JPH02202378A - Planar ultrasonic actuator - Google Patents

Planar ultrasonic actuator

Info

Publication number
JPH02202378A
JPH02202378A JP1017974A JP1797489A JPH02202378A JP H02202378 A JPH02202378 A JP H02202378A JP 1017974 A JP1017974 A JP 1017974A JP 1797489 A JP1797489 A JP 1797489A JP H02202378 A JPH02202378 A JP H02202378A
Authority
JP
Japan
Prior art keywords
vibration
vibrating body
piezoelectric
ultrasonic actuator
shaped vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1017974A
Other languages
Japanese (ja)
Other versions
JPH07110142B2 (en
Inventor
Osamu Kawasaki
修 川崎
Yukihiko Ise
伊勢 悠紀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1017974A priority Critical patent/JPH07110142B2/en
Publication of JPH02202378A publication Critical patent/JPH02202378A/en
Publication of JPH07110142B2 publication Critical patent/JPH07110142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To reduce the thickness of an actuator by producing vertical vibration based on flex vibration of a planar vibration body while producing lateral vibration through a beam vibration body and achieving two dimensional movement of a moving body based on an oval locus at the free end of the beam. CONSTITUTION:An ultrasonic actuator comprises a planar vibration body 101 and vibration beam bodies 102a-102c which are secured to the vibration body 101 at the central sections thereof. The vibration body 101 comprises a piezoelectric body 106 having small electrode and resilient body 107, while the vibration beam body 102 comprises piezoelectric bodies 103a-104a adhered to two adjacent faces having square cross-section and a resilient body 105a. When a moving body contacts with the free end of the vibration beam body 102, it can move in two dimension.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電セラミックなどの圧電体により励振した
弾性振動を駆動力とする平面型超音波アクチュエータに
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a planar ultrasonic actuator whose driving force is elastic vibration excited by a piezoelectric material such as a piezoelectric ceramic.

従来の技術 近年、圧電セラミック等の圧電体により構成した振動体
に弾性振動を励振し、これを駆動力とした超音波モータ
や超音波リニアモータ等の超音波アクチュエータが注目
されている。
2. Description of the Related Art In recent years, ultrasonic actuators such as ultrasonic motors and ultrasonic linear motors have attracted attention, in which elastic vibrations are excited in a vibrating body made of a piezoelectric material such as a piezoelectric ceramic, and this is used as a driving force.

以下、図面を参照しながら従来の超音波アクチュエータ
について説明を行う。
Hereinafter, a conventional ultrasonic actuator will be explained with reference to the drawings.

第7図は円環型超音波モータの概観図であり、スリット
を入れた円環形の弾性体1に円環形の圧電セラミック等
の圧電体2を接着することにより振動体3を構成し、耐
摩耗性の摩擦材4と弾性体5より移動体6を構成する。
FIG. 7 is a general view of a toroidal ultrasonic motor, in which a vibrating body 3 is constructed by bonding a toroidal piezoelectric body 2 such as a toroidal piezoelectric ceramic to a toroidal elastic body 1 with slits. A movable body 6 is composed of an abrasive friction material 4 and an elastic body 5.

振動体3に移動体6を加圧して設置し、圧電体2に交流
電圧を印加すれば、振動体3に周方向に進行する撓み振
動の進行波が励振され、移動体6は進行波により駆動さ
れて回転する。
When the movable body 6 is pressurized and installed on the vibrating body 3 and an AC voltage is applied to the piezoelectric body 2, a traveling wave of bending vibration that advances in the circumferential direction is excited in the vibrating body 3, and the movable body 6 is caused by the traveling wave. Driven and rotated.

第8図は超音波リニアモータの概観図であり、円板膨圧
電体7および8を、円筒形の弾性体9および10で挟ん
で固定することにより振動体11を構成している。圧電
体7および8に、振動体11の共振周波数近傍の交流電
界を印加すれば、同図中の矢印で示されるように、振動
体11は縦振動モードで上下方向に振動する。
FIG. 8 is a general view of an ultrasonic linear motor, in which a vibrating body 11 is constructed by sandwiching and fixing disc expansion piezoelectric bodies 7 and 8 between cylindrical elastic bodies 9 and 10. When an alternating current electric field near the resonant frequency of the vibrating body 11 is applied to the piezoelectric bodies 7 and 8, the vibrating body 11 vibrates in the vertical vibration mode in a longitudinal vibration mode, as shown by the arrow in the figure.

