JPS63262068A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPS63262068A
JPS63262068A JP62092415A JP9241587A JPS63262068A JP S63262068 A JPS63262068 A JP S63262068A JP 62092415 A JP62092415 A JP 62092415A JP 9241587 A JP9241587 A JP 9241587A JP S63262068 A JPS63262068 A JP S63262068A
Authority
JP
Japan
Prior art keywords
rod
vibration
vibrating body
vibration wave
wave motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62092415A
Other languages
Japanese (ja)
Inventor
Takayuki Tsukimoto
貴之 月本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62092415A priority Critical patent/JPS63262068A/en
Publication of JPS63262068A publication Critical patent/JPS63262068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To reduce the size and the weight of a vibration wave motor by exciting a plurality of standing vibrating waves displaced perpendicularly to a rodlike vibrators, and rotatably moving the mass point of the vibrator by the composite vibration to frictionally driving a rotor. CONSTITUTION:A vibration wave motor is composed of a disclike rotor 1, a rodlike vibrator 2, and electromechanical energy converter PZTs 3-4', and AC voltages 6-7' of predetermined phase relation are appled to the PZTs 3-4' to rotatably drive the rotor 1. In this motor, the vibrator 2 is supported at its center by a support 5, and low-order mode vibration of bending standing wave is excited at the vibrator 2 by applying the AC voltage. Thus, the rotor 2 pressed on the vibrator 2 can be efficiently rotated.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は棒状振動体に生ぜしめた振動変位方向の異る定
在波振動によフて長さ方向と垂直な断面で該棒状振動体
に回転運動を起こさせることによって、該振動体に加圧
接触した回転体を駆動する振動波モータに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to a rod-shaped vibrating body that is pierced in a cross section perpendicular to the longitudinal direction by standing wave vibrations with different vibration displacement directions generated in the rod-shaped vibrating body. The present invention relates to a vibration wave motor that drives a rotating body that is in pressurized contact with the vibrating body by causing rotational movement.

[発明の背景] 従来、超音波振動子により弾性体表面に横波と縦波との
合成された進行波を生ぜしめ、これを該弾性体に加圧接
触せしめられた8′#J体の回転運動または一方向運動
に変換する事によりモーターを構成することが提案され
ている(特開昭58−148682号公報)。
[Background of the Invention] Conventionally, an ultrasonic vibrator generates a traveling wave, which is a combination of a transverse wave and a longitudinal wave, on the surface of an elastic body, and the rotation of an 8'#J body is brought into pressure contact with the elastic body. It has been proposed to construct a motor by converting motion into motion or unidirectional motion (Japanese Patent Application Laid-open No. 148682/1982).

このようなそ−ターは部品点数が比較的少ないので小型
化、軽量化が可能となる。しかしながら、このモーター
は進行波を用いているため振動波を循環させる構造を持
つことが必須であるため、未だ十分な小型化及び軽量化
を実現することができない。また、横波と縦波は独立で
ないため、駆動速度を大きくするために縦波の振幅を増
すと横波の振幅も増え、騒音が生ずる欠点があり、また
、縦波を小さくすると横波も小さくなり移動体を十分に
駆動できなくなるなどの欠点があった。
Since such a soter has a relatively small number of parts, it can be made smaller and lighter. However, since this motor uses traveling waves, it is essential to have a structure that circulates vibration waves, so it is still not possible to achieve sufficient size and weight reduction. In addition, since transverse waves and longitudinal waves are not independent, increasing the amplitude of longitudinal waves to increase the driving speed also increases the amplitude of transverse waves, which has the disadvantage of producing noise, and reducing the longitudinal waves also reduces the transverse waves, causing movement. There were drawbacks such as the inability to move the body sufficiently.

[発明の目的コ 本発明は以上の如き従来技術に鑑み、小型で軽量かつ、
モータ制御性に優れた振動波モーターを提供することを
目的とする。
[Object of the Invention] In view of the above-mentioned prior art, the present invention has been made to provide a compact, lightweight and
The purpose is to provide a vibration wave motor with excellent motor controllability.

