JPH0223070A - Linear type ultrasonic motor - Google Patents
Linear type ultrasonic motorInfo
- Publication number
- JPH0223070A JPH0223070A JP63169461A JP16946188A JPH0223070A JP H0223070 A JPH0223070 A JP H0223070A JP 63169461 A JP63169461 A JP 63169461A JP 16946188 A JP16946188 A JP 16946188A JP H0223070 A JPH0223070 A JP H0223070A
- Authority
- JP
- Japan
- Prior art keywords
- side member
- driving side
- ultrasonic motor
- driven
- elastic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001369 Brass Inorganic materials 0.000 abstract description 4
- 239000010951 brass Substances 0.000 abstract description 4
- 229910000881 Cu alloy Inorganic materials 0.000 abstract description 3
- 238000013016 damping Methods 0.000 description 11
- 239000002131 composite material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- ZTXONRUJVYXVTJ-UHFFFAOYSA-N chromium copper Chemical compound [Cr][Cu][Cr] ZTXONRUJVYXVTJ-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明はリニア型超音波モータに関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a linear ultrasonic motor.
従来の技術
長円形のリング状を成す駆動側部材の直線部分に被駆動
側部材を圧接し、駆動側部材に発生させられた弾性波に
より被駆動側部材を前記直線部分の長手方向に沿って相
対的に駆動するリニア型超音波モータ(以下、第一のリ
ニア型超音波モータという)が考えられている。BACKGROUND ART A driven member is pressed against a linear part of an oval ring-shaped driving member, and elastic waves generated in the driving member move the driven member along the longitudinal direction of the linear part. A relatively driven linear ultrasonic motor (hereinafter referred to as a first linear ultrasonic motor) has been considered.
また、たとえば特開昭62−77071−号公報や特開
昭62−77072号公報に記載されているように、円
筒状の振動部(駆動側部材に相当)の外周面に移動体や
マグネット(被駆動側部材に相当)を圧接し、駆動側部
材に発生させられた弾性波により被駆動側部材を駆動側
部材の軸心と直角な方向へ相対的に駆動するリニア型超
音波モータ(以下、第二のリニア型超音波モータという
)が考えられている。Furthermore, as described in, for example, JP-A-62-77071-A and JP-A-62-77072, a movable body or a magnet ( A linear ultrasonic motor (hereinafter referred to as a linear ultrasonic motor) that presses a driven member (corresponding to the driven member) and drives the driven member relatively in a direction perpendicular to the axis of the driving member using elastic waves generated in the driving member. , a second linear ultrasonic motor) is being considered.
また、たとえば昭和58年10月の日本音響学会講演論
文集627頁やr圧電/電歪アクチュエータ」 (森北
出版社)の184真に記載されているように、一方の振
動子により棒状部材(駆動側部材に相当)の一端部側を
振動させて弾性波を発生させ且つその棒状部材を伝播す
る弾性波を他方の振動子により受波しつつ、その弾性波
により棒状部材に圧接させられたスライダ(被駆動側部
材に相当)を棒状部材の長手力・向に沿って相対的に駆
動するリニア型超音波モータ(以下、第三のリニア型超
音波モータという)が考えられている。For example, as described in Proceedings of the Acoustical Society of Japan, October 1988, p. 627 and 184 of ``Piezoelectric/Electrostrictive Actuators'' (Morikita Publishing), one of the vibrators can be used to drive a rod-shaped member. A slider that generates an elastic wave by vibrating one end (corresponding to a side member), and receives the elastic wave propagating through the rod-shaped member by the other vibrator, and is pressed against the rod-shaped member by the elastic wave. A linear ultrasonic motor (hereinafter referred to as a third linear ultrasonic motor) that relatively drives a rod-shaped member (corresponding to a driven member) along the longitudinal force and direction of a rod-shaped member has been considered.