振動体11の振動面から見た機械インピーダンスは、ホ
ーン12によりインピーダンス変換されて、伝送棒13
の撓み振動に対する機械インピーダンスに整合される。
The mechanical impedance seen from the vibration surface of the vibrating body 11 is impedance-converted by the horn 12 and transmitted to the transmission rod 13.
mechanical impedance for flexural vibrations.

ホー712の先端は伝送棒13の一端に近い一部に音響
的に結合される。従って、振動体11の上下振動は、ホ
ーン12により効率良く伝送棒13に伝えられ、伝送棒
13は撓み振動する。この撓み振動は、伝送棒13の一
端から他端に向かって進行する。
The tip of the hoe 712 is acoustically coupled to a portion of the transmission rod 13 near one end. Therefore, the vertical vibration of the vibrating body 11 is efficiently transmitted to the transmission rod 13 by the horn 12, and the transmission rod 13 bends and vibrates. This bending vibration progresses from one end of the transmission rod 13 to the other end.

伝送棒13の他端に近い一部では、一端と同様にホー7
14の先端が音響的に結合されている。
In a part near the other end of the transmission rod 13, the hole 7 is connected like the one end.
14 tips are acoustically coupled.

円板膨圧電体15および16を、円筒形の弾性体17お
よび18で挟んで固定することにより、振動体11と全
く同じ振動体19を構成している。
A vibrating body 19, which is exactly the same as the vibrating body 11, is constructed by sandwiching and fixing the disk expansion piezoelectric bodies 15 and 16 between cylindrical elastic bodies 17 and 18.

ホーン14には、この振動体19が接続されている。従
って、伝送棒の一端から他端に向かって進行してきた撓
み振動は、ホーン14により振動体19に伝えられ、振
動体19の上下振動に変換される。圧電体15および1
6には、インピーダンス整合した負荷Rが接続され、上
記の上下振動は負荷Rによって消費される。故に、伝送
棒13には撓み振動が進行波としてのみ存在する。
This vibrating body 19 is connected to the horn 14. Therefore, the bending vibration that has progressed from one end of the transmission rod toward the other end is transmitted to the vibrating body 19 by the horn 14 and converted into vertical vibration of the vibrating body 19. Piezoelectric bodies 15 and 1
6 is connected to an impedance-matched load R, and the above-mentioned vertical vibration is consumed by the load R. Therefore, the bending vibration exists only as a traveling wave in the transmission rod 13.

20は移動体であり、伝送棒13を進行する撓み振動に
より駆動され、進行波の進行方向とは逆の方向に運動す
る。上の説明では、移動体20の進行方向は一方向とし
ているが、駆動端を逆にすれば、逆の方向にも進行する
A moving body 20 is driven by the bending vibration traveling through the transmission rod 13, and moves in a direction opposite to the traveling direction of the traveling wave. In the above description, the moving direction of the moving body 20 is assumed to be one direction, but if the driving end is reversed, the moving body 20 also moves in the opposite direction.

