JPH07337046A - Ultrasonic motor drive - Google Patents

Ultrasonic motor drive

Info

Publication number
JPH07337046A
JPH07337046A JP6147117A JP14711794A JPH07337046A JP H07337046 A JPH07337046 A JP H07337046A JP 6147117 A JP6147117 A JP 6147117A JP 14711794 A JP14711794 A JP 14711794A JP H07337046 A JPH07337046 A JP H07337046A
Authority
JP
Japan
Prior art keywords
vibration
driver
elastic body
ultrasonic
energy conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6147117A
Other languages
Japanese (ja)
Inventor
Tomoki Funakubo
朋樹 舟窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP6147117A priority Critical patent/JPH07337046A/en
Publication of JPH07337046A publication Critical patent/JPH07337046A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To realize a stabilized operation while increasing the thrust and speed by controlling one of the frequency of phase of an AC voltage being applied to a plurality of electromagnetic energy conversion elements so that a vector in the direction approaching a driven body makes an acute angle with a speed vector in the drive direction of the driven body. CONSTITUTION:Longitudinal and bending oscillations of a resilient body 11 are detected independently. Based on he detected information, one of the frequency or phase of an AC voltage being applied to a plurality of electromechanical energy conversion elements 12 is controlled so that the a vector in the longitudinal direction of an ultrasonic elliptical oscillation excited in a driver 15 and directed in the direction approaching a driven body makes an acute angle with a speed vector in the tangential direction of the ultrasonic elliptical oscillation and directed in the drive direction of the driven body. This structure stabilizes the operation while increasing the thrust and speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波モータ駆動装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor driving device.

【0002】[0002]

【従来の技術】一般に超音波モータにおいては、被駆動
体に接触する駆動子を楕円振動させて駆動力を発生させ
ている。このような楕円振動を発生させるには、原理的
には互いに直交する方向の2つの振動を合成すればよ
く、より詳しくはX軸方向とY軸方向に同一周波数でか
つ位相の異なる振動を加えればよい。したがって、この
条件を満たす限り超音波モータ自体の構造としては様々
な変形が可能であり、例えば積層型圧電素子を直交方向
に2個組み合わせた構造や、上下振動用の直方体状の積
層型圧電素子の側面に左右振動用の屈曲用の圧電素子を
貼着した構造のものなどが知られている。
2. Description of the Related Art Generally, in an ultrasonic motor, a driving element in contact with a driven body is elliptically vibrated to generate a driving force. In order to generate such elliptical vibration, it is theoretically possible to combine two vibrations in directions orthogonal to each other, and more specifically, vibrations having the same frequency but different phases are applied in the X-axis direction and the Y-axis direction. Good. Therefore, as long as this condition is satisfied, various modifications can be made to the structure of the ultrasonic motor itself, for example, a structure in which two laminated piezoelectric elements are combined in the orthogonal direction, or a rectangular parallelepiped laminated piezoelectric element for vertical vibration. There is known a structure in which a bending piezoelectric element for lateral vibration is attached to the side surface of the.

【0003】そこで本出願人も特願平4−321096
号において、直方体形状の弾性体の上面の3箇所に保持
用弾性体を固定し、各保持用弾性体の間に2つの積層型
圧電素子を挟持固定した構造の超音波振動子を提案して
いる。この超音波振動子は、弾性体の縦振動と屈曲振動
の共振周波数がほぼ一致する寸法に設計され、2つの積
層型圧電素子に共振周波数でかつ位相の異なる交番電圧
を印加する。すると、弾性体の底面に固定した駆動子
に、縦振動による左右の振動と屈曲振動による上下の振
動とが合成された楕円振動が発生する。この超音波振動
子によれば圧電素子の圧電縦効果を利用するので、電気
−機械変換効率が高く、低電圧で駆動できる効果が得ら
れる。
Therefore, the present applicant also filed Japanese Patent Application No. 4-321096.
Proposed an ultrasonic transducer having a structure in which a holding elastic body is fixed at three locations on the upper surface of a rectangular parallelepiped elastic body, and two laminated piezoelectric elements are sandwiched and fixed between the holding elastic bodies. There is. This ultrasonic oscillator is designed in such a dimension that the resonance frequencies of the longitudinal vibration and the bending vibration of the elastic body are substantially equal to each other, and applies alternating voltages having different resonance frequencies and different phases to the two laminated piezoelectric elements. Then, elliptical vibration is generated in the driver fixed to the bottom surface of the elastic body, which is a combination of the left and right vibrations due to the longitudinal vibration and the upper and lower vibrations due to the bending vibration. According to this ultrasonic vibrator, since the piezoelectric vertical effect of the piezoelectric element is utilized, the electromechanical conversion efficiency is high and the effect of driving at a low voltage can be obtained.

【0004】[0004]

【発明が解決しようとする課題】ところが上述の先願の
装置では、製品の個体差によるばらつきが大きく、必ず
しも動作が安定しないという問題点があった。すなわ
ち、詳しくは後述の実験結果に見られるように、縦振動
の共振周波数と屈曲振動の共振周波数を厳密に一致させ
た場合でも動作が不安定であったり、縦振動の共振周波
数と屈曲振動の共振周波数がほんの僅かずれている場合
でも良好に動作するものや全く動作しないものがあり、
その原因が不明であった。また、同一の製品についても
温度変化により共振周波数が変化すると速度や推力が低
下してしまうという問題点もあった。
However, the device of the above-mentioned prior application has a problem that the operation is not always stable due to large variations due to individual differences of products. That is, as will be seen in detail from the experimental results described later, even when the resonance frequency of the longitudinal vibration and the resonance frequency of the flexural vibration are exactly matched, the operation is unstable, or the resonance frequency of the longitudinal vibration and the flexural vibration There are some that work well and some that do not work at all even when the resonance frequency is slightly deviated.
The cause was unknown. In addition, the same product also has a problem that the speed and the thrust decrease when the resonance frequency changes due to temperature change.

【0005】本発明は上記問題点に鑑みてなされたもの
で、製品のばらつきや使用条件の変化に関わらず、常に
安定して超音波モータを駆動することのできる超音波モ
ータ駆動装置を提供することを目的とする。
The present invention has been made in view of the above problems, and provides an ultrasonic motor driving device that can always stably drive an ultrasonic motor regardless of variations in products and changes in use conditions. The purpose is to

【0006】[0006]

【課題を解決するための手段】発明者らは、駆動子の超
音波楕円振動は位相差π/4程度(または5π/4程
度)の楕円とするのが最適であって、大きな推力や速度
が得られ、安定して動作することを見いだした。
The inventors of the present invention have found that it is optimal that the ultrasonic elliptical vibration of the driver element is an ellipse having a phase difference of about π / 4 (or about 5π / 4), and a large thrust force and speed. Was obtained and found to work stably.

