JPH02211072A - Ultrasonic linear motor - Google Patents

Ultrasonic linear motor

Info

Publication number
JPH02211072A
JPH02211072A JP1029101A JP2910189A JPH02211072A JP H02211072 A JPH02211072 A JP H02211072A JP 1029101 A JP1029101 A JP 1029101A JP 2910189 A JP2910189 A JP 2910189A JP H02211072 A JPH02211072 A JP H02211072A
Authority
JP
Japan
Prior art keywords
vibrating body
oscillator
linear motor
vibration
ultrasonic linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1029101A
Other languages
Japanese (ja)
Inventor
Osamu Kawasaki
修 川崎
Takahiro Nishikura
西倉 孝弘
Katsu Takeda
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1029101A priority Critical patent/JPH02211072A/en
Publication of JPH02211072A publication Critical patent/JPH02211072A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To raise the efficiency of an apparatus by supporting a prismatic oscillator at the nodal point of the central part of said oscillator. CONSTITUTION:An oscillator for an ultrasonic linear motor is equipped with an elastic body prism 16 having a square section, piezoelectric ceramics 17a-18b bonded thereto, machine output ends 19a-19b and fixing support holes 20a-20b. Said support holes 20 are provided in the central part of said oscillator and the displacement of a flexural oscillation at that point becomes zero. Therefore, when the position of said oscillator is fixed via said support holes 20, supporting with a small loss made possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体によって励振した弾性振動を用いて駆動
力を発生する超音波リニアモータに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic linear motor that generates driving force using elastic vibrations excited by a piezoelectric body.

従来の技術 近年、圧電セラミック等の圧電体により構成した振動体
に弾性振動を励振し、これを駆動力とした超音波リニア
モータが注目されている。
BACKGROUND OF THE INVENTION In recent years, ultrasonic linear motors have attracted attention in which elastic vibrations are excited in a vibrating body made of a piezoelectric material such as a piezoelectric ceramic, and this vibration is used as a driving force.

以下、図面を参照しながら超音波リニアモータの従来技
術について説明を行う。
Hereinafter, the conventional technology of ultrasonic linear motors will be explained with reference to the drawings.

第4図は超音波リニアモータの概観図であり、円板形圧
電体1および2を、円筒形の弾性体3および4で挟んで
固定することにより振動体5を構成している。圧電体1
および2に、振動体5の共振周波数近傍の交流電界を印
加すれば、同図中の矢印で示されるように、振動体5は
縦振動モードで上下方向に振動する。
FIG. 4 is a general view of an ultrasonic linear motor, in which a vibrating body 5 is constructed by sandwiching and fixing disc-shaped piezoelectric bodies 1 and 2 between cylindrical elastic bodies 3 and 4. Piezoelectric body 1
When an alternating current electric field near the resonant frequency of the vibrating body 5 is applied to the vibrating body 5 and 2, the vibrating body 5 vibrates vertically in a longitudinal vibration mode, as shown by the arrow in the figure.

振動体5の振動面から見た機械インピーダンスは、ホー
ン6によりインピーダンス変換されて、伝送棒7の撓み
振動に対する機械インピーダンスに整合される。ホーン
6の先端は伝送棒7の一端に近い一部に音響的に結合さ
れる。従って、振動体5の上下撮動は、ホーン6により
効率良く伝送棒7に伝えられ、伝送棒7は撓み振動する
。この撓み振動は、伝送棒7の一端から他端に向かって
進行する。
The mechanical impedance seen from the vibration surface of the vibrating body 5 is impedance-converted by the horn 6, and matched to the mechanical impedance for the bending vibration of the transmission rod 7. The tip of the horn 6 is acoustically coupled to a portion of the transmission rod 7 near one end. Therefore, the vertical motion of the vibrating body 5 is efficiently transmitted to the transmission rod 7 by the horn 6, and the transmission rod 7 bends and vibrates. This bending vibration progresses from one end of the transmission rod 7 to the other end.

