動を励振するための駆動電圧の位相
を制御すれば(例えば位相差90度)、同図の矢印で示
される振動の腹の位置近傍では比較的大きな楕円軌跡が
得られる。故に、この位置近傍から機械出力を取り出す
ことができる。第1図は振動体の両端から出力を取り出
しており、振動体はレール103に沿って矢印の2つの
方向に移動する。
When a voltage near the resonant frequency of the vibrating body is applied to the piezoelectric body, the vibrating body vibrates in a second-order bending vibration mode with both ends free, as shown in FIG. As shown in Figure 1, the piezoelectric body is bonded to the perpendicular rectangular surface of the square bar, so even in the plane orthogonal to the pinch vibration shown in Figure 2, secondary flexural vibration with both ends free is generated. modes can be excited. Therefore, if the phases of the drive voltages for exciting the two bending vibrations are controlled (for example, with a phase difference of 90 degrees), a relatively large elliptical locus can be obtained near the antinode of the vibrations indicated by the arrows in the figure. Therefore, mechanical output can be extracted from near this position. In FIG. 1, output is taken out from both ends of the vibrating body, and the vibrating body moves along the rail 103 in two directions indicated by arrows.

(1)第3図(a)は、本発明の実施例の振動体の構造
である。107は正方形断面を有する弾性体角柱であり
、隣合う4つの長方形側面に圧電体として圧電セラミッ
クを接着して振動体を構成している。見えている長方形
側面には圧電セラミック108aと108 bl  そ
れの反対面には圧電セラミック108cと108 dl
  また見えているもう1つの長方形側面には圧電セラ
ミック109aと109 b、  それの反対面には圧
電セラミック109cと109dが接着されている。こ
こで、圧電セラミック内の正負の符号は分極の方向であ
る。110aと110bは機械出力端で、弾性体角柱1
07の両端を円柱状に加工している。この部分でレール
103を挟み込んで加圧接触することに上り、第1図に
示すように機械出力を取り出す。そして、111aと1
11bは支持φ固定用の支持穴で、その大きさが弾性体
角柱107の正方形断面の一辺の70%よりも小さくし
てあり、長方形側面に直角にお互いに直交して開けてい
る。
(1) FIG. 3(a) shows the structure of a vibrating body according to an embodiment of the present invention. Reference numeral 107 is an elastic prism having a square cross section, and a vibrating body is constructed by bonding piezoelectric ceramic as a piezoelectric body to four adjacent rectangular side surfaces. On the visible side of the rectangle are piezoelectric ceramics 108a and 108bl, and on the opposite side are piezoelectric ceramics 108c and 108dl.
Piezoelectric ceramics 109a and 109b are bonded to the other visible rectangular side surface, and piezoelectric ceramics 109c and 109d are bonded to the opposite surface. Here, the positive and negative signs within the piezoelectric ceramic indicate the direction of polarization. 110a and 110b are mechanical output ends, and the elastic prism 1
Both ends of 07 are processed into a cylindrical shape. At this portion, the rail 103 is sandwiched and pressed into contact, and mechanical output is extracted as shown in FIG. And 111a and 1
Reference numeral 11b denotes support holes for fixing the support φ, the size of which is smaller than 70% of one side of the square cross section of the elastic prism 107, and are opened at right angles to each other on the rectangular side surfaces.

そして、同図(b)は矢印の方向からみた振動体の側面
図である。
FIG. 2B is a side view of the vibrating body viewed from the direction of the arrow.