発明が解決しようとする課題
しかしながら、第一のリニア型超音波モータにおいては
、駆動側部材の直線部分と半円形部分とに生じる弾性波
の形態が異なって弾性波の散乱や反射が起こり、均一な
弾性波を得難いため、被駆動側部材を安定して駆動し難
いとともに、駆動側部材がリング状であるため、リニア
型超音波モータが比較的大型となることが避は難い。Problems to be Solved by the Invention However, in the first linear type ultrasonic motor, the shapes of the elastic waves generated in the straight part and the semicircular part of the drive side member are different, and scattering and reflection of the elastic waves occur, resulting in a uniform Since it is difficult to obtain a strong elastic wave, it is difficult to stably drive the driven member, and since the driving member is ring-shaped, it is inevitable that the linear ultrasonic motor will be relatively large.
これに対し、第二のリニア型超音波モータにおいては、
駆動側部材が円筒状を成しているため、均一な弾性波を
得ることができるものの、駆動側部材と被駆動側部材と
の接触面積が充分に得られず、駆動力を充分に得難い。On the other hand, in the second linear ultrasonic motor,
Since the driving side member has a cylindrical shape, uniform elastic waves can be obtained, but a sufficient contact area between the driving side member and the driven side member cannot be obtained, making it difficult to obtain a sufficient driving force.
また、第三のリニア型超音波モータにおいては、好適な
弾性波を得るために両振動子の整合を取る必要があるこ
と等に起因して、リニア型超音波モータの構造が比較的
複雑になるとともにリニア型超音波モータが比較的大型
となることが避は難いのである。In addition, in the third linear type ultrasonic motor, the structure of the linear type ultrasonic motor is relatively complicated due to the need to match both vibrators in order to obtain suitable elastic waves. At the same time, it is inevitable that the linear ultrasonic motor will be relatively large.
本発明は以上の事情を背景として為されたものであって
、その目的とするところは、好適な弾性波を得ることが
できるとともに駆動力を比較的大きく確保し得る比較的
簡単な構造であって且つ小型のリニア型超音波モータを
提供することにある。The present invention has been made against the background of the above-mentioned circumstances, and its purpose is to provide a relatively simple structure that can obtain suitable elastic waves and ensure a relatively large driving force. Another object of the present invention is to provide a small linear ultrasonic motor.
課題を解決するための手段
上記目的を達成するために、本発明は、長手状を成す駆
動側部材と、その駆動側部材に圧接させられる被駆動側
部材とを備え、その駆動側部材に発生させられた弾性波
によりその被駆動側部材がその駆動側部材の長手方向に
沿って相対的に駆動される形式のリニア型超音波モータ
であって、(a)前記駆動側部材に固着されてその駆動
側部材に前記弾性波を発生させる超音波振動子と、(b
)前記駆動側部材の損失係数よりも大きい1■失係数を
有し、その駆動側部材の長手方向の少なくとも一端部に
一体的に設けられた制振体とを含むことを特徴とする。Means for Solving the Problems In order to achieve the above object, the present invention includes a driving side member having a longitudinal shape and a driven side member that is brought into pressure contact with the driving side member. A linear type ultrasonic motor in which a driven side member is relatively driven along the longitudinal direction of the driving side member by the generated elastic waves, the linear ultrasonic motor comprising: (a) fixed to the driving side member; an ultrasonic vibrator that generates the elastic wave in the driving side member;
) A vibration damper having a loss coefficient larger than the loss coefficient of the drive side member and integrally provided at at least one end in the longitudinal direction of the drive side member.