第9図は、撓みの弾性進行波が、移動体を駆動する原理
を示している。振動体(または伝送棒)21の撓み振動
により、振動体21の表面の点(例えば点A)は、縦方
向w自模方向Uの楕円軌跡を描く。この楕円軌跡の頂点
での速度は、波の進行方向とは反対である。振動体21
の上に移動体22を加圧設置すれば、移動体22は波の
頂点近傍でのみ振動体21に接触する。従って、振動体
21と移動体22との摩擦力と、楕円軌跡の横方向の速
度によって、波の進行方向と逆の方向に移動体22が駆
動される。また、同図中の23は、上記楕円軌跡の横方
向成分を、効率良く取り出すための耐磨耗性の摩擦材で
ある。
FIG. 9 shows the principle by which a traveling elastic wave of deflection drives a moving body. Due to the bending vibration of the vibrating body (or transmission rod) 21, a point (for example, point A) on the surface of the vibrating body 21 draws an elliptical locus in the vertical direction w and the self-imaging direction U. The velocity at the apex of this elliptical trajectory is opposite to the direction of travel of the wave. Vibrating body 21
If the movable body 22 is installed under pressure on the wave, the movable body 22 will come into contact with the vibrating body 21 only near the peak of the wave. Therefore, the movable body 22 is driven in a direction opposite to the direction in which the waves travel due to the frictional force between the vibrating body 21 and the movable body 22 and the speed in the lateral direction of the elliptical trajectory. Further, numeral 23 in the figure is a wear-resistant friction material for efficiently extracting the lateral component of the elliptical locus.

発明が解決しようとする課題 以上、説明した従来の超音波アクチュエータは、移動体
の運動は回転か直線であった。これらの超音波アクチュ
エータで、移動体が平面上を任意の方向に移動する平面
型超音波アクチュエータを構成しようとすれば、複数の
超音波モータか超音波リニアモータが必要となり、従っ
て、構造が複雑になり、寸法が大きくなるという課題が
あった。
Problems to be Solved by the Invention As described above, in the conventional ultrasonic actuators described above, the movement of the moving body is rotational or linear. If you try to configure a planar ultrasonic actuator in which a moving object moves in any direction on a plane using these ultrasonic actuators, you will need multiple ultrasonic motors or ultrasonic linear motors, and therefore the structure will be complicated. The problem was that the size became larger.

課題を解決するための手段 平板弾性体に圧電体Aを接着して平板形振動体を構成し
、上記圧電体Aに電圧を印加して上記平板形振動体に撓
み振動を励振し、上記の挟み振動の振動の腹近傍の位置
に正方形断面を有する梁を中央部を固定することにより
平板形振動体上に複数個2次元に設置し、上記梁の隣合
う2つの長方形面にそれぞれ圧電体Bを接着して梁形振
動体を構成し、上記圧電体Bに電圧を印加して上記梁形
振動体に互いに直交する2つの撓み振動を励振し、上記
梁形振動体の1自由端に移動体を加圧接触して設置して
、上記移動体を2次元に移動させるよう構成する。
Means for Solving the Problem A piezoelectric body A is adhered to a flat elastic body to form a flat vibrating body, and a voltage is applied to the piezoelectric body A to excite bending vibration in the flat vibrating body. A plurality of beams with a square cross section are fixed in the center near the antinode of the vibration of the pincer vibration, and a plurality of beams are installed two-dimensionally on a flat plate vibrating body, and a piezoelectric material is attached to each of two adjacent rectangular surfaces of the beam. B is glued to form a beam-shaped vibrating body, and a voltage is applied to the piezoelectric body B to excite two bending vibrations perpendicular to each other in the beam-shaped vibrating body, and one free end of the beam-shaped vibrating body is The movable body is placed in pressurized contact and configured to move the movable body in two dimensions.

作用 平板形振動体の撓み振動により、上下方向の振動を得、
梁形振動体により横方向の振動を得、2つの振動を同時
に励振することにより、梁の自由端に楕円軌跡を描かせ
て、梁の自由端に接触した移動体を2次元に移動させる
ることにより、構造の簡単な、薄型の平面型超音波アク
チュエータを提供する。
Vibration in the vertical direction is obtained by the bending vibration of the working flat plate vibrating body,
By obtaining lateral vibration with a beam-shaped vibrating body and exciting two vibrations simultaneously, the free end of the beam draws an elliptical trajectory, and the moving object that is in contact with the free end of the beam moves in two dimensions. This provides a thin planar ultrasonic actuator with a simple structure.