【0007】そこで、上記目的を達成するために請求項
1に係る本発明の超音波モータ駆動装置は、弾性体と、
この弾性体に固定された駆動子と、同弾性体に取付けら
れた複数の電気−機械エネルギー変換素子とから構成さ
れ、上記弾性体に縦振動と屈曲振動との合成振動を励起
して、上記駆動子を超音波楕円振動させる超音波振動子
と、上記駆動子により駆動される被駆動体と、上記電気
−機械エネルギー変換素子に交番電圧を印加する電源と
を有する超音波モータ駆動装置において、上記縦振動の
みを検出する第1の振動検出手段と、上記屈曲振動のみ
を検出する第2の振動検出手段と、上記第1および第2
の振動検出手段の情報に基づいて、上記駆動子に励起す
る超音波楕円振動の長軸方向のベクトルであって被駆動
体に接近する方向のベクトルと、同超音波楕円振動の接
線方向の速度ベクトルであって被駆動体が駆動される方
向の速度ベクトルとによってなす角が鋭角となるよう
に、上記複数の電気−機械エネルギー変換素子に印加す
る交番電圧の周波数と位相の少なくとも一方を制御する
制御手段と、を備えたことを特徴としている。
Therefore, in order to achieve the above object, the ultrasonic motor driving device of the present invention according to claim 1 is provided with an elastic body,
It is composed of a driver fixed to the elastic body and a plurality of electro-mechanical energy conversion elements attached to the elastic body, and the synthetic vibration of longitudinal vibration and bending vibration is excited in the elastic body, In an ultrasonic motor driving device having an ultrasonic transducer that makes an elliptical vibration of a driver ultrasonic wave, a driven body driven by the driver, and a power supply that applies an alternating voltage to the electro-mechanical energy conversion element, First vibration detecting means for detecting only the vertical vibration, second vibration detecting means for detecting only the bending vibration, and the first and second
Based on the information of the vibration detection means, the vector in the long axis direction of the ultrasonic elliptical vibration excited in the driver and the vector in the direction approaching the driven body, and the tangential velocity of the ultrasonic elliptical vibration. At least one of the frequency and the phase of the alternating voltage applied to the plurality of electro-mechanical energy conversion elements is controlled so that the angle formed by the vector and the velocity vector in the direction in which the driven body is driven is an acute angle. And a control means.

【0008】また請求項2に係る本発明の超音波モータ
駆動装置は、弾性体と、この弾性体に固定された駆動子
と、同弾性体に取付けられた複数の電気−機械エネルギ
ー変換素子とから構成され、上記弾性体に縦振動と屈曲
振動との合成振動を励起される被駆動体と、上記電気−
機械エネルギー変換素子に交番電圧を印加する電源とを
有する超音波モータ駆動装置において、上記縦振動を上
記被駆動体の移動方向を正の向きとして検出する第1の
振動検出手段と、上記屈曲振動を上記駆動子から被駆動
体への方向を正の向きとして検出する第2の振動検出手
段と、上記第1および第2の振動検出手段の情報に基づ
いて、上記縦振動に対する屈曲振動の位相差θが、 0 < θ < +π/2 または、 +π < θ < +3π/2 となるように、上記縦振動の共振周波数以下で上記屈曲
振動の共振周波数以上の周波数範囲で、前記複数の電気
−機械エネルギー変換素子に印加する交番電圧の周波数
と位相の少なくとも一方を制御する制御手段と、を備え
たことを特徴としている。
An ultrasonic motor drive device according to a second aspect of the present invention includes an elastic body, a driver fixed to the elastic body, and a plurality of electric-mechanical energy conversion elements attached to the elastic body. A driven body in which a composite vibration of longitudinal vibration and bending vibration is excited in the elastic body,
In an ultrasonic motor driving device having a power source for applying an alternating voltage to a mechanical energy conversion element, first vibration detecting means for detecting the longitudinal vibration with the moving direction of the driven body as a positive direction, and the bending vibration. Based on the information of the second vibration detecting means for detecting the direction from the driver to the driven body as a positive direction and the information of the first and second vibration detecting means. The phase difference θ is 0 <θ <+ π / 2 or + π <θ <+ 3π / 2 so that the plurality of electric-electric potentials are in a frequency range lower than the resonance frequency of the longitudinal vibration and higher than the resonance frequency of the bending vibration. A control means for controlling at least one of the frequency and the phase of the alternating voltage applied to the mechanical energy conversion element is provided.

【0009】また請求項3に係る本発明の超音波モータ
駆動装置は、弾性体と、この弾性体に固定された駆動子
と、同弾性体に取付けられた複数の電気−機械エネルギ
ー変換素子とから構成され、上記弾性体に縦振動と屈曲
振動との合成振動を励起して、上記駆動子を超音波楕円
振動させる超音波振動子と、上記駆動子により駆動され
る被駆動体と、上記電気−機械エネルギー変換素子に交
番電圧を印加する電源とを有する超音波モータ駆動装置
において、上記縦振動を被駆動体の移動方向を正の向き
として検出する第1の振動検出手段と、上記屈曲振動を
駆動子から被駆動体への方向を正の向きとして検出する
第2の振動検出手段と、上記縦振動の共振周波数が上記
屈曲振動の共振周波数よりも高く設定され、該縦振動の
共振周波数以下で該屈曲振動の共振周波数以上の周波数
範囲において、該縦振動の交番電圧に対する振動の位相
差δa と、該屈曲振動の交番電圧に対する振動の位相差
δb が、 0 < (δa −δb ) < +π/2 となる形状に形成された超音波振動子と、上記第1およ
び第2の振動検出手段の情報に基づいて、上記縦振動に
対する上記屈曲振動の位相差θが、 θ = π/4 または、 θ = 5π/4 となるように、上記縦振動の共振周波数以下で上記屈曲
振動の共振周波数以上の周波数範囲で、前記複数の電気
−機械エネルギー変換素子に印加する交番電圧の周波数
と位相の少なくとも一方を制御する制御手段と、を具備
しており、上記複数の電気−機械エネルギー変換素子
に、位相が±π/2異なる交番電圧を印加することを特
徴としている。
An ultrasonic motor drive device according to a third aspect of the present invention includes an elastic body, a driver fixed to the elastic body, and a plurality of electric-mechanical energy conversion elements attached to the elastic body. An ultrasonic transducer that excites a synthetic vibration of longitudinal vibration and bending vibration in the elastic body to cause ultrasonic elliptical vibration of the driver, a driven body driven by the driver, and In an ultrasonic motor drive device having a power source for applying an alternating voltage to an electro-mechanical energy conversion element, a first vibration detecting means for detecting the longitudinal vibration with the moving direction of a driven body as a positive direction, and the bending. Second vibration detecting means for detecting the vibration as a positive direction from the driver to the driven body, and a resonance frequency of the longitudinal vibration is set higher than a resonance frequency of the bending vibration, and resonance of the longitudinal vibration is set. Below frequency In the frequency range equal to or higher than the resonance frequency of the bending vibration, the phase difference δa of the vibration with respect to the alternating voltage of the longitudinal vibration and the phase difference δb of the vibration with respect to the alternating voltage of the bending vibration are 0 <(δa−δb) <+ π / 2. The phase difference θ of the bending vibration with respect to the longitudinal vibration is θ = π / 4 or θ based on the information of the ultrasonic transducer formed in the shape and the information of the first and second vibration detecting means. = 5π / 4, at least one of the frequency and the phase of the alternating voltage applied to the plurality of electro-mechanical energy conversion elements in the frequency range below the resonance frequency of the longitudinal vibration and above the resonance frequency of the bending vibration. And a control means for controlling the control means for applying the alternating voltage having a phase difference of ± π / 2 to the plurality of electro-mechanical energy conversion elements.