作用および発明の効果
このように構成されたリニア型超音波モータによれば、
駆動側部材に固着された超音波振動子によりその駆動側
部材に弾性波が発生させられ、その弾性波により被駆動
側部材が駆動側部材の長手方向に沿って相対的に駆動さ
れる。このとき、駆動側部材の長手方向の少なくとも一
端部に、その駆動側部材の損失係数(振動系の1回の振
動で発生する熱エネルギーとその振動系が持つ振動エネ
ルギーとの比)よりも大きい損失係数を有する制振体が
一体的に設けられているので、その制振体において前記
弾性波を減衰し得て、駆動側部材の端部において反射波
が発生するのを好適に防止し得る。この結果、常に好適
な弾性波を形成し得て、その弾性波により被駆動側部材
を安定して駆動し得る。しかも、長手状の駆動側部材に
超音波振動子を固着し且つその駆動側部材の端部に制振
体を一体的に設けることによりリニア型超音波モータが
構成されるので、そのリニア型超音波モータの構造を比
較的簡単とし得るとともにリニア型超音波モータを比較
的小型とし得る。また、駆動側部材は長手状を成してい
るため、被駆動側部材との接触面積を充分に確保し得て
、駆動力を比較的大きく確保し得る。Operation and Effects of the Invention According to the linear ultrasonic motor configured as described above,
An ultrasonic vibrator fixed to the drive side member generates an elastic wave in the drive side member, and the driven side member is relatively driven along the longitudinal direction of the drive side member by the elastic wave. At this time, at least one end in the longitudinal direction of the drive side member has a loss coefficient larger than the loss coefficient (the ratio of the thermal energy generated by one vibration of the vibration system to the vibration energy possessed by the vibration system) of the drive side member. Since the vibration damper having a loss coefficient is integrally provided, the elastic wave can be attenuated in the vibration damper, and reflected waves can be suitably prevented from being generated at the end of the driving side member. . As a result, suitable elastic waves can always be formed, and the driven member can be stably driven by the elastic waves. Moreover, since a linear type ultrasonic motor is constructed by fixing an ultrasonic vibrator to a longitudinal drive side member and integrally providing a damper at the end of the drive side member, the linear type ultrasonic motor is The structure of the sonic motor can be made relatively simple, and the linear ultrasonic motor can be made relatively small. Moreover, since the driving side member has a longitudinal shape, a sufficient contact area with the driven side member can be ensured, and a relatively large driving force can be ensured.
実施例
以下、本発明の一実施例を示す図面に基づいて詳細に説
明する。EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings.
第1図において、10は長手状を成す弾性体であって、
本実施例においては、たとえば損失係数がO,OOO3
を有する真鍮から成る。この損失係数は、振動系の1回
の振動で発生する熱エネルギーとその振動系が持つ振動
エネルギーとの比で表されるもので−あって、振動系の
振動特性(減衰力)を示す係数である。弾性体10は、
本実施例の駆動側部材に相当するものであって、その第
1図中下面には、弾性体10の長手方向に沿って超音波
振動子12が固着されている。この超音波振動子12は
、第2図にその一部を拡大して示すように、たとえば8
個の圧電素子14を一組として複数組有して構成されて
いる。なお、各組は互いに同様に構成されているため、
以下の説明は一組の8個の圧電素子14についてのみ行
うこととする。In FIG. 1, 10 is a longitudinal elastic body,
In this embodiment, for example, the loss coefficient is O, OOO3.
Made of brass with This loss coefficient is expressed as the ratio of the thermal energy generated by one vibration of the vibration system to the vibration energy possessed by the vibration system, and is a coefficient that indicates the vibration characteristics (damping force) of the vibration system. It is. The elastic body 10 is
This corresponds to the driving side member of this embodiment, and an ultrasonic vibrator 12 is fixed to the lower surface of the elastic body 10 in FIG. 1 along the longitudinal direction of the elastic body 10. This ultrasonic transducer 12 is, for example, 8
The piezoelectric element 14 is configured to have a plurality of sets each including a set of piezoelectric elements 14. Note that each group is configured similarly to each other, so
The following description will be made regarding only one set of eight piezoelectric elements 14.