[発明の概要] 本発明の振動波そ一ターは、交流付勢される電気−機械
エネルギー変換素子を接合された棒状振動体にこれと直
交する二方向に変位する二つの定在振動波を励起させ、
以って該定在振動波の合成として該棒状振動体の長さ方
向と垂直な断面内での、しかも該棒状振動体の長さ方向
中央部を境とした左右両部分において互に逆回転方向で
あるような、該棒状振動体の質点の回転運動を発生する
様に構成された棒状振動体、および、直径を該棒状振動
体と平行にして該棒状振動体に押圧接触せしめられた円
盤状回転体を備えてなることを特徴とする。
[Summary of the Invention] The vibration wave generator of the present invention generates two standing vibration waves that are displaced in two directions orthogonal to a rod-shaped vibrating body to which an AC-energized electro-mechanical energy conversion element is bonded. excite,
Therefore, as a synthesis of the standing vibration waves, there is mutually opposite rotation in the cross section perpendicular to the longitudinal direction of the rod-shaped vibrating body, and also in both left and right portions bordering on the longitudinal center of the rod-shaped vibrating body. a rod-shaped vibrating body configured to generate rotational motion of a mass point of the rod-shaped vibrating body in a direction, and a disk having a diameter parallel to the rod-shaped vibrating body and pressed into contact with the rod-shaped vibrating body. It is characterized by comprising a shaped rotating body.

[発明の実施例] 第1図は本発明による振動波モーターの一実施例の概略
部分斜視図であり、第2図はその角棒状の振動体2の概
略側面図である。図中、1は円盤状の回転体で、樹脂・
金属等でできている。ただし振動体2と接する部分は、
アルマイトなどの耐摩耗材でできている。2は角棒状の
振動体であって、金属など振動減衰の小さい材料、例え
ばアルミ合金、銅合金、鉄合金などでできている。ただ
し、回転体1との接触部分は超鋼など、回転体1に比べ
て、さらに耐摩耗性が良いもので作られ、高い硬度を表
面に付与されている。なお、回転体1と振動体2の両者
の組み合わせでは、相互の摩擦係数が大きく、温度に対
してその変動の小さなものが望ましい。
[Embodiment of the Invention] FIG. 1 is a schematic partial perspective view of an embodiment of a vibration wave motor according to the present invention, and FIG. 2 is a schematic side view of a rectangular bar-shaped vibrating body 2 thereof. In the figure, 1 is a disc-shaped rotating body, made of resin.
Made of metal etc. However, the part in contact with the vibrating body 2 is
Made of wear-resistant material such as alumite. Reference numeral 2 denotes a rectangular bar-shaped vibrating body, which is made of a material with low vibration damping such as metal, such as aluminum alloy, copper alloy, iron alloy, etc. However, the contact portion with the rotating body 1 is made of a material such as cemented carbide that has better wear resistance than the rotating body 1, and has a high hardness imparted to the surface. In addition, in the combination of both the rotating body 1 and the vibrating body 2, it is desirable that the mutual coefficient of friction is large and its fluctuation is small with respect to temperature.

したがってアスベストゴムなどのブレーキ材やクラッチ
材も上記条件を満たすものは好適に用いられる。
Therefore, brake materials and clutch materials such as asbestos rubber that satisfy the above conditions are preferably used.

3.3°、4.4’は電気−機械エネルギー変換素子で
あって、圧電素子の一種であるPZTが好適に用いられ
る。したがって電気−機械エネルギー変換素子3,3°
、4,4°を以下PZTと称する。PZT 3および3
°は振動体2の下面に、PZT4および4°は振動体2
の側面に接合される。以下、これらのPZTの接合され
た振動体2を振動子と称する。
3.3° and 4.4' are electrical-mechanical energy conversion elements, and PZT, which is a type of piezoelectric element, is preferably used. Therefore, the electrical-mechanical energy conversion element 3,3°
, 4,4° is hereinafter referred to as PZT. PZT 3 and 3
° is on the bottom surface of the vibrating body 2, PZT4 and 4° are on the bottom surface of the vibrating body 2
is joined to the side of the Hereinafter, the vibrating body 2 to which these PZTs are bonded will be referred to as a vibrator.

PZT3,3°、4.4’には各々適当な位相関係を持
つ交流電圧6.6°、7,7°が印加される。
AC voltages 6.6°, 7, and 7° having appropriate phase relationships are applied to PZTs 3, 3°, and 4.4', respectively.