第4図に支持穴111aと111bの大きさを変えたと
きの振動体のアドミッタンスの周波数特性の変化を示し
ている。実線は支持穴111aと111bの大きさが弾
性体角柱107の正方形断面の一辺の70%よりも小さ
い時の振動体のアドミッタンスの周波数特性であり、点
線は支持穴111aと111bの大きさが弾性体角柱1
07の正方形断面の一辺の70%よりも大きい時の振動
体のアドミッタンスの周波数特性である。同図より、支
持穴111aと111bの大きさが弾性体角柱107の
正方形断面の一辺の70%よりも小さい時の方が、効率
良く2次の撓み振動を励振できることがわかる。
FIG. 4 shows changes in the frequency characteristics of the admittance of the vibrating body when the sizes of the support holes 111a and 111b are changed. The solid line is the frequency characteristic of the admittance of the vibrating body when the size of the support holes 111a and 111b is smaller than 70% of one side of the square cross section of the elastic prism 107, and the dotted line is the frequency characteristic of the admittance of the vibrating body when the size of the support holes 111a and 111b is smaller than 70% of one side of the square cross section of the elastic prism 107. body prism 1
07 is the frequency characteristic of the admittance of the vibrating body when it is larger than 70% of one side of the square cross section. From the figure, it can be seen that when the size of the support holes 111a and 111b is smaller than 70% of one side of the square cross section of the elastic prism 107, the secondary bending vibration can be excited more efficiently.

振動体の支持固定のためだけなら支持穴は1つで良いが
、その場合には支持穴の開いている方向と、それに直角
の方向の2次の挟み振動との共振周波数が異なってしま
う。はぼ同振幅の駆動電圧の位相差を制御することによ
り楕円軌跡を得るためには、2つの撓み振動の共振周波
数がほぼ揃っていなければならない。もし揃っていなけ
れば、同電圧で駆動した時2つの撓み振動の振幅が大き
く異なり、偏平な楕円軌跡しか得られず、効率の悪い超
音波リニアモータしかできない。そこで、支持穴111
aと111bを長方形側面に直角に直交して開けること
により、お互いに振動面が直交する両端自由の2次の撓
み振動に対する上記支持穴の影響を同じにして、2つの
撓み振動の共振周波数をほぼ一致させることにより、効
率の良い超音波リニアモータを実現できる。
If it is only for supporting and fixing the vibrating body, one support hole is sufficient, but in that case, the resonant frequency of the direction in which the support hole is opened and the second-order pinch vibration in the direction perpendicular thereto will be different. In order to obtain an elliptical locus by controlling the phase difference between driving voltages having approximately the same amplitude, the resonance frequencies of the two bending vibrations must be approximately the same. If they are not aligned, the amplitudes of the two bending vibrations will be greatly different when driven with the same voltage, and only a flat elliptical trajectory will be obtained, resulting in an inefficient ultrasonic linear motor. Therefore, the support hole 111
By opening holes a and 111b perpendicularly to the rectangular sides, the influence of the support holes on the second-order bending vibration with both ends free, whose vibration planes are orthogonal to each other, is made the same, and the resonance frequency of the two bending vibrations is reduced. By nearly matching them, an efficient ultrasonic linear motor can be realized.

(2)第5図は、別の超音波リニアモータの実施例の断
面図である。振動体b116と振動体d113は、その
両端近傍において円形状の溝114が作られており、溝
114の底にはそれぞれ耐摩耗性の摩擦材a 115N
  摩擦材b116、摩擦材c 117、摩擦材d11
8が構成されている。
(2) FIG. 5 is a sectional view of another embodiment of an ultrasonic linear motor. Circular grooves 114 are formed near both ends of the vibrating body b116 and the vibrating body d113, and wear-resistant friction material a 115N is provided at the bottom of each groove 114.
Friction material b116, friction material c 117, friction material d11
8 are made up.

振動体b116と振動体d113は、その中央部の支持
穴を介して支持棒により、摩擦材a115、摩擦材b1
16、摩擦材c117、摩擦材att8を介してレール
122と123に加圧接触して設置されている。加圧は
加圧用バネ120と調整ネジ121により行われる。2
つの振動体に撓み振動を励振すれば、振動体はレール1
22と123に沿って移動する。
The vibrating body b116 and the vibrating body d113 are connected to the friction material a115 and the friction material b1 by a support rod through a support hole in the center thereof.
16, the friction material c117 is installed in pressure contact with the rails 122 and 123 via the friction material att8. Pressurization is performed by a pressure spring 120 and an adjustment screw 121. 2
If we excite bending vibration in two vibrating bodies, the vibrating body will move to rail 1.
22 and 123.