実施例 以下、図面に従って本発明の一実施例について詳細な説
明を行う。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の1実施例の平面型超音波アクチュエ
ータの概観図である。同図において、101は平板形の
振動体であり、裏面に圧電セラミックなどの圧電体が貼
り付けである。102 aNl 02 b、  102
 cl  ・・・・・・は、それぞれ正方形断面を有し
、隣合う2つの長方形面にそれぞれ圧電体Bを接着して
構成した梁形振動体であり、平板形振動体101に中央
部を固定することにより設置されている。103 al
l 04 aは圧電体であり、弾性体105aと共に梁
形振動体102aを構成する。以下の圧電体103b、
104b1 ・・・・・・ および弾性体105 bl
  ・・・・・・等も同様である。
FIG. 1 is a schematic diagram of a planar ultrasonic actuator according to an embodiment of the present invention. In the figure, 101 is a flat plate-shaped vibrating body, and a piezoelectric material such as piezoelectric ceramic is pasted on the back surface. 102 aNl 02 b, 102
cl . . . is a beam-shaped vibrating body each having a square cross section and configured by bonding piezoelectric bodies B to two adjacent rectangular surfaces, and the central part is fixed to the flat plate-shaped vibrating body 101. It is installed by doing. 103 al.
l 04 a is a piezoelectric body, and together with the elastic body 105a constitutes the beam-shaped vibrating body 102a. The following piezoelectric body 103b,
104b1 ...... and elastic body 105 bl
The same applies to . . . etc.

なお、同図には梁形振動体は7つしか記されていないが
、実際には平板形振動体101の撓み振動の腹近傍に2
次元に等間隔に配列されている。
Although only seven beam-shaped vibrating bodies are shown in the same figure, in reality, there are two near the antinode of the bending vibration of the flat plate-shaped vibrating body 101.
Arranged at equal intervals in the dimension.

第2図は、平面型超音波アクチュエータに用いる平板形
振動体の構成と動作を示す図である。106は小電極を
有する圧電体であり、厚さ方向に図中の正負の符号のよ
うに、交互に逆方向に分極されている。この圧電体10
6は、平板形の弾性体107に接着され、平板形の振動
体101を構成する。駆動時には、圧電体106の各小
電極は短絡されて、平板形振動体の共振周波数近傍の交
流電圧を印加される。平板形振動体101は、同図中の
振動の変位分布で示される撓み振動をする。
FIG. 2 is a diagram showing the configuration and operation of a flat vibrating body used in a flat ultrasonic actuator. 106 is a piezoelectric material having small electrodes, which are alternately polarized in opposite directions in the thickness direction as shown by the positive and negative signs in the figure. This piezoelectric body 10
6 is bonded to a flat plate-shaped elastic body 107, and constitutes a flat plate-shaped vibrating body 101. During driving, each small electrode of the piezoelectric body 106 is short-circuited, and an alternating current voltage near the resonance frequency of the flat vibrating body is applied. The plate-shaped vibrating body 101 undergoes bending vibration as shown by the vibration displacement distribution in the figure.

梁形振動体102は、第1図に示すように、この撓み振
動の腹の近傍に複数個2次元に設置される。
As shown in FIG. 1, a plurality of beam-shaped vibrating bodies 102 are two-dimensionally installed near the antinode of this bending vibration.

上記の実施例では、平板形振動体の1方向にだけ撓み振
動を励振したが、第3図に示すように直行する2方向に
撓み振動を励振することもできる同図は平板形振動体の
構成と動作を示す図である。
In the above embodiment, bending vibrations were excited in only one direction of the flat plate vibrating body, but as shown in Figure 3, bending vibrations can also be excited in two orthogonal directions. It is a figure showing composition and operation.

109は正方形の小電極を有する圧電体であり、厚さ方
向に図中の正負の符号のように、隣合う小電極部が互い
に逆方向になるように分極されている。この圧電体10
9は、平板形の弾性体110に接着され、平板形の振動
体108を構成する。
Reference numeral 109 denotes a piezoelectric body having square small electrodes, which are polarized in the thickness direction so that adjacent small electrode portions are in opposite directions, as shown by the positive and negative signs in the figure. This piezoelectric body 10
9 is bonded to a flat plate-shaped elastic body 110, and constitutes a flat plate-shaped vibrating body 108.