8個の圧電素子14は、互いに隣接する4個づつから成
る第一部分16および第二部分18に二分割されて小電
極20を介して弾性体10にそれぞれ固着されており、
これら第一部分16および第二部分18の間は、後述の
合成弾性波の波長のたとえば1/4に相当する距離だけ
離隔させられている。第一部分16および第二部分18
の各圧電素子14は、強誘電性の結晶に直流電界を印加
して分極処理を施すことにより製造されたものであって
、その分極方向が第2図中矢印で示すように厚み方向(
図中上下方向)において交互に反転するように配列され
ている。第一部分16の各圧電素子14の小電極20側
とは反対側の面には共通の大電極22が固着されている
とともに、第二部分18の各圧電素子14にも同様に大
電極24が固着されている。大電極22.24と各小電
極20との間には、高周波電源26から弾性体10を介
して所定周波数の高周波電圧が印加されるようになって
いる。この所定周波数は、圧電素子12および弾性体1
0の固有振動数に略等しい周波数である。第二部分18
側の大電極24と高周波電源26との間には90°移相
器2日が設けられており、第二部分18の圧電素子14
には第一部分16の圧電素子14に対して90°位相が
ずれた高周波電圧が印加されるようになっている。The eight piezoelectric elements 14 are divided into two parts, a first part 16 and a second part 18 of four adjacent to each other, each of which is fixed to the elastic body 10 via a small electrode 20.
The first portion 16 and the second portion 18 are spaced apart by a distance corresponding to, for example, 1/4 of the wavelength of a composite elastic wave, which will be described later. First part 16 and second part 18
Each piezoelectric element 14 is manufactured by applying a DC electric field to a ferroelectric crystal to perform polarization treatment, and the polarization direction is in the thickness direction (as shown by the arrow in FIG. 2).
They are arranged so as to be alternately reversed in the vertical direction (in the figure). A common large electrode 22 is fixed to the surface of each piezoelectric element 14 of the first part 16 opposite to the small electrode 20 side, and a large electrode 24 is similarly fixed to each piezoelectric element 14 of the second part 18. It is fixed. A high frequency voltage of a predetermined frequency is applied between the large electrode 22, 24 and each small electrode 20 from a high frequency power source 26 via the elastic body 10. This predetermined frequency is determined by the piezoelectric element 12 and the elastic body 1.
This frequency is approximately equal to the natural frequency of 0. Second part 18
A 90° phase shifter is provided between the side large electrode 24 and the high frequency power source 26, and the piezoelectric element 14 of the second portion 18
A high frequency voltage having a phase shift of 90° is applied to the piezoelectric element 14 of the first portion 16 .
弾性体10の超音波振動子12側とは反対側の面には、
第1図に示すように、被駆動側部材30が図示しないス
プリング等の押圧装置により押圧されて圧接させられて
おり、この被駆動側部材30は弾性体10の長手方向に
おいて移動可能とされている0弾性体10の長手方向両
端部には、−対の制振体32が接着等により一体的に固
着されている。この制振体32は、たとえば、前記真鍮
よりも大きい損失係数(たとえば0.05程度)を有す
るMn−Cu系の合金から成り、その制振体32の弾性
体lO長手方向における長さ寸法は、好適には、後述の
合成弾性波の波長よりも長く(たとえば合成弾性波の波
長の4倍程度)される。On the surface of the elastic body 10 opposite to the ultrasonic transducer 12 side,
As shown in FIG. 1, a driven side member 30 is pressed by a pressing device such as a spring (not shown) and brought into pressure contact, and this driven side member 30 is movable in the longitudinal direction of the elastic body 10. A pair of damping bodies 32 are integrally fixed to both ends of the elastic body 10 in the longitudinal direction by adhesive or the like. The vibration damping body 32 is made of, for example, a Mn-Cu alloy having a larger loss coefficient (for example, about 0.05) than the brass, and the length of the elastic body 1O of the vibration damping body 32 in the longitudinal direction is , is preferably made longer than the wavelength of a composite elastic wave (for example, about four times the wavelength of a composite elastic wave, which will be described later).
そして、たとえば、一対の制振体32において弾性体1
0が図示しない固定台に固定される。For example, in the pair of damping bodies 32, the elastic body 1
0 is fixed to a fixed base (not shown).
