JP2012120370A - Ultrasonic transducer and ultrasonic motor - Google Patents

Ultrasonic transducer and ultrasonic motor Download PDF

Info

Publication number
JP2012120370A
JP2012120370A JP2010269302A JP2010269302A JP2012120370A JP 2012120370 A JP2012120370 A JP 2012120370A JP 2010269302 A JP2010269302 A JP 2010269302A JP 2010269302 A JP2010269302 A JP 2010269302A JP 2012120370 A JP2012120370 A JP 2012120370A
Authority
JP
Japan
Prior art keywords
elastic body
driven
piezoelectric
piezoelectric element
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010269302A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Sakamoto
哲幸 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2010269302A priority Critical patent/JP2012120370A/en
Publication of JP2012120370A publication Critical patent/JP2012120370A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic transducer capable of realizing a thin ultrasonic motor with multi-degree of freedom, and to provide an ultrasonic motor using the ultrasonic transducer.SOLUTION: An ultrasonic transducer 10 for driving a driver 20 to be driven in a plurality of driving directions comprises: an elastic body 10 including a frame body 10f, and branch parts 10-A, 10-B, 10-C, and 10-D for configuring a plurality of beam parts supported in a both-end support by the frame body 10f; drivers A1d, B1d, C1d, and D1d provided on a surface facing the driver 20 to be driven in the elastic bodies 10; a plurality of piezoelectric elements A1, B1, C1, and D1 provided on a surface facing to the driver 20 to be driven in the beam parts; and a plurality of piezoelectric elements A2, B2, C2, and D2 provided on the rear surface thereof. The plurality of beam parts of the elastic body 10 extend in respective directions corresponding to different driving directions, and intersect each other, and expansion and contraction vibration of the plurality of piezoelectric elements A1, B1, C1, D1, A2, B2, C2, and D2 excites elliptical vibration at a part related to the intersection in the elastic body 10.

Description

本発明は、例えば圧電素子等の振動子を用いた超音波振動子及び超音波モータに関する。   The present invention relates to an ultrasonic vibrator and an ultrasonic motor using a vibrator such as a piezoelectric element.

近年、電磁型モータに代わる新しいモータとして、圧電素子等の振動子の振動を利用した超音波モータが注目されている。この超音波モータは、従来の電磁型モータと比較して、ギア無しで低速高推力が得られる点、保持力が高い点、高分解能である点、静粛性に富む点、及び磁気的ノイズを発生させない点等の利点を有している。   In recent years, ultrasonic motors using vibrations of vibrators such as piezoelectric elements have attracted attention as new motors that replace electromagnetic motors. Compared with conventional electromagnetic motors, this ultrasonic motor has low speed and high thrust without gears, high holding power, high resolution, quietness, and magnetic noise. It has the advantage that it does not occur.

具体的には、振動子に所定の交番電圧を印加して楕円振動を励起し、該楕円振動を駆動源として被駆動部材を摩擦駆動するタイプの超音波モータが知られている。このような超音波モータに関連する技術としては、例えば特許文献1に次のような技術が開示されている。   Specifically, an ultrasonic motor of a type that excites elliptical vibration by applying a predetermined alternating voltage to a vibrator and frictionally drives a driven member using the elliptical vibration as a driving source is known. As a technique relating to such an ultrasonic motor, for example, Patent Document 1 discloses the following technique.

すなわち、特許文献1に開示されている超音波モータは、複数の電極部を有する圧電素子と、振動体と、該振動体と接して回転運動する回転体(被駆動体)と、前記振動体と前記回転体とに加圧を与える加圧部材(押圧機構)と、から成る。そして、前記複数の電極部のうち少なくとも一つの電極部を選択して電圧を印加することにより、前記振動体に励起される屈曲振動の屈曲方向が決定される。このような構成を採ることで、特許文献1に開示されている超音波モータでは、単数の振動体で複数の方向へ駆動することを実現している。   That is, the ultrasonic motor disclosed in Patent Document 1 includes a piezoelectric element having a plurality of electrode portions, a vibrating body, a rotating body (driven body) that rotates in contact with the vibrating body, and the vibrating body. And a pressure member (pressing mechanism) that applies pressure to the rotating body. And the bending direction of the bending vibration excited by the said vibrating body is determined by selecting at least one electrode part among the said several electrode parts, and applying a voltage. By adopting such a configuration, the ultrasonic motor disclosed in Patent Document 1 realizes driving in a plurality of directions with a single vibrator.

特開2005−295657号公報JP 2005-295657 A

ところで、特許文献1に開示されている技術では、振動体の長手方向における端面側に被駆動体(回転体)及び押圧機構(加圧部材)が配置されている。この為、被駆動体の駆動方向に垂直な方向に長く(寸法が大きく)なってしまう。従って、当該超音波モータの薄型化が非常に困難である。   By the way, with the technique currently disclosed by patent document 1, the to-be-driven body (rotating body) and the press mechanism (pressing member) are arrange | positioned at the end surface side in the longitudinal direction of a vibrating body. For this reason, it becomes long (dimensions) in a direction perpendicular to the drive direction of the driven body. Therefore, it is very difficult to reduce the thickness of the ultrasonic motor.