伝送棒7の他端に近い一部では、一端と同様にホーン8
の先端が音響的に結合されている。円板形圧電体9およ
び10を、円筒形の弾性体11および12で挟んで固定
することにより、振動体5と全く同じ振動体13を構成
している。ホーン8には、この振動体13が接続されて
いる。従って、伝送棒の一端から他端に向かって進行し
てきた撓み撮動は、ホーン8により振動体13に伝えら
れ、撮動体13の上下振動に変換される。圧電体9およ
び10には、インピーダンス整合した負荷Rが接続され
、上記の上下振動は負荷Rによって消費される。故に、
伝送棒7には撓み振動が進行波としてのみ存在する。
In a part near the other end of the transmission rod 7, the horn 8 is connected as in the one end.
The tips of the two are acoustically coupled. By sandwiching and fixing the disk-shaped piezoelectric bodies 9 and 10 between cylindrical elastic bodies 11 and 12, a vibrating body 13, which is exactly the same as the vibrating body 5, is constructed. This vibrating body 13 is connected to the horn 8. Therefore, the deflection imaging progressing from one end of the transmission rod toward the other end is transmitted to the vibrating body 13 by the horn 8 and converted into vertical vibration of the imaging body 13. A load R with impedance matching is connected to the piezoelectric bodies 9 and 10, and the above-mentioned vertical vibration is consumed by the load R. Therefore,
In the transmission rod 7, bending vibration exists only as a traveling wave.

14は移動体であり、伝送棒7を進行する撓み振動によ
り駆動され、進行波の進行方向とは逆の方向に運動する
。上の説明では、移動体14の進行方向は一方向として
いるが、駆動端を逆にすれば、逆の方向にも進行する。
A moving body 14 is driven by the bending vibration traveling through the transmission rod 7, and moves in a direction opposite to the traveling direction of the traveling wave. In the above description, the moving direction of the moving body 14 is assumed to be one direction, but if the driving end is reversed, the moving body 14 also moves in the opposite direction.

第5図は、撓みの弾性進行波が、移動体を駆動する原理
を示している。伝送棒7の撓み撮動により、伝送棒7の
表面の点く例えば点A)は、縦方向W・横方向Uの楕円
軌跡を描(。この楕円軌跡の頂点での速度は、波の進行
方向とは反対である。伝送棒7の上に移動体14を加圧
設置すれば、移動体14は波の頂点近傍でのみ伝送棒7
に接触する。従って、伝送棒7と移動体14(!:の摩
擦力と、楕円軌跡の横方向の速度によって、波の進行方
向と逆の方向に移動体14が駆動される。
FIG. 5 shows the principle by which a traveling elastic wave of deflection drives a moving body. By photographing the deflection of the transmission rod 7, the point A on the surface of the transmission rod 7, for example, draws an elliptical locus in the vertical direction W and the horizontal direction U (the speed at the apex of this elliptical trajectory is determined by the wave's progress). If the movable body 14 is installed under pressure on the transmission rod 7, the movable body 14 will move the transmission rod 7 only near the top of the wave.
come into contact with. Therefore, due to the frictional force between the transmission rod 7 and the moving body 14 (!) and the lateral speed of the elliptical trajectory, the moving body 14 is driven in the direction opposite to the direction in which the waves travel.

また、同図中の15は、上記楕円軌跡の横方向成分を、
効率良(取り出すための耐磨耗性の摩擦材である。
In addition, 15 in the same figure indicates the horizontal component of the elliptical locus,
Efficient (wear-resistant friction material for removal).

発明が解決しようとする課題 以上、説明した従来の超音波リニアモータは、ランジュ
バン構造の振動体を縦振動モードで励振し、上記振動体
の振動面の縦振動をホーンによって伝送棒の撓み振動に
変換している。従って、効率良く撓み振動の進行波を励
振するために、振動面とホーン、ホーンと伝送棒との間
の機械インピーダンスの整合を正確にとらねばならない
。現実には、このことは非常に困難であり、接触面で損
失を生じる。
Problems to be Solved by the Invention As described above, the conventional ultrasonic linear motor described above excites a vibrating body with a Langevin structure in a longitudinal vibration mode, and converts the longitudinal vibration of the vibrating surface of the vibrating body into bending vibration of a transmission rod using a horn. is converting. Therefore, in order to efficiently excite the traveling wave of bending vibration, it is necessary to accurately match the mechanical impedance between the vibration surface and the horn, and between the horn and the transmission rod. In reality, this is very difficult and results in losses at the contact surface.