駆動時には、圧電体106の各小電極は短絡されて、平
板形振動体の共振周波数近傍の交流電圧を印加される。
During driving, each small electrode of the piezoelectric body 106 is short-circuited, and an alternating current voltage near the resonance frequency of the flat vibrating body is applied.

平板形振動体108は、同図中の振動の変位分布で示さ
れるように、互いに直交したI4み振動をする。横方向
の振動をする梁形振動体102は、この撓み振動の腹の
近傍(小電極の中央部)に設置される。
The flat plate-shaped vibrating body 108 vibrates only at I4 directions perpendicular to each other, as shown by the vibration displacement distribution in the figure. A beam-shaped vibrating body 102 that vibrates in the lateral direction is installed near the antinode of this bending vibration (in the center of the small electrode).

第4図に梁形振動体の構成と動作を示す。同図において
、111は正方形断面を持つ角棒であり、隣合う2つの
面に圧電体112および圧電体113が接着されて、梁
形振動体114を構成している。ここで、同じ面内に接
着されている圧電体の分極方向は同じである。梁形振動
体114は、その中央部で平板形振動体115に固定さ
れている。
Figure 4 shows the configuration and operation of the beam-shaped vibrator. In the figure, reference numeral 111 is a square bar with a square cross section, and a piezoelectric body 112 and a piezoelectric body 113 are bonded to two adjacent surfaces to form a beam-shaped vibrating body 114. Here, the polarization directions of the piezoelectric bodies bonded within the same plane are the same. The beam-shaped vibrating body 114 is fixed to a flat plate-shaped vibrating body 115 at its center.

圧電体112に、梁形振動体114の共振周波数近傍の
交流電圧を印加すると、梁形振動体114は同図に示す
変位分布を持つ1次の撓み振動モードで振動する。圧電
体113に、同様にして梁形振動体114の共振周波数
近傍の交流電圧を印加すると、梁形振動体114は同図
に示す変位に直交する面内で同様の変位分布を持つ撓み
振動をする。
When an AC voltage near the resonance frequency of the beam-shaped vibrating body 114 is applied to the piezoelectric body 112, the beam-shaped vibrating body 114 vibrates in a first-order bending vibration mode having a displacement distribution shown in the figure. When an AC voltage near the resonant frequency of the beam-shaped vibrating body 114 is similarly applied to the piezoelectric body 113, the beam-shaped vibrating body 114 generates a bending vibration having a similar displacement distribution in a plane perpendicular to the displacement shown in the figure. do.

第5図に別の実施例の梁形振動体の構成と動作を示す。FIG. 5 shows the structure and operation of a beam-shaped vibrating body according to another embodiment.

同図において、116は正方形断面を持つ角棒であり、
隣合う2つの面に圧電体117および圧電体118が接
着されて、梁形振動体119を構成している。ここで、
同じ面内に接着されている圧電体の分極方向は逆である
。梁形振動体119は、その中央部で平板形振動体12
0に固定されている。圧電体117に、梁形振動体11
9の共振周波数近傍の交流電圧を印加すると、梁形振動
体119は同図に示す変位分布を持つ高次の挟み振動モ
ードで振動する。圧電体118に、同様にして梁形振動
体119の共振周波数近傍の交流電圧を印加すると、梁
形振動体119は同図に示す変位に直交する面内で同様
の変位分布を持つ撓み振動をする。
In the figure, 116 is a square bar with a square cross section;
A piezoelectric body 117 and a piezoelectric body 118 are bonded to two adjacent surfaces to form a beam-shaped vibrating body 119. here,
The polarization directions of piezoelectric bodies bonded within the same plane are opposite. The beam-shaped vibrating body 119 has a flat plate-shaped vibrating body 12 at its center.
Fixed to 0. The beam-shaped vibrating body 11 is attached to the piezoelectric body 117.
When an AC voltage near the resonance frequency 9 is applied, the beam-shaped vibrating body 119 vibrates in a high-order pinch vibration mode having a displacement distribution shown in the figure. When an AC voltage near the resonant frequency of the beam-shaped vibrating body 119 is similarly applied to the piezoelectric body 118, the beam-shaped vibrating body 119 generates a bending vibration having a similar displacement distribution in a plane orthogonal to the displacement shown in the figure. do.