【0010】[0010]

【作用】上記構成からなる本発明の超音波モータ駆動装
置では、印加する交番電圧の周波数または位相を制御す
ることによって、駆動子の超音波楕円振動が位相差π/
4程度(または5π/4程度)の楕円となるように駆動
する。このときの楕円振動は、図5(b)に示すよう
に、位相差π/4では右上がりの楕円(駆動方向が右向
き:正のとき)を描き、位相差5π/4では左上がりの
楕円(駆動方向が左向き:負のとき)を描く。いま、前
者の場合について説明すると、駆動子は上昇しながら右
方向に移動し、右最上点をすぎると、下降しながら左方
向に復帰する軌跡をとっていることがわかる。つまり、
駆動子が被駆動体を突き上げるように上昇するときには
被駆動体に対する接触圧が高くなるが、この高い接触圧
の状態で右方向に駆動するので、強力な駆動力が得られ
るのである。そして、駆動子が左方向に復帰するときに
は被駆動体から離脱するように下降するので力が及ば
ず、以上の繰り返しにより被駆動体は右方向に駆動され
ることになる。
In the ultrasonic motor driving device of the present invention having the above-mentioned structure, the ultrasonic elliptical vibration of the driver is controlled by the phase difference π / by controlling the frequency or phase of the alternating voltage applied.
The driving is performed so as to form an ellipse of about 4 (or about 5π / 4). As shown in FIG. 5B, the elliptical vibration at this time draws an ellipse that rises to the right when the phase difference is π / 4 (when the driving direction is rightward: positive), and an ellipse that rises to the left when the phase difference is 5π / 4. Draw (when the driving direction is left: negative). Now, in the former case, it is understood that the driver takes a locus of moving to the right while rising, and descending and returning to the left after passing the right uppermost point. That is,
When the driver rises so as to push up the driven body, the contact pressure with respect to the driven body becomes high, but since the driving is performed rightward in the state of this high contact pressure, a strong driving force can be obtained. Then, when the driver element returns to the left, it descends so as to be separated from the driven body, so no force is exerted, and the driven body is driven to the right by repeating the above.

【0011】請求項1では、上記右上がりの楕円振動を
より一般的に表現した。直交座標系においてXY方向の
振動の位相差がπ/4で右上がりの楕円となることはい
わゆるリサージュ図形として知られているが、超音波振
動子における振動成分は互いに直交するとは限らない。
そこで、より一般的な表現としたのが請求項1である。
In claim 1, the above-mentioned upward elliptical vibration is expressed more generally. It is known as a so-called Lissajous figure that the phase difference of the vibrations in the XY directions in the orthogonal coordinate system is π / 4, and it is known as a so-called Lissajous figure, but the vibration components in the ultrasonic transducer are not always orthogonal to each other.
Therefore, the more general expression is claim 1.

【0012】請求項2では、直交座標系を想定し、位相
差がπ/4の前後すなわち0〜π/2の範囲にあること
とした。
In claim 2, an orthogonal coordinate system is assumed, and the phase difference is around π / 4, that is, in the range of 0 to π / 2.

【0013】請求項3では、より限定的に位相差をπ/
4に特定し、必要な他の条件も付加した。
In the third aspect, the phase difference is more limited to π /
4 and added other required conditions.

【0014】以下、添付図面を参照して本発明に係る超
音波モータ駆動装置の実施例を説明する。まず、本発明
の実施例1を説明する。図1は超音波振動子を示す斜視
図である。
An embodiment of an ultrasonic motor driving device according to the present invention will be described below with reference to the accompanying drawings. First, a first embodiment of the present invention will be described. FIG. 1 is a perspective view showing an ultrasonic transducer.

【0015】基本弾性体11は、黄銅材を凸字型に形成
したものであって、その寸法は幅30mm,奥行4mmであ
って(凸部を除く)、高さHが6〜9mmの10種類を試
作した。凸部の寸法は幅4mm,高さ2.5mm,奥行4mm
である。基本弾性体11の幅方向の中心部で底面から6
mmの位置にはφ2mmのステンレスピン16が圧入されて
いる。
The basic elastic body 11 is formed by forming a brass material into a convex shape, and has a width of 30 mm and a depth of 4 mm (excluding the convex portion) and a height H of 6 to 9 mm. Prototyped types. The dimensions of the protrusion are 4mm in width, 2.5mm in height, and 4mm in depth.
Is. 6 from the bottom at the widthwise center of the basic elastic body 11.
A φ2 mm stainless pin 16 is pressed into the mm position.

【0016】積層型圧電素子12は、電極処理された圧
電素子を数十〜数百枚積層したものであって、本実施例
ではトーキン(株)のNLA−2×3×9型(寸法2mm
×3.1mm×9mm)を使用した。なお、積層型圧電素子
12の両端面以外の側面は厚さ0.5mmのエポキシ系樹
脂によって被覆されている。ここで図の左側の積層型圧
電素子12への電極をA,GNDとしA相と呼び、同様
に右側の積層型圧電素子12への電極をB,GNDとし
B相と呼ぶことにする。
The laminated piezoelectric element 12 is formed by laminating several tens to several hundreds of electrode-treated piezoelectric elements, and in this embodiment, Tokin Co., Ltd. NLA-2 × 3 × 9 type (dimension 2 mm).
× 3.1 mm × 9 mm) was used. The side surfaces of the laminated piezoelectric element 12 other than both end surfaces are covered with an epoxy resin having a thickness of 0.5 mm. Here, the electrodes to the laminated piezoelectric element 12 on the left side of the figure are referred to as A and GND and are referred to as A phase, and the electrodes to the laminated piezoelectric element 12 on the right side are referred to as B and GND and are referred to as B phase.

【0017】2個の積層型圧電素子12,12は、基本
弾性体11の凸部を挟み込むように配置され、さらにそ
の両側から基本弾性体11にネジ14止めされた保持用
弾性部材13,13(幅4mm,高さ2.5mm,奥行4m
m)によって挟み込まれ、長手方向に圧縮力を受けた状
態で固定されている。ここで積層型圧電素子12の両端
部と、基本弾性体11の凸部および保持用弾性体13と
はエポキシ系の接着剤で固定される。積層型圧電素子1
2と基本弾性体11との接触面もエポキシ系接着剤で接
着される。
The two laminated piezoelectric elements 12 and 12 are arranged so as to sandwich the convex portion of the basic elastic body 11, and the elastic holding members 13 and 13 fixed to the basic elastic body 11 with screws 14 from both sides thereof. (Width 4 mm, height 2.5 mm, depth 4 m
m) is sandwiched between them, and they are fixed while being subjected to a compressive force in the longitudinal direction. Here, both end portions of the laminated piezoelectric element 12, the convex portion of the basic elastic body 11, and the holding elastic body 13 are fixed with an epoxy adhesive. Multilayer piezoelectric element 1
The contact surface between 2 and the basic elastic body 11 is also adhered with an epoxy adhesive.