たとえば、各PZTの分極方向を全て振動体2との接着
面の方向にしておくと、交流電圧の角振動数をω=2π
fとすれば、印加する交流電圧6及び6°はVY=V、
 5ina+t 、交流電圧7はl/x=V2sin(
ωt+2/π)、交流電圧7゛はvx’ =V2sin
(ωt−2/π)とする。支持体5で棒状振動体2の中
央部を支持し、上記交流電圧を印加して、振動体2に屈
曲定在波の低次モード振動を励起すれば第3図のような
振動が起きる。
For example, if the polarization direction of each PZT is set in the direction of the adhesive surface with the vibrating body 2, the angular frequency of the AC voltage will be ω = 2π
f, the applied AC voltages 6 and 6° are VY=V,
5ina+t, AC voltage 7 is l/x=V2sin(
ωt+2/π), AC voltage 7゛ is vx' = V2sin
(ωt-2/π). If the central part of the rod-shaped vibrating body 2 is supported by the support 5 and the above-mentioned AC voltage is applied to excite the low-order mode vibration of the bending standing wave in the vibrating body 2, vibration as shown in FIG. 3 will occur.

この場合、X、Y、Z方向は第2図図示のようにとる。In this case, the X, Y, and Z directions are taken as shown in FIG.

周波数fは振動子の厚み方向および幅方向の固有振動数
に一致させる。この場合、振動子の厚み方向および幅方
向の各固有振動数を一致させるよう振動子の断面形状を
設計する。
The frequency f is made to match the natural frequency of the vibrator in the thickness direction and width direction. In this case, the cross-sectional shape of the vibrator is designed so that the natural frequencies in the thickness direction and the width direction of the vibrator coincide.

第3図(a) 、 (b)に夫々示すように振動子の一
端でx = a sin ωt 、 y =x b c
os ωtなる振動がX方向、Y方向に励起されれば、
該一端においてZ軸に垂直な面内で振動子は(x/a)
2+(y/b)2=1なる楕円に沿フた回転運動を行う
。振動子の他端部ではX方向振動が時間的に位相だたけ
ずれているため、逆回転の楕円運動が生じる。したがっ
て振動子上に抑圧接触された回転体1は、理想的にはa
ωなる周速度で回転される。
As shown in FIGS. 3(a) and (b), at one end of the oscillator, x = a sin ωt, y = x b c
If the vibration os ωt is excited in the X and Y directions,
At one end, the vibrator is (x/a) in a plane perpendicular to the Z axis.
A rotational movement is performed along an ellipse of 2+(y/b)2=1. At the other end of the vibrator, the X-direction vibrations are temporally out of phase, so an elliptical motion of opposite rotation occurs. Therefore, the rotating body 1 in suppressing contact with the vibrator should ideally be a
It rotates at a circumferential speed of ω.

なお、第4図に示すように振動体2の振動の腹部つまり
振動体2の両端部と接触する回転子1の部分に突起8を
設けておけば、振動子は送り速度の異なる回転子1の他
の部分と接触しないため効率がよくなる。同様の理由で
第5図に示すように振動子側に突起8°を設けておいて
もよい。
As shown in FIG. 4, if a protrusion 8 is provided on the part of the rotor 1 that contacts the vibration abdomen of the vibrating body 2, that is, the both ends of the vibrating body 2, the vibrator can move the rotor 1 at different feed speeds. It is more efficient because it does not come into contact with other parts of the body. For the same reason, a projection of 8° may be provided on the vibrator side as shown in FIG.

以上よりわかるとおり、回転子1の回転数は振動体2の
Y方向振幅が最大になったとき、つまり回転子と接触し
たときの振動体2のX方向の振動速度に依存するため、
該Y方向振幅が最大となったときの該X方向振幅を加減
すること、つまりPZT  (この例の場合4および4
゛)にかける交流電圧7および7゛の値を加減すること
により、又はX方向、Y方向振幅の位相差を加減するこ
と、つまり交流電圧6及び6゛と交流電圧7と交流電圧
7゛の位相差を変えることにより、回転子1の回転数は
制御できる。
As can be seen from the above, the rotation speed of the rotor 1 depends on the vibration speed of the vibrating body 2 in the X direction when the amplitude of the vibrating body 2 in the Y direction reaches its maximum, that is, when it comes into contact with the rotor.
Adjusting the X-direction amplitude when the Y-direction amplitude is maximum, that is, PZT (in this example, 4 and 4
By adjusting the values of AC voltages 7 and 7゛ applied to ゛), or by adjusting the phase difference of the amplitudes in the By changing the phase difference, the rotation speed of the rotor 1 can be controlled.