また、伝送棒に進行波のみを励振するために、一方から
入力した振動エネルギーは、他方で完全に消失しなれけ
ばならない、従って、撮動エネルギーの一部が機械出力
として取り出せ、大部分は熱に変わる。
In addition, in order to excite only traveling waves in the transmission rod, the vibration energy input from one side must be completely dissipated from the other side. Therefore, part of the imaging energy can be taken out as mechanical output, and most of it is It turns into heat.

加えて、比較的小さな移動体を移動するためにも、振動
体と伝送棒を振動させなければならない。従って、効率
が低い、寸法が太き(なるという課題があった。
In addition, in order to move a relatively small moving body, the vibrating body and transmission rod must be vibrated. Therefore, there were problems of low efficiency and large dimensions.

課題を解決するための手段 本発明は、正方形断面を有する弾性体角柱の隣接する2
つの長方形面に、それぞれ圧電体を貼り付けて撮動体を
構成し、上記振動体に、中心が振動の節で1両端が自由
な撓み振動を励振し、上記中心部の節点で上記振動体を
支持し、上記両端から機械出力を取り出す。
Means for Solving the Problems The present invention provides two adjacent elastic prisms having a square cross section.
A piezoelectric body is pasted on each of the two rectangular surfaces to form a moving body, and the vibrating body is excited with a bending vibration that has a vibration node at the center and is free at both ends. Support and extract mechanical output from both ends.

作用 角柱形の振動体を中心部の節点で支持することにより、
損失の小さい振動体の位置固定を可能にし、振動体の両
端から機械出力を取り出すことにより、効率の高い、形
状の小さい超音波リニアモータを提供する。
By supporting the prismatic vibrating body at the center node,
To provide an ultrasonic linear motor with high efficiency and a small shape by making it possible to fix the position of a vibrating body with small loss and extracting mechanical output from both ends of the vibrating body.

実施例 以下、図面に従って本発明の一実施例について詳細な説
明を行う。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の1実施例の振動体の構造を示す斜m
図である。同図において、工6は主要部分が正方形断面
を有する弾性体角柱、17a、17b、18a、18b
はそれぞれ厚さ方向に分極され、2つの主面に電極付け
さ、りた圧電セラミックであり、弾性体角柱16に接着
されている。また、圧電セラミック中の正負の符号は、
分極の向きを示す。19a、19bは機械出力端、2゜
a、20bは振動体を位置固定するための支持穴である
。圧電セラミック17a・17bに電界を印加すれば、
振動体は紙面に垂直な面内で撓み振動を起こし、圧電セ
ラミック18a・18bに電界を印加す゛れば、振動体
は紙面に平行な面内で撓み振動を起こす。
FIG. 1 shows the structure of a vibrating body according to an embodiment of the present invention.
It is a diagram. In the same figure, work 6 is an elastic prism whose main part has a square cross section, 17a, 17b, 18a, 18b.
are each a piezoelectric ceramic that is polarized in the thickness direction and has electrodes attached to its two main surfaces, and is bonded to the elastic prism 16. In addition, the positive and negative signs in the piezoelectric ceramic are
Indicates the direction of polarization. 19a and 19b are mechanical output ends, and 2°a and 20b are support holes for fixing the vibrating body in position. If an electric field is applied to the piezoelectric ceramics 17a and 17b,
The vibrating body causes bending vibration in a plane perpendicular to the plane of the paper, and when an electric field is applied to the piezoelectric ceramics 18a and 18b, the vibrating body causes bending vibration in a plane parallel to the plane of the paper.

第2図は、第1図の本発明の振動体に励振される撓み振
動の変位分布図である。振動体の中心部では撓み撮動の
変位は0なので、支持穴20を介して振動体を位置固定
すれば、損失の小さい支持が可能である。また、振動体
の両端で変位が最大になるので、この箇所から機械出力
を取り出せば速度が最大になる。
FIG. 2 is a displacement distribution diagram of bending vibration excited in the vibrating body of the present invention shown in FIG. Since the displacement during deflection imaging is 0 at the center of the vibrating body, if the vibrating body is fixed in position through the support hole 20, support with small loss is possible. Also, since the displacement is maximum at both ends of the vibrating body, the speed will be maximized if the mechanical output is extracted from these locations.