【0018】駆動子15は、樹脂にアルミナセラミック
スの砥粒を分散させた砥石材からなる幅3mm,厚み1m
m,奥行4mmの矩形状のものであって、基本弾性体11
の底面の両端から9mmの位置に接着されている。この位
置は、屈曲振動の腹に相当し、共振屈曲振動の振幅が極
大値を示す位置である。
The driver 15 is made of a grindstone material in which abrasive grains of alumina ceramics are dispersed in resin, and has a width of 3 mm and a thickness of 1 m.
The basic elastic body 11 has a rectangular shape with m and a depth of 4 mm.
It is glued at a position 9 mm from both ends of the bottom of the. This position corresponds to the antinode of the flexural vibration, and the amplitude of the resonant flexural vibration has a maximum value.

【0019】次に、超音波振動子の動作について説明す
る。上記寸法の超音波振動子は、有限要素法によるコン
ピュータ解析によれば、図2(a)に示すような1次の
共振縦振動、及び同図(b)に示すような2次の共振屈
曲振動がほぼ同一周波数で励起できる。その周波数は5
3〜56kHzである。そこで、この共振周波数で振幅
10Vp-p の交番電圧をA相及びB相に印加した。まず
A相とB相の位相を同位相にすると、図2(a)に示す
ような1次の共振縦振動が励起された。つぎに、A相と
B相の位相を逆位相にすると、図2(b)に示すような
2次の共振屈曲振動が励起された。さらに、A相とB相
の位相を90度ずらすと、駆動子15付近に超音波楕円
振動を励起された。
Next, the operation of the ultrasonic transducer will be described. According to the computer analysis by the finite element method, the ultrasonic transducer having the above-described dimensions shows a first-order resonance longitudinal vibration as shown in FIG. 2A and a second-order resonance bending as shown in FIG. Vibrations can be excited at almost the same frequency. Its frequency is 5
3 to 56 kHz. Therefore, an alternating voltage having an amplitude of 10 Vp-p at this resonance frequency was applied to the A phase and the B phase. First, when the phases of the A phase and the B phase were made to be the same phase, the primary resonant longitudinal vibration as shown in FIG. 2A was excited. Next, when the phases of the A phase and the B phase were made opposite to each other, the secondary resonant bending vibration as shown in FIG. 2B was excited. Further, when the phases of the A phase and the B phase were shifted by 90 degrees, ultrasonic elliptical vibration was excited near the driver 15.

【0020】つぎに、上述の超音波振動子を使用した超
音波リニアモータについて説明する。図3は超音波リニ
アモータの正面図である。図示の通り、この超音波リニ
アモータでは、超音波振動子10によって、被駆動体た
る移動部32,摺動部材保持部33,および摺動部材3
4が、クロスローラガイドの固定部30上を左右に駆動
される。
Next, an ultrasonic linear motor using the above ultrasonic vibrator will be described. FIG. 3 is a front view of the ultrasonic linear motor. As shown in the figure, in this ultrasonic linear motor, the ultrasonic vibrator 10 is used to move the moving member 32, the sliding member holding member 33, and the sliding member 3.
4 is driven left and right on the fixed portion 30 of the cross roller guide.

【0021】超音波振動子10は、ピン16によって2
枚の保持板21の間に枢着されており、保持板21は取
付部材22にネジ23止めされ、取付部材22はリニア
ブッシュ24により軸25に沿って摺動自在に案内され
ている。また軸25は基台27に固定部材26を介して
固定されている。したがって、超音波振動子10はピン
16まわりの回転の自由度と、ピン16の上下移動によ
る自由度とを有している。そして、前記固定部材26と
取付部材22との間には調整ネジ28により押圧力が可
変できるバネ29が介装されている。
The ultrasonic transducer 10 has two pins 16
The holding plate 21 is pivotally mounted between the holding plates 21, and the holding plate 21 is screwed to a mounting member 22 with a screw 23, and the mounting member 22 is slidably guided along a shaft 25 by a linear bush 24. The shaft 25 is fixed to a base 27 via a fixing member 26. Therefore, the ultrasonic transducer 10 has a degree of freedom of rotation around the pin 16 and a degree of freedom by vertical movement of the pin 16. A spring 29, whose pressing force can be varied by an adjusting screw 28, is interposed between the fixing member 26 and the mounting member 22.

【0022】クロスローラガイドの固定部30は基台2
7にネジ31止めされており、一方、クロスローラガイ
ドの移動部32には摺動部材保持部33を介してジルコ
ニアセラミックスからなる摺動部材34が接着されてお
り、超音波振動子10の駆動子15,15と接触してい
る。
The fixed portion 30 of the cross roller guide is the base 2
7, a screw 31 is fixed to the cross roller guide 7, and a sliding member 34 made of zirconia ceramics is bonded to a moving portion 32 of the cross roller guide via a sliding member holding portion 33. It is in contact with the child 15, 15.

【0023】つぎに、この超音波リニアモータの動作を
説明する。前述のように超音波振動子10のA相とB相
に53〜56kHzの交番電圧を印加し、位相差を90
度(または−90度)とする。すると超音波振動子10
の駆動子15に超音波楕円振動が励起されて、移動部3
2が左右に移動する。そこで、前述のように高さHの異
なる10種類の超音波振動子を試作してモータ特性を評
価した。その結果を次に示す。
Next, the operation of this ultrasonic linear motor will be described. As described above, an alternating voltage of 53 to 56 kHz is applied to the A phase and the B phase of the ultrasonic transducer 10 to change the phase difference to 90.
Degrees (or -90 degrees). Then, the ultrasonic transducer 10
The ultrasonic elliptical vibration is excited in the driver 15 of the
2 moves left and right. Therefore, as described above, ten types of ultrasonic transducers having different heights H were prototyped and the motor characteristics were evaluated. The results are shown below.

【0024】[0024]

【表1】 [Table 1]

【0025】表1において、モータ動作○印は良好に動
作したことを示し、△印は動作するものの非常に不安定
なもの、×印は全く動作しないか動作しても殆ど推力と
速度の得られなかったことを示している。また、駆動周
波数は表中の屈曲振動共振周波数以上で、縦振動共振周
波数以下であった(表の単位はkHz)。この結果よ
り、屈曲振動共振周波数が縦振動共振周波数以下でない
と安定に動作しないことが明らかになった。
In Table 1, the motor operation ○ indicates good operation, Δ indicates operation but very unstable, × indicates no operation or almost no thrust and speed obtained even when operating. It means that it was not possible. The driving frequency was higher than the bending vibration resonance frequency and lower than the longitudinal vibration resonance frequency (the unit of the table is kHz). From this result, it became clear that stable operation cannot be achieved unless the bending vibration resonance frequency is lower than the longitudinal vibration resonance frequency.