又、屈曲定在振動波を組み合わせた例として第6図(a
) 、 (b)に示す様な振動モードを励起してもよく
、又、2次モード、3次モードなどを組み合わせてもよ
い。この場合、振動体2と回転体1との接触点数が増す
ような設計を行えば、トルク向上に有利となる。
Also, as an example of combining bending standing vibration waves, Figure 6 (a
), (b) may be excited, or a second-order mode, a third-order mode, etc. may be combined. In this case, if the design increases the number of contact points between the vibrating body 2 and the rotary body 1, it will be advantageous to improve the torque.

尚、X方向周波数FX、 Y方向周波数FYとして前説
明ではFX=FYとしたが、F×=mFY(mは整数)
としても回転子を回すことができる。m=2の場合、長
さ方向に垂直な断面での振動の運動軌跡は8字型になる
In the previous explanation, FX=FY was used as the X direction frequency FX and Y direction frequency FY, but F×=mFY (m is an integer)
The rotor can be rotated even if When m=2, the vibration motion locus in a cross section perpendicular to the length direction becomes a figure-eight shape.

第3図、第6図の例ではX方向振動、Y方向振動ともに
屈曲振動波を利用したが、振動子の断面形状や寸法によ
っては回転子の送り方向の振動つまり前例のX方向振動
には、棒のねじれ振動を利用したほうが有利な場合もあ
り、この場合も振動体長さ方向に垂直な断面が回転運動
を行うため本発明の範囲に含まれる。
In the examples shown in Figures 3 and 6, bending vibration waves are used for both the X-direction vibration and the Y-direction vibration, but depending on the cross-sectional shape and dimensions of the vibrator, the vibration in the rotor feeding direction, that is, the X-direction vibration in the previous example, may be In some cases, it may be more advantageous to utilize torsional vibration of the rod, and this case is also within the scope of the present invention because the cross section perpendicular to the longitudinal direction of the vibrating body performs rotational motion.

又、振動波モータの効率を考えた場合、振動体の支持は
重要な要素であるが、たとえば特開昭58−14868
2号公報に記載のタイプのモーターでは、振動波は進行
波であり、節の位置が時間とともに変化するため節での
支持は困難で、フェルトなどの吸撮材にて支持をしてい
るためエネルギーロスが大きかった。本発明では、各々
の撮動定在波の節位置を一致させ、この節位置(第3図
、第6図の例では振動体2の中央部)で振動体2を支持
することにより、容易にエネルギーロスの少ない節部支
持が可能となる。
Furthermore, when considering the efficiency of a vibration wave motor, support of the vibrator is an important element.
In the type of motor described in Publication No. 2, the vibration wave is a traveling wave, and the position of the node changes over time, so it is difficult to support the motor at the node, and it is supported using absorbent material such as felt. There was a lot of energy loss. In the present invention, by aligning the nodal positions of each photographing standing wave and supporting the vibrating body 2 at this nodal position (in the examples of FIGS. 3 and 6, the central part of the vibrating body 2), it is possible to easily Joint support with less energy loss is possible.