第1図の圧電セラミック17により励振される撓み振動
と、圧電セラミック18により励振される撓み振動とは
、振動姿態および共振周波数は全(同じであり、その空
間的な位置が直交しているので、圧電セラミック17と
圧電セラミック18に印加する電界の位相を時間的に9
0度だけずらしておけば、振動体の両端はほぼ円軌跡を
描いて振動する。
The bending vibration excited by the piezoelectric ceramic 17 in FIG. 1 and the bending vibration excited by the piezoelectric ceramic 18 have the same vibration mode and resonance frequency, and their spatial positions are orthogonal. , the phase of the electric field applied to the piezoelectric ceramic 17 and the piezoelectric ceramic 18 is set to 9 in terms of time.
If it is shifted by 0 degrees, both ends of the vibrating body will vibrate in a nearly circular trajectory.

第3図は、以上述べたような振動体を使用した超音波リ
ニアモータの1構成例である。同図において、21は振
動体a、22は振動体すであり、支持棒23によって、
2つの振動体の先端でレール26を挟むようにして、支
持穴を介して結合されている。24は加圧用バネであり
、加圧調節ネジ25によって、振動体の先端とレール2
6との加圧力を調節する。
FIG. 3 shows an example of the configuration of an ultrasonic linear motor using the vibrating body as described above. In the figure, 21 is a vibrating body a, 22 is a vibrating body, and a support rod 23 allows
The tips of the two vibrating bodies are connected to each other via support holes so that the rail 26 is sandwiched between them. 24 is a pressure spring, and the pressure adjustment screw 25 allows the tip of the vibrating body to be connected to the rail 2.
Adjust the pressing force with 6.

振動体a21と振動体b22の相対する先端のレールに
垂直な方向の振動の振幅は反対方向に、レールに平行な
方向の振動の振幅は同方向になるようにする。同図中の
矢印は、2つの撓み振動によって作られる先端部の軌跡
である。これによって、振動体a21と振動体b22の
相対する2組みの先端は、それぞれ振動体自身をレール
26に沿って移動させるように交互に動作する。
The amplitudes of vibrations in the direction perpendicular to the rail at the opposing tips of the vibrating body a21 and the vibrating body b22 are made to be in opposite directions, and the amplitudes of vibrations in the direction parallel to the rail are made to be in the same direction. The arrow in the figure is the locus of the tip created by two bending vibrations. As a result, the two sets of opposing tips of the vibrating body a21 and the vibrating body b22 operate alternately so as to move the vibrating bodies themselves along the rails 26.

発明の効果 以上、説明したように、本発明によれば、簡単な構造に
よって、寸法の小さな、重さの軽い、しかも効率の高い
超音波リニアモータを提供できる。
Effects of the Invention As described above, according to the present invention, an ultrasonic linear motor with a simple structure, small size, light weight, and high efficiency can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の振動体の構造を示す斜視図
、第2図は第1図の実施例の振動体の振動の変位分布図
、第3図は第1図の振動体を使用した超音波リニアモー
タの1構成例の概観図、第4図は従来の超音波リニアモ
ータの概観図、第5図は超音波リニアモータの駆動原理
を示す説明図である。 16・・・・・・弾性体、17a−b・・・・・・圧電
体、18a−b・・・・・・圧電体、19a−b・・・
・・・出力端、20a−b・・・・・・支持穴、21・
・・・・・撮動体a22・・・・・・振動体b、23・
・・・・・支持棒。 代理人の氏名 弁理士 栗野重孝 ほか1名第1図 1&圧電体 に弾性体 第 2rl!J V位分布 第 図 第 図 得勧方閘 第 図 71デ訪拝
1 is a perspective view showing the structure of a vibrating body according to an embodiment of the present invention, FIG. 2 is a displacement distribution diagram of vibration of the vibrating body according to the embodiment of FIG. 1, and FIG. 3 is a diagram of the vibrating body of FIG. 1. FIG. 4 is an overview diagram of a conventional ultrasonic linear motor, and FIG. 5 is an explanatory diagram showing the driving principle of the ultrasonic linear motor. 16...Elastic body, 17a-b...Piezoelectric body, 18a-b...Piezoelectric body, 19a-b...
...Output end, 20a-b...Support hole, 21.
...Camera object a22... Vibrating object b, 23.
...Support rod. Name of agent: Patent attorney Shigetaka Kurino and one other person Figure 1 1 & Piezoelectric material and elastic material No. 2 rl! J V rank distribution chart chart 71 visit