第6図は梁形振動体として第4図に示した1次の挟み振
動を使用した時の平面型超音波アクチュエータの動作説
明図である。梁形振動体122は、その中央部を介して
平板形振動体121の挟み振動の腹近傍の位置に固定さ
れている。そして、梁形振動体122と平板形振動体1
21の共振周波数はほぼ同じになるように調整されてい
る。平板形振動体121を構成する圧電体に共振周波数
近傍の交流電圧を印加すると、平板形振動体121は矢
印Aの方向(上下方向)に変位をする撓み振動をし、梁
形振動体122を構成する圧電体に同様に共振周波数近
傍の交流電圧を印加すると、梁形振動体122は矢印B
の方向(横方向)に変位をする撓み振動をする。従って
、圧電体を互いに90度位相の異なる交流電圧で同時に
駆動すれば、梁形振動体122の自由端は、図に示すよ
うに楕円軌跡を描いて振動する。ここで、実線はある時
間における超音波アクチュエータの振動状態であり、点
線は4分の1周期後における振動状態である。また、同
様にして、梁形振動体122の自由端に、上記の楕円軌
跡と直行する面内で楕円軌跡を描いて運動させることも
容易にできる。
FIG. 6 is an explanatory diagram of the operation of the planar ultrasonic actuator when the first-order pinch vibration shown in FIG. 4 is used as a beam-shaped vibrator. The beam-shaped vibrating body 122 is fixed at a position near the antinode of the pinch vibration of the flat plate-shaped vibrating body 121 via its central portion. Then, the beam-shaped vibrating body 122 and the flat plate-shaped vibrating body 1
The resonance frequencies of 21 are adjusted to be almost the same. When an alternating current voltage near the resonance frequency is applied to the piezoelectric body constituting the flat vibrating body 121, the flat vibrating body 121 undergoes a bending vibration that is displaced in the direction of arrow A (vertical direction), causing the beam vibrating body 122 to vibrate. When an alternating current voltage near the resonance frequency is similarly applied to the piezoelectric body, the beam-shaped vibrating body 122 moves as shown by arrow B.
It produces a flexural vibration that causes displacement in the direction (lateral direction). Therefore, if the piezoelectric bodies are simultaneously driven with alternating current voltages that are 90 degrees out of phase with each other, the free end of the beam-shaped vibrating body 122 vibrates in an elliptical locus as shown in the figure. Here, the solid line is the vibration state of the ultrasonic actuator at a certain time, and the dotted line is the vibration state after 1/4 period. Similarly, it is also possible to easily move the free end of the beam-shaped vibrating body 122 by drawing an elliptical locus in a plane orthogonal to the above-mentioned elliptical locus.

故に、平板形振動体121上に設置した梁形振動体12
2の自由端に接触するように移動体123を設置すれば
、移動体123を矢印Bの方向に移動させることができ
る。従って、第1図において、平板形振動体101上に
設置した梁形振動体102 a、  102 bl  
・・・・・・の自由端に接触するように、移動体加圧接
触して設置すれば、移動体を平面内の任意の方向に移動
させることができる。
Therefore, the beam-shaped vibrating body 12 installed on the flat plate-shaped vibrating body 121
If the movable body 123 is installed so as to be in contact with the free end of the movable body 123, the movable body 123 can be moved in the direction of arrow B. Therefore, in FIG. 1, the beam-shaped vibrating bodies 102 a and 102 bl installed on the flat plate-shaped vibrating body 101
If the movable body is placed in pressure contact with the free end of the movable body, the movable body can be moved in any direction within the plane.

ここでは、梁形振動体として第4図に示した1次の撓み
振動を使用した時の平面型超音波アクチュエータの動作
を説明したが、第5図に示した高次の撓み振動を使用し
た時の平面型超音波アクチュエータの動作も同様である
Here, we have explained the operation of the planar ultrasonic actuator when using the first-order bending vibration shown in Figure 4 as a beam-shaped vibrator, but we have explained the operation of the planar ultrasonic actuator when using the first-order bending vibration shown in Figure 5. The operation of the planar ultrasonic actuator is also similar.