振動子と、回転体との接触部構造に関しては、回転体に
はY方向振動も加えられるため、振幅が大きくなると回
転体が振動し、騒音の発生原因となる。したがってこの
方向の振動を回転体本体に伝えないために回転体1の振
動体との接触部にY方向にバネ性をもたせた例が第7図
及び第8図である各々回転体の断面図である。第7図の
例では回転体1に構造的にバネ性を与え、第8図の例で
は回転体1に接合した9に示されるバネ性を有する材質
(たとえばゴム)の上に10に示される金属などででき
たリングを接合している。ただし、いずれの場合にも周
方向には高い剛性を持たせる。その理由は、周方向は回
転体駆動力が作用する方向であるから、適当な剛性を持
たせねばモーターの停止精度や立ち上がり精度などが著
しく悪くなるからである。
Regarding the structure of the contact portion between the vibrator and the rotating body, since Y-direction vibration is also applied to the rotating body, when the amplitude becomes large, the rotating body vibrates, causing noise generation. Therefore, in order to prevent vibrations in this direction from being transmitted to the rotating body main body, an example in which the contact portion of the rotating body 1 with the vibrating body has spring properties in the Y direction is shown in FIGS. 7 and 8, which are cross-sectional views of the rotating body, respectively. It is. In the example of FIG. 7, the rotating body 1 is structurally given a spring property, and in the example of FIG. Rings made of metal etc. are joined together. However, in either case, high rigidity is provided in the circumferential direction. The reason for this is that since the circumferential direction is the direction in which the rotating body driving force acts, if appropriate rigidity is not provided, the stopping accuracy and starting accuracy of the motor will be significantly impaired.

回転体の駆動力は振動子への加圧による摩擦力により得
られるが、この加圧をたとえば回転子、振動体を強磁性
体、永久磁石などにするなど磁力により行えば、加圧バ
ネなどが不要になり、よりコンパクトになる。
The driving force of the rotating body is obtained from the frictional force caused by pressurizing the vibrator, but if this pressurization is done by magnetic force, such as by using a ferromagnetic material or a permanent magnet as the rotor or vibrating body, it is possible to use a pressure spring, etc. is no longer necessary, making it more compact.

なお、棒状振動体2は複数本を平行に配置したもの、又
は放射状に設けたものとし、これらに円盤状回転体1を
押圧接触させた実施例も可能である。
In addition, an embodiment is also possible in which a plurality of rod-shaped vibrating bodies 2 are arranged in parallel or radially, and the disk-shaped rotating body 1 is pressed into contact with these.

[発明の効果コ 本発明の振動波モーターにおいては、棒状の振動体に互
に直交する方向に変位する複数の定在振動波を励起させ
、その合成された振動により振動体の長さ方向に垂直な
断面において該振動体の質点を回転運動させ、該棒状振
動体に押圧された回転体を摩擦駆動するので、モーター
の小型、軽量化が可能であり、また上記質点の回転運動
の縦方向および横方向の振動は互に独立に与えられるた
め、モーターの制御性に優れ、騒音の発生も少くするこ
とができ、また振動体の節位置での支持が容易であって
エネルギーロスが少いという利点がある。
[Effects of the Invention] In the vibration wave motor of the present invention, a plurality of standing vibration waves that are displaced in mutually orthogonal directions are excited in a rod-shaped vibrating body, and the combined vibration causes vibrations in the longitudinal direction of the vibrating body. Since the mass point of the vibrating body is rotated in a vertical cross section, and the rotating body pressed by the rod-shaped vibrating body is frictionally driven, the motor can be made smaller and lighter. Since the and lateral vibrations are applied independently, the motor has excellent controllability and generates less noise, and the vibrating body can be easily supported at the nodes, reducing energy loss. There is an advantage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の振動波モーターの実施例の概略を示す
斜視図、第2図はその振動子側面図、第3図(a) 、
 (b)は振動子の振動状態を示す図、第4図は本発明
における回転体の他の実施例を示す斜視図、第5図は本
発明における振動子の他の実施例を示す側面図、第6図
(a) 、 (b)は本発明の他の実施例における振動
子の振動状態を示す図、第7図、第8図は本発明におけ
る回転体の他の実施例を夫々示す側面図である。 1・・・回転体     2・・・振動体3.3°、4
,4°・・・電気−機械エネルギー変換素子(PZT) 5・・・支持棒 6.6°、7,7°・・・交流電圧源 8.8°・・・突起 9・・・ダンパー(ゴム、フェルト等)10・・・接触
部材 第1図 第6図 第7図
Fig. 1 is a perspective view schematically showing an embodiment of the vibration wave motor of the present invention, Fig. 2 is a side view of its vibrator, Fig. 3(a),
(b) is a diagram showing the vibration state of the vibrator, FIG. 4 is a perspective view showing another embodiment of the rotating body in the present invention, and FIG. 5 is a side view showing another embodiment of the vibrator in the present invention. , FIGS. 6(a) and 6(b) are diagrams showing the vibration state of the vibrator in another embodiment of the present invention, and FIGS. 7 and 8 are diagrams showing other embodiments of the rotating body in the present invention, respectively. FIG. 1... Rotating body 2... Vibrating body 3.3°, 4
, 4°... Electric-mechanical energy conversion element (PZT) 5... Support rod 6.6°, 7,7°... AC voltage source 8.8°... Protrusion 9... Damper ( Rubber, felt, etc.) 10...Contact members Figure 1 Figure 6 Figure 7