【0026】以上の実験結果に対して、その原因を探る
ため次のような実験を行った。図4に示すように、超音
波振動子100の側面に振動検出素子として厚み方向に
分極された圧電素子110を接着した。この圧電素子は
幅10mm,高さ3mm,厚み0.3mmである。接着位置は
駆動子の直上である。振動子の表側の面には分極の向き
が同一を向くように接着して直列に結線し、F1端子と
した。振動子の裏面には分極向きを相互に逆にして、F
2端子とした。図2の振動モードからわかるように、F
1端子は弾性体の縦振動のみを検出し、F2端子は屈曲
振動のみを検出する。
For the above experimental results, the following experiment was conducted in order to find the cause. As shown in FIG. 4, a piezoelectric element 110 polarized in the thickness direction was bonded to the side surface of the ultrasonic transducer 100 as a vibration detecting element. This piezoelectric element has a width of 10 mm, a height of 3 mm and a thickness of 0.3 mm. The bonding position is directly above the driver. The front surface of the vibrator was bonded so that the polarization directions thereof were the same and connected in series to form a F1 terminal. On the back side of the oscillator, the polarization directions are reversed and F
Two terminals were used. As can be seen from the vibration mode in FIG.
One terminal detects only the longitudinal vibration of the elastic body, and the F2 terminal detects only the bending vibration.

【0027】さて、試作番号0〜9までの超音波振動子
について、F1,F2端子により電圧印加時の縦振動,
屈曲振動を同時に検出した。その結果を図5に示す。同
図において、上方に位置する被駆動体が左右方向に駆動
される。また、正負とあるのは、正方向駆動時と負方向
駆動時を表している。
Now, with respect to the ultrasonic transducers of prototype Nos. 0 to 9, longitudinal vibration at the time of voltage application by the F1 and F2 terminals,
Flexural vibration was detected at the same time. The result is shown in FIG. In the figure, the driven body located above is driven in the left-right direction. In addition, positive and negative represent the time of driving in the positive direction and the time of driving in the negative direction.

【0028】図5(a)は、試作番号0の振動子の振動
形状である。ほとんど直線往復振動であるのがわかる。
この場合には動作しないか、もしくは動作するものの殆
ど速度,推力がでない。
FIG. 5 (a) shows the vibration shape of the prototype No. 0 vibrator. It can be seen that it is almost a linear reciprocating vibration.
In this case, it does not work, or it works, but there is almost no speed or thrust.

【0029】図5(b)は、試作番号1〜5の振動子の
振動形状である。右上がりの楕円になっている。この場
合には良好に安定して動作する。特に縦振動に対して屈
曲振動の位相差が+π/4(正方向駆動のとき)、また
は5π/4(負方向駆動のとき)となったときに最大の
推力,速度が得られた。
FIG. 5B shows the vibration shapes of the vibrators of prototype numbers 1 to 5. It is an ellipse that rises to the right. In this case, it operates satisfactorily and stably. In particular, the maximum thrust and speed were obtained when the phase difference of bending vibration with respect to longitudinal vibration was + π / 4 (when driving in the positive direction) or 5π / 4 (when driving in the negative direction).

【0030】図5(c)は、試作番号6の振動子の振動
形状である。図には真円が示されているが、実際には縦
振動と屈曲振動の振幅差によって縦長または横長の楕円
になる。このときは動作が不安定であった。これから楕
円の主軸が被駆動体の駆動方向と平行な場合には動作が
不安定になることがわかった。
FIG. 5 (c) shows the vibration shape of the vibrator of prototype No. 6. Although a perfect circle is shown in the figure, it is actually a vertically or horizontally long ellipse due to the difference in amplitude between longitudinal vibration and bending vibration. At this time, the operation was unstable. From this, it was found that the operation becomes unstable when the main axis of the ellipse is parallel to the driving direction of the driven body.

【0031】図5(d)は、試作番号7〜9の振動子の
振動形状である。この場合も動作しないか、もしくは動
作するものの殆ど速度,推力がでない。
FIG. 5D shows the vibration shapes of the vibrators of prototype numbers 7 to 9. Even in this case, it does not work, or it works, but there is almost no speed or thrust.

【0032】以上の実験結果から、図5(b)に示すよ
うな右上がりの楕円振動でないとモータが安定して動作
しないことがわかった。
From the above experimental results, it was found that the motor cannot operate stably unless the elliptic vibration is ascending to the right as shown in FIG. 5 (b).

【0033】このことは、XY直交座標系のリサージュ
図形で考えれば、位相差がπ/4をはさんだ前後、すな
わち0〜π/2の範囲にあることを意味する。さらに、
直交座標系以外においては、請求項1に記載したよう
に、楕円振動の長軸方向のベクトルであって被駆動体に
接近する方向のベクトルと、同超音波楕円振動の接線方
向の速度ベクトルであって被駆動体が駆動される方向の
速度ベクトルとのなす角が鋭角となることを意味する。
This means that, considering the Lissajous figure of the XY orthogonal coordinate system, the phase difference is before and after π / 4, that is, in the range of 0 to π / 2. further,
In the cases other than the orthogonal coordinate system, as described in claim 1, a vector in the major axis direction of the elliptical vibration and a vector in the direction approaching the driven body, and a velocity vector in the tangential direction of the ultrasonic elliptical vibration are used. This means that the angle formed by the velocity vector in the direction in which the driven body is driven is an acute angle.

【0034】次に、試作番号0〜9の振動子に対して、
印加電圧に対する各振動モードの振幅と位相の関係を周
波数をスイープして調べたところ、図6のようになっ
た。図において、flは縦振動の共振周波数であり、f
bは屈曲振動の共振周波数である。
Next, for the prototypes 0-9,
When the relationship between the amplitude and the phase of each vibration mode with respect to the applied voltage was examined by sweeping the frequency, it was as shown in FIG. In the figure, fl is the resonance frequency of longitudinal vibration, and f
b is the resonance frequency of bending vibration.

【0035】試作番号0の振動子の場合は、振動モード
1に対応するのは縦振動モードであり、振動モード2に
対応するのは屈曲振動であって、flとfbの間の位相
差はπ/2であった。
In the case of the prototype No. 0 vibrator, the vibration mode 1 corresponds to the longitudinal vibration mode, the vibration mode 2 corresponds to the bending vibration, and the phase difference between fl and fb is It was π / 2.

【0036】試作番号1〜5の振動子の場合は、振動モ
ード1に対応するのは縦振動モードであり、振動モード
2に対応するのは屈曲振動であって、flとfbの間の
位相差は0を越えπ/2未満であった。
In the case of the vibrators of prototype Nos. 1 to 5, the vibration mode 1 corresponds to the longitudinal vibration mode, and the vibration mode 2 corresponds to the bending vibration, and the position between fl and fb. The phase difference was more than 0 and less than π / 2.