発明の効果 本発明によれば、簡単な構造で、厚さの薄い平面型超音
波アクチュエータを提供できる。
Effects of the Invention According to the present invention, a planar ultrasonic actuator with a simple structure and a small thickness can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の平面型超音波アクチュエー
タの斜視図、第2図(a)及び(b)は各々、平面型超
音波アクチュエータに用いる平板形振動体の構成を示す
平面図と動作を示す変位分布図、第3図(a)、(b)
及び(c)は各々、別の平板形振動体の構成を示す平面
図、縦方向及び横方向の動作を示す変位分布図、第4図
(a)及び(b)は各々、平面型超音波アクチュエータ
に用いる梁形振動体の構成を示す平面図と動作を示す変
位分布図、第5図(a)及び(b)は各々、別の梁形振
動体の構成を示す平面図と動作を示す変位分布図、第6
図は平面型超音波アクチュエータの動作説明図、第7図
は従来の円板型超音波モータの斜視図、第8図は従来の
超音波リニアモータの概観図、第9図は撓みの弾性進行
波が移動体を駆動する原理を示す説明図である。 101・・・・・・平板形振動体、 102・・・・・・梁形振動体、 103.104・・・・・・圧電体、 105・・・・・・弾性体、106・・・・・・圧電体
、107・・・・・・弾性体、 108・・・・・・平板形振動体、 109・・・・・・圧電体、110・・・・・・弾性体
、111・・・・・・弾性体 112.113・・・・・・圧電体、 114・・・・・・梁形振動体、 115・・・・・・平板形振動体、 116・・・・・・弾性体 117.118・・・・・・圧電体、 119・・・・・・梁形振動体、 120・・・・・・平板形振動体。 代理人の氏名 弁理士 栗野重孝 ほか1名 墨 図 偽 図 (bン 弔 図 第 図 蘂 図 嬉 図
FIG. 1 is a perspective view of a planar ultrasonic actuator according to an embodiment of the present invention, and FIGS. 2(a) and (b) are plan views showing the configuration of a planar vibrating body used in the planar ultrasonic actuator. Displacement distribution diagram showing the operation, Figure 3 (a), (b)
and (c) are respectively a plan view showing the configuration of another flat vibrating body, and a displacement distribution diagram showing the vertical and horizontal movements. A plan view showing the configuration and a displacement distribution diagram showing the operation of a beam-shaped vibrating body used in the actuator, and FIGS. 5(a) and (b) respectively show a plan view showing the configuration and operation of another beam-shaped vibrating body. Displacement distribution map, 6th
The figure is an explanatory diagram of the operation of a planar ultrasonic actuator, Fig. 7 is a perspective view of a conventional disk-type ultrasonic motor, Fig. 8 is an overview of a conventional ultrasonic linear motor, and Fig. 9 is an elastic progression of deflection. FIG. 2 is an explanatory diagram showing the principle of how waves drive a moving body. 101... Flat plate type vibrating body, 102... Beam type vibrating body, 103.104... Piezoelectric body, 105... Elastic body, 106... ... Piezoelectric body, 107... Elastic body, 108... Flat vibrating body, 109... Piezoelectric body, 110... Elastic body, 111. ...Elastic body 112, 113... Piezoelectric body, 114... Beam-shaped vibrating body, 115... Flat plate-shaped vibrating body, 116... Elastic body 117, 118... Piezoelectric body, 119... Beam-shaped vibrating body, 120... Flat plate-shaped vibrating body. Name of agent: Patent attorney Shigetaka Kurino and one other person

Claims (3)