Claims (10)

【特許請求の範囲】[Claims] (1)交流付勢される電気−機械エネルギー変換素子を
接合された棒状振動体にこれと直交する二方向に変位す
る二つの定在振動波を励起させ、以って該定在振動波の
合成として該棒状振動体の長さ方向と垂直な断面内での
、しかも該棒状振動体の長さ方向中央部を境とした左右
両部分において互に逆回転方向であるような、該棒状振
動体の質点の回転運動を発生する様に構成された棒状振
動体、および、直径を該棒状振動体と平行にして該棒状
振動体に押圧接触せしめられた円盤状回転体を備えてな
ることを特徴とする振動波モーター。
(1) Excite two standing oscillating waves displaced in two directions orthogonal to the rod-shaped vibrating body to which an AC-energized electric-mechanical energy conversion element is connected, and thereby excite the standing oscillating waves. As a synthesis, the rod-shaped vibration is generated in a cross section perpendicular to the length direction of the rod-shaped vibrating body, and in which the directions of rotation are opposite to each other in both the left and right portions of the rod-shaped vibrating body with the center portion in the length direction as a border. A rod-shaped vibrating body configured to generate rotational motion of a mass point of the body, and a disc-shaped rotating body having a diameter parallel to the rod-shaped vibrating body and pressed into contact with the rod-shaped vibrating body. Features a vibration wave motor.
(2)上記の励起せしめる二つの定在振動波が屈曲定在
振動波であることを特徴とする特許請求の範囲第1項記
載の振動波モーター。
(2) The vibration wave motor according to claim 1, wherein the two standing vibration waves to be excited are bending standing vibration waves.
(3)上記の励起せしめる二つの定在振動波が屈曲定在
振動波とねじれ振動であることを特徴とする特許請求の
範囲第1項記載の振動波モーター。
(3) The vibration wave motor according to claim 1, wherein the two standing vibration waves excited are a bending standing vibration wave and a torsional vibration.
(4)上記の励起せしめる定在振動波の1つ又は複数の
節位置を一致させ、該節位置で棒状振動体を支持したこ
とを特徴とする特許請求の範囲第1項記載の振動波モー
ター。
(4) The vibration wave motor according to claim 1, characterized in that one or more node positions of the standing vibration waves to be excited are made to coincide with each other, and a rod-shaped vibrating body is supported at the node positions. .
(5)棒状振動体を複数平行又は放射状に設けたことを
特徴とする特許請求の範囲第1項記載の振動波モーター
(5) The vibration wave motor according to claim 1, characterized in that a plurality of rod-shaped vibrators are provided in parallel or radially.
(6)棒状振動体の振動腹部付近に突起を設けたことを
特徴とする特許請求の範囲第1項記載の振動波モーター
(6) The vibration wave motor according to claim 1, characterized in that a protrusion is provided near the vibrating abdomen of the rod-shaped vibrating body.
(7)棒状振動体の振動腹部位置と接触する位置付近に
て回転体側に突起を設けたことを特徴とする特許請求の
範囲第1項記載の振動波モーター。
(7) The vibration wave motor according to claim 1, characterized in that a protrusion is provided on the rotating body side near a position where the rod-shaped vibrating body contacts the vibrating abdomen position.
(8)回転体の上記突起部がバネ性を有し、かつそのば
ね性は回転体の周方向には硬く、厚み方向(周および半
径方向に垂直な方向)には軟らかいことを特徴とする特
許請求の範囲第1項記載の振動波モーター。
(8) The protrusion of the rotating body has a spring property, and the spring property is hard in the circumferential direction of the rotating body and soft in the thickness direction (direction perpendicular to the circumferential and radial directions). A vibration wave motor according to claim 1.
(9)前記電気−機械エネルギー変換素子に印加する交
流電圧又はその位相を変えることによりモーター回転数
を制御する特許請求の範囲第1項記載の振動波モーター
(9) The vibration wave motor according to claim 1, wherein the motor rotation speed is controlled by changing the alternating current voltage applied to the electro-mechanical energy conversion element or its phase.
(10)棒状振動体と回転体の押圧接触を磁力により行
なうことを特徴とする特許請求の範囲第1項記載の振動
波モーター。
(10) The vibration wave motor according to claim 1, wherein the rod-shaped vibrating body and the rotating body are brought into pressure contact by magnetic force.
JP62092415A 1987-04-15 1987-04-15 Vibration wave motor Pending JPS63262068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092415A JPS63262068A (en) 1987-04-15 1987-04-15 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092415A JPS63262068A (en) 1987-04-15 1987-04-15 Vibration wave motor