レール122と123の長さが長い時は、レール上に表
面精度を出して耐摩耗性の摩擦材を設置することは困難
である。しかし、振動体の方に摩擦材を設置すれば、少
量の摩擦材で済み、しかも摩擦材の表面精度が出しやす
いので、効率の良い超音波リニアモータの実現が可能で
ある。
When the lengths of the rails 122 and 123 are long, it is difficult to install a wear-resistant friction material on the rails with surface precision. However, if a friction material is placed on the vibrating body, only a small amount of friction material is required, and the surface precision of the friction material can be easily achieved, making it possible to realize an efficient ultrasonic linear motor.

(3)第6図は、振動体の側面図であり、両端に機械出
力取出用の円柱部を設けた正方形断面を有する弾性体角
柱の隣合う2つの長方形側面に圧電体e124と圧電体
f125とを接着して振動体126を構成している。圧
電体e124と圧電体f125の幅は弾性体角柱の正方
形断面の幅より小さくしている。圧電体e124と圧電
体f125の幅が弾性体角柱の正方形断面の幅と同じ時
は、圧電体e124と圧電体f125の間に圧電体と弾
性体角柱を接着するための接着剤が流れ込み振動損失を
大きくする。また、圧電体e124と圧電体f125の
幅が弾性体角柱の正方形断面の幅より大きい時は、弾性
体角柱からはみでた圧電体が振動体126の負荷となり
撓み振動の励振の効率が低下する。圧電体e124と圧
電体f125の幅が弾性体角柱の正方形断面の幅より小
さい時には、2次の挟み振動が効率良く励振することが
できる。
(3) Fig. 6 is a side view of the vibrating body, in which a piezoelectric body e124 and a piezoelectric body f125 are formed on two adjacent rectangular sides of an elastic prism having a square cross section with columnar parts for extracting mechanical output at both ends. The vibrating body 126 is configured by bonding the two together. The widths of the piezoelectric body e124 and the piezoelectric body f125 are made smaller than the width of the square cross section of the elastic prism. When the width of the piezoelectric body e124 and the piezoelectric body f125 is the same as the width of the square cross section of the elastic body prism, the adhesive for bonding the piezoelectric body and the elastic body prism flows between the piezoelectric body e124 and the piezoelectric body f125, resulting in vibration loss. Make it bigger. Further, when the width of the piezoelectric body e124 and the piezoelectric body f125 is larger than the width of the square cross section of the elastic prism, the piezoelectric body protruding from the elastic prism becomes a load on the vibrating body 126, reducing the efficiency of excitation of bending vibration. When the width of the piezoelectric body e124 and the piezoelectric body f125 is smaller than the width of the square cross section of the elastic prism, secondary pinch vibration can be efficiently excited.