Claims (1)

【特許請求の範囲】[Claims]  正方形断面を有する弾性体角柱の隣接する2つの長方
形面に、それぞれ圧電体を貼り付けて振動体を構成し、
上記振動体に、中心が振動の節で、両端が自由な撓み振
動を励振し、上記中心部の節点で上記振動体を支持し、
上記両端から機械出力を取り出すことを特徴とする超音
波リニアモータ。
A vibrating body is constructed by pasting piezoelectric bodies on two adjacent rectangular surfaces of an elastic prism having a square cross section,
Exciting flexible vibration in the vibrating body with a vibration node at the center and free bending vibration at both ends, and supporting the vibrating body at the node at the center,
An ultrasonic linear motor characterized in that mechanical output is extracted from both ends.
JP1029101A 1989-02-08 1989-02-08 Ultrasonic linear motor Pending JPH02211072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1029101A JPH02211072A (en) 1989-02-08 1989-02-08 Ultrasonic linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1029101A JPH02211072A (en) 1989-02-08 1989-02-08 Ultrasonic linear motor

Publications (1)

Publication Number Publication Date
JPH02211072A true JPH02211072A (en) 1990-08-22

Family

ID=12266956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1029101A Pending JPH02211072A (en) 1989-02-08 1989-02-08 Ultrasonic linear motor

Country Status (1)

Country Link
JP (1) JPH02211072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257222A1 (en) * 2010-11-30 2013-10-03 Olympus Corporation Piezoelectric actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110968A (en) * 1986-10-28 1988-05-16 Matsushita Electric Ind Co Ltd Ultrasonic linear motor
JPS63262068A (en) * 1987-04-15 1988-10-28 Canon Inc Vibration wave motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110968A (en) * 1986-10-28 1988-05-16 Matsushita Electric Ind Co Ltd Ultrasonic linear motor
JPS63262068A (en) * 1987-04-15 1988-10-28 Canon Inc Vibration wave motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257222A1 (en) * 2010-11-30 2013-10-03 Olympus Corporation Piezoelectric actuator
US9219221B2 (en) * 2010-11-30 2015-12-22 Olympus Corporation Piezoelectric actuator having prismatic piezoelectric element

Similar Documents

Publication Publication Date Title
US5039899A (en) Piezoelectric transducer
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPS63294281A (en) Piezoelectric driving device
JPH02211072A (en) Ultrasonic linear motor
JPH01264582A (en) Ultrasonic linear motor
JPH0732613B2 (en) Ultrasonic oscillator and drive device having this oscillator
JP2543163B2 (en) Ultrasonic linear motor
JP3118252B2 (en) Ultrasonic vibrating device and method, and driving device and method using the same
JPH0787710B2 (en) Ultrasonic linear motor
JP2543149B2 (en) Ultrasonic linear motor
JPH02202379A (en) Planar ultrasonic actuator
JPH02228270A (en) Plane type ultrasonic actuator
JP2538027B2 (en) Planar ultrasonic actuator
JPH0270277A (en) Ultrasonic motor
JP2874174B2 (en) Ultrasonic transducer and ultrasonic motor
JPH07274554A (en) Ultrasonic linear motor
JPH05115846A (en) Ultrasonic vibrator and driver having the same
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JP2538026B2 (en) Planar ultrasonic actuator
JPH02228272A (en) Plane type ultrasonic actuator
JPH0246180A (en) Ultrasonic linear motor
JPS63110968A (en) Ultrasonic linear motor
JPH02228271A (en) Plane type ultrasonic actuator
JPH0246183A (en) Ultrasonic linear motor
JPH02214480A (en) Planar type ultrasonic actuator