以上のように構成されたリニア型超音波モータにおいて
は、超音波振動子12に前記高周波電圧が印加されると
、各圧電素子14が弾性体10の長手方向において交互
に伸縮することに基づいて、圧電素子14と共に弾性体
10の第1部分16および第2部分18に対応する部分
が第1図および第2図中上下方向にそれぞれたわみ振動
させられて、弾性体10の超音波振動子12側と反対側
の表面に、位置および位相が90°ずれた二つの弾性波
(所謂定在波)を生ずる。この場合において、両弾性波
が合成された合成弾性波(所謂進行波)の−点に着目す
ると、良く知られているように一方向へ回る楕円運動を
行っており、この合成弾性波の楕円運動に従って弾性体
10の表面に圧接された被駆動側部材30が弾性体lO
の長手方向に沿って相対的に駆動されることとなる。な
お、高周波電圧の極性を反転させることにより被駆動側
部材30の駆動方向を変更することができる。そして、
このような駆動時においては、弾性体10の両端部に設
けられた制振体32において前記弾性波が減衰されるこ
とにより、弾性体10の両端部において反射波が発生す
ることが好適に肋止される。これは、制振体32におい
て振動エネルギーが熱エネルギーに変換されるためであ
ると考えられる。In the linear ultrasonic motor configured as described above, when the high frequency voltage is applied to the ultrasonic vibrator 12, each piezoelectric element 14 expands and contracts alternately in the longitudinal direction of the elastic body 10. , the parts corresponding to the first part 16 and the second part 18 of the elastic body 10 together with the piezoelectric element 14 are deflected and vibrated in the vertical direction in FIGS. Two elastic waves (so-called standing waves) whose positions and phases are shifted by 90° are generated on the opposite surface. In this case, if we focus on the − point of the composite elastic wave (so-called traveling wave), which is a combination of both elastic waves, we can see that it is making an elliptical motion rotating in one direction, as is well known, and the ellipse of this composite elastic wave The driven side member 30 that is pressed against the surface of the elastic body 10 as it moves moves against the elastic body lO.
will be relatively driven along the longitudinal direction. Note that the driving direction of the driven member 30 can be changed by reversing the polarity of the high frequency voltage. and,
During such driving, it is preferable that reflected waves are generated at both ends of the elastic body 10 because the elastic waves are attenuated by the dampers 32 provided at both ends of the elastic body 10. be stopped. This is considered to be because vibrational energy is converted into thermal energy in the damper 32.
この結果、本実施例では、常に好適な合成弾性波が形成
されることとなり、その合成弾性波によって被駆動側部
材30が安定して駆動される。しかも、長手状の弾性体
10に長手方向に沿って超音波振動子12を固着し且つ
その弾性体1oの両端部に制振体32を固着することに
よりリニア型超音波モータが構成されているので、その
リニア型超音波モータの構造が比較的筒車となり且つリ
ニア型超音波モータが比較的小型となる一方、弾性体1
0は長手状を成しているため、被駆動側部材30との接
触面積が充分に確保されて、駆動力を比較的大きく確保
することができるのである。As a result, in this embodiment, a suitable composite elastic wave is always formed, and the driven member 30 is stably driven by the composite elastic wave. Moreover, a linear ultrasonic motor is constructed by fixing an ultrasonic vibrator 12 to a longitudinal elastic body 10 along the longitudinal direction and fixing damping bodies 32 to both ends of the elastic body 1o. Therefore, while the linear ultrasonic motor has a relatively hour wheel structure and is relatively small, the elastic body 1
0 has a longitudinal shape, a sufficient contact area with the driven member 30 is ensured, and a relatively large driving force can be ensured.
また、本実施例によれば、超音波振動子12は弾性体1
0の長手方向の略全長に亘って設けられているので、前
記合成弾性波の振幅を弾性体10の長手方向の全長に亘
って均一とし得て、弾性体IO長手方向の全長に亘って
駆動力を一定とし得る利点がある。Further, according to this embodiment, the ultrasonic transducer 12 is
0, the amplitude of the composite elastic wave can be made uniform over the entire length of the elastic body 10 in the longitudinal direction, and the elastic body IO can be driven over the entire length of the elastic body 10 in the longitudinal direction. It has the advantage of keeping the force constant.