【特許請求の範囲】[Claims] (1)平板弾性体に圧電体Aを接着して平板形振動体を
構成し、上記圧電体Aに電圧を印加して上記平板形振動
体に撓み振動を励振し、上記の撓み振動の振動の腹近傍
の位置に正方形断面を有する梁をその中央部を固定する
ことにより平板形振動体上に複数個2次元に配置し、上
記梁の隣合う2つの長方形面にそれぞれ圧電体Bを接着
して梁形振動体を構成し、上記圧電体Bに電圧を印加し
て上記梁形振動体に互いに直交する2つの撓み振動を励
振し、上記梁形振動体の1自由端に加圧接触して移動体
を設置して、上記移動体を2次元に移動させることを特
徴とする平面型超音波アクチュエータ。
(1) A piezoelectric body A is adhered to a flat elastic body to form a flat vibrating body, a voltage is applied to the piezoelectric body A to excite bending vibration in the flat vibrating body, and the vibration of the bending vibration is A plurality of beams having a square cross section are arranged two-dimensionally on a flat plate vibrating body by fixing their central portions near the antinode of the beam, and piezoelectric bodies B are bonded to each of two adjacent rectangular surfaces of the beams. A voltage is applied to the piezoelectric body B to excite two bending vibrations perpendicular to each other in the beam-shaped vibrating body, and one free end of the beam-shaped vibrating body is brought into pressure contact. A planar ultrasonic actuator, characterized in that a movable body is installed in a plane, and the movable body is moved two-dimensionally.
(2)平板形振動体の1方向にのみ撓み振動を励振する
か、または2方向に撓み振動を励振することを特徴とす
る請求項1記載の平面型超音波アクチュエータ。
(2) The planar ultrasonic actuator according to claim 1, wherein the planar ultrasonic actuator excites the bending vibration in only one direction of the planar vibrating body or in two directions.
(3)梁形振動体に、1次の撓み振動を励振するか、ま
たは高次の撓み振動を励振することを特徴とする請求項
1記載の平面型超音波アクチュエータ。
(3) The planar ultrasonic actuator according to claim 1, wherein the beam-shaped vibrating body is excited with either a first-order bending vibration or a higher-order bending vibration.
JP1017974A 1989-01-27 1989-01-27 Planar ultrasonic actuator Expired - Lifetime JPH07110142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017974A JPH07110142B2 (en) 1989-01-27 1989-01-27 Planar ultrasonic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017974A JPH07110142B2 (en) 1989-01-27 1989-01-27 Planar ultrasonic actuator

Publications (2)

Publication Number Publication Date
JPH02202378A true JPH02202378A (en) 1990-08-10
JPH07110142B2 JPH07110142B2 (en) 1995-11-22

Family

ID=11958701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017974A Expired - Lifetime JPH07110142B2 (en) 1989-01-27 1989-01-27 Planar ultrasonic actuator

Country Status (1)

Country Link
JP (1) JPH07110142B2 (en)

Also Published As

Publication number Publication date
JPH07110142B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US5039899A (en) Piezoelectric transducer
EP0308970A2 (en) Piezoelectric motor
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPS62259485A (en) Piezoelectric driving apparatus
JPH01264582A (en) Ultrasonic linear motor
JPH08182351A (en) Ultrasonic actuator
JP2538026B2 (en) Planar ultrasonic actuator
JPH02202378A (en) Planar ultrasonic actuator
JPH02202379A (en) Planar ultrasonic actuator
JP2538033B2 (en) Planar ultrasonic actuator
JP2538027B2 (en) Planar ultrasonic actuator
JPH02202380A (en) Planar ultrasonic actuator
JPH02228272A (en) Plane type ultrasonic actuator
JPH02202381A (en) Planar ultrasonic actuator
JPH05122949A (en) Linear actuator
JPH0270277A (en) Ultrasonic motor
JPH02241378A (en) Ultrasonic wave linear motor
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH02214480A (en) Planar type ultrasonic actuator
JPH0246180A (en) Ultrasonic linear motor
JPH02228271A (en) Plane type ultrasonic actuator
JP2543149B2 (en) Ultrasonic linear motor
JPH0773428B2 (en) Piezoelectric drive
JPH02202382A (en) Planar ultrasonic actuator
JP2012120370A (en) Ultrasonic transducer and ultrasonic motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 14