Publications (1)

Publication Number Publication Date
JPS63262068A true JPS63262068A (en) 1988-10-28

Family

ID=14053785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092415A Pending JPS63262068A (en) 1987-04-15 1987-04-15 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPS63262068A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283473A (en) * 1987-05-14 1988-11-21 Rion Co Ltd Ultrasonic motor
JPS63294280A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JPH02142367A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Ultrasonic linear motor
JPH02211072A (en) * 1989-02-08 1990-08-22 Matsushita Electric Ind Co Ltd Ultrasonic linear motor
JPH031692U (en) * 1989-05-19 1991-01-09
JPH0349535U (en) * 1989-09-04 1991-05-15
JP2016086540A (en) * 2014-10-27 2016-05-19 キヤノン株式会社 Ultrasonic motor and drive device using the same
JP2016086541A (en) * 2014-10-27 2016-05-19 キヤノン株式会社 Ultrasonic motor and drive device using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283473A (en) * 1987-05-14 1988-11-21 Rion Co Ltd Ultrasonic motor
JPS63294280A (en) * 1987-05-25 1988-11-30 Hiroshi Shimizu Piezoelectric driving device
JPH0458272B2 (en) * 1987-05-25 1992-09-17 Hiroshi Shimizu
JPH02142367A (en) * 1988-11-22 1990-05-31 Matsushita Electric Ind Co Ltd Ultrasonic linear motor
JPH02211072A (en) * 1989-02-08 1990-08-22 Matsushita Electric Ind Co Ltd Ultrasonic linear motor
JPH031692U (en) * 1989-05-19 1991-01-09
JPH0349535U (en) * 1989-09-04 1991-05-15
JP2016086540A (en) * 2014-10-27 2016-05-19 キヤノン株式会社 Ultrasonic motor and drive device using the same
JP2016086541A (en) * 2014-10-27 2016-05-19 キヤノン株式会社 Ultrasonic motor and drive device using the same
US10171008B2 (en) 2014-10-27 2019-01-01 Canon Kabushiki Kaisha Vibration wave motor and driving apparatus using the vibration wave motor

Similar Documents

Publication Publication Date Title
JPH0117354B2 (en)
JPS60170472A (en) Vibration wave motor
JPH0117353B2 (en)
JPS61224881A (en) Vibration wave motor
JPS61224878A (en) Vibration wave motor
JPH0284079A (en) Supporting device of oscillatory wave motor
JPS63262068A (en) Vibration wave motor
JPH0458273B2 (en)
JP4261894B2 (en) Vibration type driving device
JP2902712B2 (en) Ultrasonic motor
KR100661311B1 (en) Piezoelectric ultrasonic motor
JPH0588073B2 (en)
JP2558830B2 (en) Ultrasonic motor
JPH0315278A (en) Elastic vibrator in traveling bending vibration motor
JP3001956B2 (en) Disk type ultrasonic motor
JP2513241B2 (en) Ultrasonic motor
JPH0223070A (en) Linear type ultrasonic motor
JP2769151B2 (en) Ultrasonic motor
JPH02311184A (en) Ultrasonic motor
JPS62193573A (en) Ultrasonic motor
JPH03118780A (en) Ultrasonic motor
JPS60207466A (en) Supersonic motor
JP2534343B2 (en) Ultrasonic linear motor
JP3575569B2 (en) Rotor floating ultrasonic motor
JPS61262091A (en) Vibration wave motor