なお、前述の実施例では、超音波振動子12は弾性体1
0の長手方向の略全長に亘って設けられζいるが、弾性
体10の長手方向の一部にのみ設けられていてもよい。In addition, in the above-mentioned embodiment, the ultrasonic transducer 12 is the elastic body 1
Although the elastic body 10 is provided over substantially the entire length in the longitudinal direction of the elastic body 10, it may be provided only in a part of the longitudinal direction of the elastic body 10.
また、前述の実施例では、制振体32はMn−Cu系合
金にて構成されているが、必ずしもその必要はなく、た
とえば、M g −0,6%Zr合金。Further, in the above-mentioned embodiment, the damper 32 is made of a Mn-Cu alloy, but it is not necessarily made of a Mg-0.6% Zr alloy, for example.
12%クロム銅、黒鉛鋳鉄などで割振体を構成すること
もできる。The splitting body can also be made of 12% chromium copper, graphite cast iron, or the like.
また、前述の実施例では、制振体32は弾性体lOの長
手方向両端部゛に設けられているが、駆動側部材の長手
方向一端部にだけ制振体が設けられている場合において
も本発明の効果を得ることが可能である。Furthermore, in the above-mentioned embodiment, the damping bodies 32 are provided at both longitudinal ends of the elastic body 10, but even if the damping bodies are provided only at one longitudinal end of the drive side member. It is possible to obtain the effects of the present invention.
また、前述の実施例では、制振体32は弾性体10の長
手方向と対向する両端面に設けられているが、必ずしも
そのように構成する必要はなく、たとえば第3図に示す
ように、弾性体10の長手方向両端部の長手方向と平行
な側面に制振体34をそれぞれ設けてもよい。この場合
においても、本発明の一応の効果を得ることが可能であ
る。Further, in the above-described embodiment, the vibration damping bodies 32 are provided on both end faces facing the longitudinal direction of the elastic body 10, but it is not necessary to configure them in this way. For example, as shown in FIG. The damping bodies 34 may be provided on the side surfaces parallel to the longitudinal direction of both ends of the elastic body 10 in the longitudinal direction. Even in this case, it is possible to obtain some of the effects of the present invention.
その他、本発明はその趣旨を逸脱しない範囲において種
々変更が加えられ得るものである。In addition, various changes may be made to the present invention without departing from the spirit thereof.
第1図は本発明のリニア型超音波モータの概要を示す斜
視図である。第2図は第1図の要部を拡大して示す正面
図である。第3図は本発明の他の例を示す図であって、
第1図に相当する図である。
10:弾性体(駆動側部材)
12:超音波振動子
30:被駆動側部材
32.34:制振体
第1図FIG. 1 is a perspective view showing an outline of the linear ultrasonic motor of the present invention. FIG. 2 is a front view showing an enlarged main part of FIG. 1. FIG. 3 is a diagram showing another example of the present invention,
2 is a diagram corresponding to FIG. 1. FIG. 10: Elastic body (driving side member) 12: Ultrasonic transducer 30: Driven side member 32.34: Vibration damping body Fig. 1
Claims (1)
られる被駆動側部材とを備え、該駆動側部材に発生させ
られた弾性波により該被駆動側部材が該駆動側部材の長
手方向に沿って相対的に駆動される形式のリニア型超音
波モータであって、前記駆動側部材に固着されて該駆動
側部材に前記弾性波を発生させる超音波振動子と、 前記駆動側部材の損失係数よりも大きい損失係数を有し
、該駆動側部材の長手方向の少なくとも一端部に一体的
に設けられた制振体と を含むことを特徴とするリニア型超音波モータ。