発明の効果 本発明によれば、簡単な構造で寸法の小さな、重さの軽
い、しかも効率の高い超音波リニアモータを提供できる
Effects of the Invention According to the present invention, an ultrasonic linear motor having a simple structure, small size, light weight, and high efficiency can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の超音波リニアモータの概観
斜視図、第2図は振動体に励振される2次の挟み振動の
変位分布図、第3図(a)は振動体の概観図と(b)は
側面図、第4図は振動体のアドミッタンスの周波数特性
図、第5図は本発明の別の実施例の超音波リニアモータ
の断面図、第6図は振動体の側面図、第7図は従来の超
音波リニアモータの概観図、第8図は超音波リニアモー
タの駆動原理を示す説明図である。 101・・・・・・振動体A、102・・・・・・振動
体B1103・・・・・・レール、104・・・・・・
支持棒、105・・・・・・加圧用バネ、 106・・・・・・加圧調整ネジ、 107・・・・・・弾性体角柱、 108as  blC,d・・・・・・圧電セラミック
、109a1 blCl d・・・・・・圧電セラミッ
ク、110a1 b・・・・・・機械出力端、111a
1 b・・・・・・支持穴、 112・・・・・・振動体C,113・・・・・・振動
体D1114・・・・・・溝、 115・・・・・・摩擦材a、118・・・・・・摩擦
材b1117・・・・・・摩擦材c1118・・・・・
・摩擦材d1119・・・・・・支持棒、120・・・
・・・加圧用バネ、121・・・・・・調整ネジ、 122、123・・t・・・レール、 124・・・・・・圧電体e1125・・・・・・圧電
体f1126・・・・・・振動体。 代理人の氏名 弁理士 粟野重孝 はか1名蕩 図 支ン1奉 第 図 第 図 周液数 第 図 121胡P堅ネン 第 図 第 因 第 7 図 (a−) lZ4瓜電4e
Fig. 1 is an overview perspective view of an ultrasonic linear motor according to an embodiment of the present invention, Fig. 2 is a displacement distribution diagram of secondary pinch vibration excited in the vibrating body, and Fig. 3 (a) is a diagram of the displacement of the vibrating body. 4 is a frequency characteristic diagram of the admittance of the vibrating body, FIG. 5 is a sectional view of an ultrasonic linear motor according to another embodiment of the present invention, and FIG. 6 is a side view of the vibrating body. A side view, FIG. 7 is a general view of a conventional ultrasonic linear motor, and FIG. 8 is an explanatory diagram showing the driving principle of the ultrasonic linear motor. 101... Vibrating body A, 102... Vibrating body B1103... Rail, 104...
Support rod, 105... Pressure spring, 106... Pressure adjustment screw, 107... Elastic body prism, 108 as blC, d... Piezoelectric ceramic, 109a1 blCl d...Piezoelectric ceramic, 110a1 b...Mechanical output end, 111a
1 b... Support hole, 112... Vibrating body C, 113... Vibrating body D1114... Groove, 115... Friction material a , 118...Friction material b1117...Friction material c1118...
・Friction material d1119...Support rod, 120...
...Pressure spring, 121...Adjustment screw, 122, 123...T...Rail, 124...Piezoelectric body e1125...Piezoelectric body f1126... ...Vibrating body. Name of agent Patent attorney Shigetaka Awano Haka 1 name

Claims (3)

【特許請求の範囲】[Claims] (1) 正方形断面を有する弾性体角柱の少なくとも隣
合う2つの長方形側面に圧電体を接着して振動体を構成
し、上記圧電体に電圧を印加して上記振動体にお互いに
振動面が直交する両端自由の2次の撓み振動を励振し、
上記振動体の中央部近傍に設置された穴を介して上記振
動体を支持・固定し、振動の腹の位置から機械出力を取
り出す超音波リニアモータにおいて、上記支持・固定用
穴の大きさが上記正方形断面の一辺の70%よりも小さ
く、上記穴が上記長方形側面に直角に直交して開けられ
ていることを特徴とする超音波リニアモータ。
(1) A vibrating body is constructed by bonding a piezoelectric body to at least two adjacent rectangular side surfaces of an elastic prism having a square cross section, and a voltage is applied to the piezoelectric body so that the vibrating planes of the vibrating body are perpendicular to each other. Excite second-order flexural vibration with both ends free,
In an ultrasonic linear motor that supports and fixes the vibrating body through a hole installed near the center of the vibrating body and extracts mechanical output from the antinode position of the vibration, the size of the supporting and fixing hole is An ultrasonic linear motor characterized in that the hole is smaller than 70% of one side of the square cross section and is opened perpendicularly to the side surface of the rectangle.
(2) 振動体の機械出力取り出しの場所に摩擦材を設
置し、上記摩擦材を介して機械出力を取り出すことを特
徴とする請求項1記載の超音波リニアモータ。
(2) The ultrasonic linear motor according to claim 1, characterized in that a friction material is installed at a location of the vibrating body from which mechanical output is extracted, and the mechanical output is extracted through the friction material.
(3) 振動体の長方形側面に接着する圧電体の幅が、
上記長方形側面の幅よりも小さいことを特徴とする請求
項1記載の超音波リニアモータ。
(3) The width of the piezoelectric material bonded to the rectangular side of the vibrating body is
The ultrasonic linear motor according to claim 1, characterized in that the width is smaller than the width of the rectangular side surface.
JP1061763A 1989-03-14 1989-03-14 Ultrasonic linear motor Expired - Lifetime JPH0787710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061763A JPH0787710B2 (en) 1989-03-14 1989-03-14 Ultrasonic linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061763A JPH0787710B2 (en) 1989-03-14 1989-03-14 Ultrasonic linear motor