【0037】試作番号6の振動子の場合は、振動モード
1に対応するのは縦振動モードであり、振動モード2に
対応するのは屈曲振動であったが、両曲線はほとんど一
致していた。このためflとfbは一致しており、位相
差は0であった。
In the case of the vibrator of prototype No. 6, it was the longitudinal vibration mode that corresponded to the vibration mode 1 and the bending vibration that corresponded to the vibration mode 2, but both curves were almost the same. . Therefore, fl and fb were in agreement, and the phase difference was 0.

【0038】試作番号7〜9の振動子の場合は、振動モ
ード1に対応するのが屈曲振動モードであり、振動モー
ド2に対応するのが縦振動であって、flとfbの間の
位相差は0以上であった。
In the case of the vibrators of prototype numbers 7 to 9, the flexural vibration mode corresponds to the vibration mode 1, the longitudinal vibration corresponds to the vibration mode 2, and the position between fl and fb. The phase difference was 0 or more.

【0039】以上の実験結果から超音波振動子として
は、請求項3に記載したように、縦振動の共振周波数を
屈曲振動の共振周波数よりも高く設定し、縦振動の共振
周波数以下で屈曲振動の共振周波数以上の周波数範囲に
おいて、縦振動の交番電圧に対する振動の位相差δa
と、屈曲振動の交番電圧に対する振動の位相差δbが、
0<(δa−δb)<+π/2となる形状に形成するのが
好ましいことがわかった。そしてこのとき積層型圧電素
子には、縦振動の共振周波数以下で屈曲振動の共振周波
数以上の周波数範囲で、位相が±π/2異なる交番電圧
を印加すると安定した動作が得られる。
From the above experimental results, as the ultrasonic oscillator, as described in claim 3, the resonance frequency of longitudinal vibration is set higher than the resonance frequency of bending vibration, and the bending vibration is lower than the resonance frequency of longitudinal vibration. The phase difference δa of the vibration with respect to the alternating voltage of the longitudinal vibration in the frequency range above the resonance frequency of
And, the phase difference δb of the bending vibration with respect to the alternating voltage is
It was found that it is preferable to form in a shape of 0 <(δa−δb) <+ π / 2. At this time, stable operation can be obtained by applying to the laminated piezoelectric element an alternating voltage whose phase is ± π / 2 different in the frequency range below the resonance frequency of longitudinal vibration and above the resonance frequency of bending vibration.

【0040】しかしながら以上のことは、超音波振動子
の共振周波数が一定の場合に成り立つのであって、実際
の超音波振動子では使用中に30℃程度の温度上昇が生
じ、縦振動,屈曲振動ともに共振周波数が低下する。
However, the above is true when the resonance frequency of the ultrasonic vibrator is constant, and in an actual ultrasonic vibrator, a temperature rise of about 30 ° C. occurs during use, and longitudinal vibration and bending vibration occur. In both cases, the resonance frequency decreases.

【0041】そこで、図7に示すような駆動回路とし、
F1,F2端子からの検出信号を比較制御器に入力し、
これらの振動検出手段の情報に基づいて、縦振動に対す
る屈曲振動の位相差θが、0<θ<+π/2、または、
+π<θ<+3π/2となるように、縦振動の共振周波
数以下で屈曲振動の共振周波数以上の周波数範囲で、2
つの積層型圧電素子に印加する交番電圧の周波数及び位
相を制御した。すなわち、比較制御器は発振器の発振周
波数を制御し、さらに移相器により位相差を制御する。
これを増幅してA相,B相に交番電圧を印加する。
Therefore, a driving circuit as shown in FIG.
Input the detection signals from the F1 and F2 terminals to the comparison controller,
Based on the information of these vibration detecting means, the phase difference θ of the bending vibration with respect to the longitudinal vibration is 0 <θ <+ π / 2, or
In the frequency range below the resonance frequency of the longitudinal vibration and above the resonance frequency of the bending vibration so that + π <θ <+ 3π / 2, 2
The frequency and phase of the alternating voltage applied to the two laminated piezoelectric elements were controlled. That is, the comparison controller controls the oscillation frequency of the oscillator, and further controls the phase difference by the phase shifter.
This is amplified and an alternating voltage is applied to the A and B phases.

【0042】本実施例では、以上の制御により超音波振
動子の温度が変化して共振周波数がずれた場合であって
も安定した推力と速度が得られた。なお、本実施例では
積層型圧電素子を2個用いたが、3個以上の電気機械変
換素子を用いた場合にも応用できる。
In the present embodiment, stable thrust and speed were obtained by the above control even when the temperature of the ultrasonic transducer changed and the resonance frequency shifted. Although two laminated piezoelectric elements are used in this embodiment, the invention can be applied to the case where three or more electromechanical transducers are used.

【0043】[0043]

【実施例2】次に、本発明の実施例2を説明する。図8
は本実施例の駆動回路を示すブロック図である。超音波
振動子と、リニアモータの構成,作用は実施例1と同様
である。本実施例では、超音波振動子のA相,B相に印
加する交番電圧の位相差を±π/2に固定した。そし
て、比較制御器では周波数のみを制御した。すなわち、
図8の比較制御器は、F1およびF2の情報に基づい
て、縦振動に対する屈曲振動の位相差θが、θ=π/
4、または、θ=5π/4となるように、縦振動の共振
周波数以下で屈曲振動の共振周波数以上の周波数範囲
で、2つの積層型圧電素子に印加する交番電圧の周波数
を制御する信号を発振器に出力する。
Second Embodiment Next, a second embodiment of the present invention will be described. Figure 8
FIG. 3 is a block diagram showing a drive circuit of this embodiment. The configurations and operations of the ultrasonic oscillator and the linear motor are the same as in the first embodiment. In this example, the phase difference of the alternating voltage applied to the A phase and B phase of the ultrasonic transducer was fixed to ± π / 2. Then, the comparison controller controlled only the frequency. That is,
In the comparison controller of FIG. 8, the phase difference θ of the bending vibration with respect to the longitudinal vibration is θ = π /, based on the information of F1 and F2.
4 or θ = 5π / 4, a signal for controlling the frequency of the alternating voltage applied to the two laminated piezoelectric elements in the frequency range below the resonance frequency of the longitudinal vibration and above the resonance frequency of the flexural vibration. Output to oscillator.

【0044】本実施例では、以上の制御により超音波振
動子の温度が変化して共振周波数がずれた場合であって
も安定した推力と速度が得られた。なお、本実施例は実
施例1よりも回路構成が簡単になる利点がある。
In the present embodiment, stable thrust and speed were obtained by the above control even when the temperature of the ultrasonic transducer changed and the resonance frequency shifted. Note that this embodiment has an advantage over the first embodiment in that the circuit configuration is simpler.