[Scope of Claims] The driving side member has a longitudinal shape and the driven side member is brought into pressure contact with the driving side member, and the driven side member is moved by the elastic waves generated in the driving side member. A linear ultrasonic motor of a type that is relatively driven along the longitudinal direction of a driving side member, and an ultrasonic vibrator that is fixed to the driving side member and generates the elastic wave in the driving side member. , a linear type ultrasonic wave characterized by including a vibration damper having a loss coefficient larger than the loss coefficient of the driving side member and integrally provided at at least one end in the longitudinal direction of the driving side member. motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63169461A JPH0223070A (en) | 1988-07-07 | 1988-07-07 | Linear type ultrasonic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63169461A JPH0223070A (en) | 1988-07-07 | 1988-07-07 | Linear type ultrasonic motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0223070A true JPH0223070A (en) | 1990-01-25 |
Family
ID=15887007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63169461A Pending JPH0223070A (en) | 1988-07-07 | 1988-07-07 | Linear type ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0223070A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03289372A (en) * | 1990-04-04 | 1991-12-19 | Kenwood Corp | Linear ultrasonic motor |
JPH04183U (en) * | 1990-04-09 | 1992-01-06 | ||
JPH04182U (en) * | 1990-04-09 | 1992-01-06 | ||
JPH04184U (en) * | 1990-04-16 | 1992-01-06 | ||
EP0595426A1 (en) * | 1992-10-28 | 1994-05-04 | Nikon Corporation | Ultrasonic actuator |
EP0601671A1 (en) * | 1992-12-11 | 1994-06-15 | Nikon Corporation | Ultrasonic actuator |
-
1988
- 1988-07-07 JP JP63169461A patent/JPH0223070A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03289372A (en) * | 1990-04-04 | 1991-12-19 | Kenwood Corp | Linear ultrasonic motor |
JPH04183U (en) * | 1990-04-09 | 1992-01-06 | ||
JPH04182U (en) * | 1990-04-09 | 1992-01-06 | ||
JPH04184U (en) * | 1990-04-16 | 1992-01-06 | ||
EP0595426A1 (en) * | 1992-10-28 | 1994-05-04 | Nikon Corporation | Ultrasonic actuator |
US5404065A (en) * | 1992-10-28 | 1995-04-04 | Nikon Corporation | Ultrasonic actuator |
EP0601671A1 (en) * | 1992-12-11 | 1994-06-15 | Nikon Corporation | Ultrasonic actuator |
US5397955A (en) * | 1992-12-11 | 1995-03-14 | Nikon Corporation | Ultrasonic actuator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61224881A (en) | Vibration wave motor | |
JPH0117354B2 (en) | ||
JPS6013481A (en) | Vibration wave motor | |
KR930009211A (en) | Ultrasonic motor | |
JPH0223070A (en) | Linear type ultrasonic motor | |
JP5029948B2 (en) | Ultrasonic motor | |
JPS62259485A (en) | Piezoelectric driving apparatus | |
JPH01264582A (en) | Ultrasonic linear motor | |
JPH0532992B2 (en) | ||
JP3118252B2 (en) | Ultrasonic vibrating device and method, and driving device and method using the same | |
JPH01144371A (en) | Ultrasonic motor device | |
JPH06141564A (en) | Wave circulation actuator | |
JPH08149862A (en) | Ultrasonic oscillator | |
JPH08242592A (en) | Ultrasonic actuator | |
JPS6091874A (en) | Supersonic motor | |
JP2971971B2 (en) | Ultrasonic actuator | |
JP3200315B2 (en) | Vibration actuator | |
JPH0697863B2 (en) | Piezoelectric drive | |
JPH05316756A (en) | Ultrasonic oscillator and driver employing thereof | |
JPS61227680A (en) | Oscillatory wave motor | |
JPH0552137B2 (en) | ||
JPH0480630B2 (en) | ||
JPH02188168A (en) | Ultrasonic linear motor | |
JP2625653B2 (en) | Vibration wave motor | |
JPH08149863A (en) | Ultrasonic oscillator |