Publications (2)

Publication Number Publication Date
JPH02241378A true JPH02241378A (en) 1990-09-26
JPH0787710B2 JPH0787710B2 (en) 1995-09-20

Family

ID=13180501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061763A Expired - Lifetime JPH0787710B2 (en) 1989-03-14 1989-03-14 Ultrasonic linear motor

Country Status (1)

Country Link
JP (1) JPH0787710B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068350A (en) * 2005-09-01 2007-03-15 Tokyo Institute Of Technology Driving/guiding apparatus
JP2008245510A (en) * 2007-02-28 2008-10-09 Casio Comput Co Ltd Piezoelectric actuator, camera instrument and stage device for movement
CN103995541A (en) * 2014-04-16 2014-08-20 广东工业大学 Piezoelectric ceramics based on-line compensation apparatus for linearity of linear motor
CN111176149A (en) * 2019-04-23 2020-05-19 河海大学常州校区 IPMC flexible micro-driving system based on Lelo triangular section

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068350A (en) * 2005-09-01 2007-03-15 Tokyo Institute Of Technology Driving/guiding apparatus
JP2008245510A (en) * 2007-02-28 2008-10-09 Casio Comput Co Ltd Piezoelectric actuator, camera instrument and stage device for movement
CN103995541A (en) * 2014-04-16 2014-08-20 广东工业大学 Piezoelectric ceramics based on-line compensation apparatus for linearity of linear motor
CN111176149A (en) * 2019-04-23 2020-05-19 河海大学常州校区 IPMC flexible micro-driving system based on Lelo triangular section
CN111176149B (en) * 2019-04-23 2023-06-02 河海大学常州校区 IPMC flexible micro-driving system based on Lerlo triangle section

Also Published As

Publication number Publication date
JPH0787710B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US5039899A (en) Piezoelectric transducer
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPH02241378A (en) Ultrasonic wave linear motor
JPH01264582A (en) Ultrasonic linear motor
JPH027875A (en) Ultrasonic oscillator and driver having this oscillator
JP2543163B2 (en) Ultrasonic linear motor
JPH02202379A (en) Planar ultrasonic actuator
JP2538027B2 (en) Planar ultrasonic actuator
JPH05122949A (en) Linear actuator
JP2543149B2 (en) Ultrasonic linear motor
JPH066989A (en) Ultrasonic linear motor
JPH02228272A (en) Plane type ultrasonic actuator
JP2538033B2 (en) Planar ultrasonic actuator
JPH0246180A (en) Ultrasonic linear motor
JP2538026B2 (en) Planar ultrasonic actuator
JPH02228271A (en) Plane type ultrasonic actuator
JPH07337046A (en) Ultrasonic motor drive
JPH02214480A (en) Planar type ultrasonic actuator
JPH02211072A (en) Ultrasonic linear motor
JPH02202380A (en) Planar ultrasonic actuator
JPH02202381A (en) Planar ultrasonic actuator
JPH06169582A (en) Ultrasonic driving device
JPH02202378A (en) Planar ultrasonic actuator
JP2874174B2 (en) Ultrasonic transducer and ultrasonic motor
JPH07274554A (en) Ultrasonic linear motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 14