【0045】なお、本発明は上記実施例に限定されるも
のではなく、上記実施例では縦振動と屈曲振動を合成し
て超音波楕円振動を得たが、例えば、ねじり振動,すべ
り振動,呼吸振動,ひろがり振動などを組み合わせても
同様に実現できる。また、上記実施例ではリニア型の超
音波モータについて応用したが、移動体を回転体とすれ
ば回転型の超音波モータへの応用も可能である。
The present invention is not limited to the above-mentioned embodiment, and ultrasonic elliptical vibration was obtained by synthesizing longitudinal vibration and bending vibration in the above-mentioned embodiment. For example, torsional vibration, sliding vibration, respiration The same can be achieved by combining vibration and spread vibration. Further, although the linear type ultrasonic motor is applied in the above-described embodiment, if the moving body is a rotating body, it can be applied to a rotating type ultrasonic motor.

【0046】[0046]

【発明の効果】以上説明したように本発明の超音波モー
タ駆動装置によれば、超音波振動子の温度が変化して共
振周波数がずれた場合であっても安定した推力と速度が
得られる。
As described above, according to the ultrasonic motor driving device of the present invention, stable thrust and speed can be obtained even when the temperature of the ultrasonic transducer changes and the resonance frequency shifts. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超音波振動子を示す斜視図であ
る。
FIG. 1 is a perspective view showing an ultrasonic transducer according to the present invention.

【図2】図1の超音波振動子の振動モードを説明する図
である。
FIG. 2 is a diagram illustrating a vibration mode of the ultrasonic transducer of FIG.

【図3】本発明による超音波リニアモータを示す正面図
である。
FIG. 3 is a front view showing an ultrasonic linear motor according to the present invention.

【図4】本発明による超音波振動子を示す正面図および
背面図である。
FIG. 4 is a front view and a rear view showing an ultrasonic transducer according to the present invention.

【図5】本発明の作用を説明する図である。FIG. 5 is a diagram for explaining the operation of the present invention.

【図6】本発明の作用を説明する図である。FIG. 6 is a diagram illustrating the operation of the present invention.

【図7】本発明の実施例1による超音波モータ駆動装置
の駆動回路を示すブロック図である。
FIG. 7 is a block diagram showing a drive circuit of the ultrasonic motor drive device according to the first embodiment of the present invention.

【図8】本発明の実施例2による超音波モータ駆動装置
の駆動回路を示すブロック図である。
FIG. 8 is a block diagram showing a drive circuit of an ultrasonic motor drive device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 超音波振動子 11 基本弾性体 12 積層型圧電素子 13 保持用弾性部材 15 駆動子 16 ピン 21 保持板 24 リニアブッシュ 25 軸 27 基台 28 調整ネジ 29 バネ 30 クロスローラガイド固定部 32 クロスローラガイド移動部 34 摺動部材 10 Ultrasonic Transducer 11 Basic Elastic Body 12 Multilayer Piezoelectric Element 13 Holding Elastic Member 15 Driver 16 Pin 21 Holding Plate 24 Linear Bushing 25 Shaft 27 Base 28 Adjusting Screw 29 Spring 30 Cross Roller Guide Fixing Part 32 Cross Roller Guide Moving part 34 Sliding member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弾性体と、この弾性体に固定された駆動
子と、同弾性体に取付けられた複数の電気−機械エネル
ギー変換素子とから構成され、上記弾性体に縦振動と屈
曲振動との合成振動を励起して、上記駆動子を超音波楕
円振させる超音波振動子と、上記駆動子により駆動され
る被駆動体と、上記電気−機械エネルギー変換素子に交
番電圧を印加する電源とを有する超音波モータ駆動装置
において、 上記縦振動のみを検出する第1の振動検出手段と、 上記屈曲振動のみを検出する第2の振動検出手段と、 上記第1および第2の振動検出手段の情報に基づいて、
上記駆動子に励起する超音波楕円振動の長軸方向のベク
トルであって被駆動体に接近する方向のベクトルと、同
超音波楕円振動の接線方向の速度ベクトルであって被駆
動体が駆動される方向の速度ベクトルとによってなす角
が鋭角となるように、上記複数の電気−機械エネルギー
変換素子に印加する交番電圧の周波数と位相の少なくと
も一方を制御する比較制御器と、 を具備することを特徴とする超音波モータ駆動装置。
1. An elastic body, a driver fixed to the elastic body, and a plurality of electro-mechanical energy conversion elements attached to the elastic body, wherein the elastic body is subjected to longitudinal vibration and bending vibration. An ultrasonic transducer that excites the synthetic vibration of the element to cause an ultrasonic elliptical vibration of the driver, a driven body that is driven by the driver, and a power supply that applies an alternating voltage to the electromechanical energy conversion element. In the ultrasonic motor drive device including: a first vibration detecting means for detecting only the longitudinal vibration, a second vibration detecting means for detecting only the bending vibration, and a first vibration detecting means for the first and second vibration detecting means. Based on the information
The driven body is driven by a vector in the long axis direction of the ultrasonic elliptical vibration excited in the driver and a vector in the direction approaching the driven body, and by a tangential velocity vector of the ultrasonic elliptical vibration. A comparison controller that controls at least one of the frequency and the phase of the alternating voltage applied to the plurality of electro-mechanical energy conversion elements so that the angle formed by the velocity vector in the direction of rotation becomes an acute angle. Characteristic ultrasonic motor drive device.
【請求項2】 弾性体と、この弾性体に固定された駆動
子と、同弾性体に取付けられた複数の電気−機械エネル
ギー変換素子とから構成され、上記弾性体に縦振動と屈
曲振動との合成振動を励起して、上記駆動子を超音波楕
円振動させる超音波振動子と、上記駆動子により駆動さ
れる被駆動体と、上記電気−機械エネルギー変換素子に
交番電圧を印加する電源とを有する超音波モータ駆動装
置において、 上記縦振動を上記被駆動体の移動方向を正の向きとして
検出する第1の振動検出手段と、 上記屈曲振動を上記駆動子から被駆動体への方向を正の
向きとして検出する第2の振動検出手段と、 上記第1および第2の振動検出手段の情報に基づいて、
上記縦振動に対する屈曲振動の位相差θが、 0 < θ < +π/2 または、 +π < θ < +3π/2 となるように、上記縦振動の共振周波数以下で上記屈曲
振動の共振周波数以上の周波数範囲で、前記複数の電気
−機械エネルギー変換素子に印加する交番電圧の周波数
と位相の少なくとも一方を制御する制御手段と、 を備えたことを特徴とする超音波モータ駆動装置。
2. An elastic body, a driver fixed to the elastic body, and a plurality of electro-mechanical energy conversion elements attached to the elastic body, wherein the elastic body is subjected to longitudinal vibration and bending vibration. An ultrasonic transducer that excites the synthetic vibration of the element to cause ultrasonic elliptical vibration of the driver, a driven body that is driven by the driver, and a power supply that applies an alternating voltage to the electromechanical energy conversion element. In the ultrasonic motor driving device having: a first vibration detecting means for detecting the vertical vibration with the moving direction of the driven body as a positive direction, and the bending vibration in the direction from the driver to the driven body. Based on the information of the second vibration detecting means for detecting the positive direction and the first and second vibration detecting means,
The phase difference θ of the bending vibration with respect to the longitudinal vibration is 0 <θ <+ π / 2 or + π <θ <+ 3π / 2 so that the frequency is equal to or lower than the resonance frequency of the longitudinal vibration and equal to or higher than the resonance frequency of the bending vibration. And a control means for controlling at least one of the frequency and the phase of the alternating voltage applied to the plurality of electro-mechanical energy conversion elements within the range.
【請求項3】 弾性体と、この弾性体に固定された駆動
子と、同弾性体に取付けられた複数の電気−機械エネル
ギー変換素子とから構成され、上記弾性体に縦振動と屈
曲振動との合成振動を励起して、上記駆動子を超音波楕
円振動させる超音波振動子と、上記駆動子により駆動さ
れる被駆動体と、上記電気−機械エネルギー変換素子に
交番電圧を印加する電源とを有する超音波モータ駆動装
置において、 上記縦振動を被駆動体の移動方向を正の向きとして検出
する第1の振動検出手段と、 上記屈曲振動を駆動子から被駆動体への方向を正の向き
として検出する第2の振動検出手段と、 上記縦振動の共振周波数が上記屈曲振動の共振周波数よ
りも高く設定され、該縦振動の共振周波数以下で該屈曲
振動の共振周波数以上の周波数範囲において、該縦振動
の交番電圧に対する振動の位相差δa と、該屈曲振動の
交番電圧に対する振動の位相差δb が、 0 < (δa −δb ) < +π/2 となる形状に形成された超音波振動子と、 上記第1および第2の振動検出手段の情報に基づいて、
上記縦振動に対する上記屈曲振動の位相差θが、 θ = π/4 または、 θ = 5π/4 となるように、上記縦振動の共振周波数以下で上記屈曲
振動の共振周波数以上の周波数範囲で、前記複数の電気
−機械エネルギー変換素子に印加する交番電圧の周波数
と位相の少なくとも一方を制御する制御手段と、 を具備しており、上記複数の電気−機械エネルギー変換
素子に、位相が±π/2異なる交番電圧を印加すること
を特徴とする超音波モータ駆動装置。
3. An elastic body, a driver fixed to the elastic body, and a plurality of electro-mechanical energy conversion elements attached to the elastic body, wherein the elastic body is subjected to longitudinal vibration and bending vibration. An ultrasonic transducer that excites the synthetic vibration of the element to cause ultrasonic elliptical vibration of the driver, a driven body that is driven by the driver, and a power supply that applies an alternating voltage to the electromechanical energy conversion element. In the ultrasonic motor drive device having: a first vibration detecting means for detecting the vertical vibration with the moving direction of the driven body as a positive direction, and the bending vibration in a positive direction from the driver to the driven body. A second vibration detecting means for detecting the direction, and a resonance frequency of the longitudinal vibration is set higher than a resonance frequency of the bending vibration, and in a frequency range below the resonance frequency of the longitudinal vibration and above the resonance frequency of the bending vibration. , An ultrasonic transducer formed in a shape such that a phase difference δa of vibrations with respect to an alternating voltage of longitudinal vibrations and a phase difference δb of vibrations with respect to an alternating voltage of bending vibrations are 0 <(δa−δb) <+ π / 2. And based on the information of the first and second vibration detection means,
The phase difference θ of the bending vibration with respect to the longitudinal vibration is θ = π / 4 or θ = 5π / 4 in a frequency range below the resonance frequency of the longitudinal vibration and above the resonance frequency of the bending vibration. A control means for controlling at least one of the frequency and the phase of the alternating voltage applied to the plurality of electro-mechanical energy conversion elements, wherein the plurality of electro-mechanical energy conversion elements have a phase of ± π / An ultrasonic motor drive device characterized in that two different alternating voltages are applied.
JP6147117A 1994-06-06 1994-06-06 Ultrasonic motor drive Withdrawn JPH07337046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147117A JPH07337046A (en) 1994-06-06 1994-06-06 Ultrasonic motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6147117A JPH07337046A (en) 1994-06-06 1994-06-06 Ultrasonic motor drive

Publications (1)

Publication Number Publication Date
JPH07337046A true JPH07337046A (en) 1995-12-22

Family

ID=15422920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147117A Withdrawn JPH07337046A (en) 1994-06-06 1994-06-06 Ultrasonic motor drive

Country Status (1)

Country Link
JP (1) JPH07337046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088830A1 (en) * 2003-03-31 2004-10-14 Seiko Epson Corporation Piezoelectric actuator drive method, piezoelectric actuator drive device, electronic clock, electronic device, piezoelectric actuator drive device control program, and storage medium
JP2005278379A (en) * 2004-03-26 2005-10-06 Taiheiyo Cement Corp Feeder
JP2008043123A (en) * 2006-08-09 2008-02-21 Olympus Corp Ultrasonic motor and vibration detection method of ultrasonic motor
US8888477B2 (en) 2009-08-31 2014-11-18 Sumitomo Bakelite Company Limited Molded product production device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088830A1 (en) * 2003-03-31 2004-10-14 Seiko Epson Corporation Piezoelectric actuator drive method, piezoelectric actuator drive device, electronic clock, electronic device, piezoelectric actuator drive device control program, and storage medium
US7119475B2 (en) 2003-03-31 2006-10-10 Seiko Epson Corporation Driving method of piezoelectric actuator, driving apparatus of piezoelectric actuator, electronic watch, electronics, control program of piezoelectric actuator, and storage medium
JP2005278379A (en) * 2004-03-26 2005-10-06 Taiheiyo Cement Corp Feeder
JP2008043123A (en) * 2006-08-09 2008-02-21 Olympus Corp Ultrasonic motor and vibration detection method of ultrasonic motor
US8888477B2 (en) 2009-08-31 2014-11-18 Sumitomo Bakelite Company Limited Molded product production device

Similar Documents

Publication Publication Date Title
EP1577961B1 (en) Acceleration and deceleration method using a piezoelectric motor
US20060061235A1 (en) Ultrasonic motor and method for operating the same
JPH07337046A (en) Ultrasonic motor drive
JP3173902B2 (en) Ultrasonic linear motor and method of manufacturing the same
JPH01264582A (en) Ultrasonic linear motor
JP3477304B2 (en) Ultrasonic motor drive
JP2646668B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH027875A (en) Ultrasonic oscillator and driver having this oscillator
JPH05137359A (en) Ultrasonic vibrator and ultrasonic driving apparatus
JPH066989A (en) Ultrasonic linear motor
JP2590536B2 (en) Ultrasonic motor
JPH05122949A (en) Linear actuator
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JPH05115846A (en) Ultrasonic vibrator and driver having the same
JP2543163B2 (en) Ultrasonic linear motor
JP2534343B2 (en) Ultrasonic linear motor
JPH0787710B2 (en) Ultrasonic linear motor
JPS60162487A (en) Piezoelectric driving device
JPH07337045A (en) Ultrasonic motor drive
JPH0724956Y2 (en) Ultrasonic linear motor
JP2538026B2 (en) Planar ultrasonic actuator
JP2000350479A (en) Vibration actuator
JPH07110143B2 (en) Planar ultrasonic actuator
JPH03253274A (en) Ultrasonic motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904