なお、振動体の上述の長手方向については、駆動に屈曲振動を用いるという制限上、短く構成することは非常に困難である。
本発明は、前記の事情に鑑みて為されたものであり、多自由度の超音波モータの薄型化を実現する超音波振動子、及び該超音波振動子を利用した超音波モータを提供することを目的とする。
In addition, it is very difficult to make the longitudinal direction of the vibrating body short because of the limitation of using flexural vibration for driving.
The present invention has been made in view of the above circumstances, and provides an ultrasonic vibrator that realizes thinning of a multi-degree-of-freedom ultrasonic motor, and an ultrasonic motor using the ultrasonic vibrator. For the purpose.

前記の目的を達成するために、本発明の第1の態様による超音波振動子は、
複数の駆動方向に被駆動体を駆動する為の超音波振動子であって、
枠体と、該枠体により両持支持された複数の梁部と、を備える弾性体と、
前記弾性体のうち前記被駆動体に対向する面に設けられた駆動子と、
前記梁部のうち前記被駆動体との対向面及びその裏面に設けられた複数の圧電部と、
を具備し、
前記弾性体の前記複数の梁部は、それぞれ互いに異なる駆動方向に対応した方向に延びて互いに交差しており、
前記弾性体のうち前記交差に係る部位には、前記複数の圧電部の伸縮振動により楕円振動が励起される
ことを特徴とする。
In order to achieve the above object, an ultrasonic transducer according to the first aspect of the present invention comprises:
An ultrasonic transducer for driving a driven body in a plurality of driving directions,
An elastic body comprising a frame and a plurality of beam portions supported by both sides of the frame;
A driver provided on a surface of the elastic body facing the driven body;
A plurality of piezoelectric portions provided on the opposite surface of the beam portion to the driven body and the back surface thereof,
Comprising
The plurality of beam portions of the elastic body extend in directions corresponding to driving directions different from each other and intersect each other,
In the elastic body, elliptical vibrations are excited by the stretching vibrations of the plurality of piezoelectric parts at the intersections.

前記の目的を達成するために、本発明の第2の態様による超音波モータは、
複数方向に駆動可能に配設された被駆動体と、
枠体と、該枠体により両持支持された複数の梁部と、を備える弾性体と、
前記弾性体のうち前記被駆動体に対向する面に設けられ、前記被駆動体に対して圧接している駆動子と、
前記梁部のうち前記被駆動体との対向面及びその裏面に設けられた複数の圧電部と、
を具備し、
前記弾性体の前記複数の梁部は、それぞれ互いに異なる駆動方向に対応した方向に延びて互いに交差しており、
前記弾性体のうち前記交差に係る部位には、前記複数の圧電部の伸縮振動により楕円振動が励起され、
前記被駆動体は、前記楕円振動を駆動源として、前記駆動子により摩擦駆動される
ことを特徴とする。
In order to achieve the above object, an ultrasonic motor according to the second aspect of the present invention comprises:
A driven body arranged to be drivable in a plurality of directions;
An elastic body comprising a frame and a plurality of beam portions supported by both sides of the frame;
A driver provided on a surface of the elastic body facing the driven body and being in pressure contact with the driven body;
A plurality of piezoelectric portions provided on the opposite surface of the beam portion to the driven body and the back surface thereof,
Comprising
The plurality of beam portions of the elastic body extend in directions corresponding to driving directions different from each other and intersect each other,
Elliptical vibrations are excited by the stretching vibrations of the plurality of piezoelectric portions at the intersections of the elastic bodies.
The driven body is frictionally driven by the driver using the elliptical vibration as a driving source.

本発明によれば、多自由度の超音波モータの薄型化を実現する超音波振動子、及び該超音波振動子を利用した超音波モータを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ultrasonic vibrator which implement | achieves thickness reduction of a multi-degree-of-freedom ultrasonic motor, and the ultrasonic motor using this ultrasonic vibrator can be provided.

本発明の一実施形態に係る超音波振動子を適用した超音波モータの一構成例を示す図。The figure which shows the example of 1 structure of the ultrasonic motor to which the ultrasonic transducer | vibrator which concerns on one Embodiment of this invention is applied. 図1に示す超音波モータの上面図。The top view of the ultrasonic motor shown in FIG. 図1に示す超音波モータの下面図。The bottom view of the ultrasonic motor shown in FIG. 図1に示す超音波モータの側面図。The side view of the ultrasonic motor shown in FIG. 図2に示すN−N断面の矢視図。FIG. 3 is an arrow view of the NN cross section shown in FIG. 2. X方向振動モード時の弾性体の変形状態の一例を示す斜視図。The perspective view which shows an example of the deformation | transformation state of the elastic body at the time of a X direction vibration mode. 図2に示すM−M断面の矢視図。The arrow MM view of the MM cross section shown in FIG. Z方向振動モード時の弾性体の変形状態の一例を示す斜視図。The perspective view which shows an example of the deformation | transformation state of the elastic body at the time of Z direction vibration mode. 圧電素子A1,A2,B1,B2に印加する駆動信号の一例を示す図。The figure which shows an example of the drive signal applied to piezoelectric element A1, A2, B1, B2. 圧電素子C1,C2,D1,D2に印加する駆動信号の一例を示す図。The figure which shows an example of the drive signal applied to piezoelectric element C1, C2, D1, D2. 図2に示すM−M断面の矢視図。The arrow MM view of the MM cross section shown in FIG. Y方向振動モード時の弾性体の変形状態の一例を示す斜視図。The perspective view which shows an example of the deformation | transformation state of the elastic body at the time of a Y direction vibration mode. 図2に示すN−N断面の矢視図。FIG. 3 is an arrow view of the NN cross section shown in FIG. 2. Z方向振動モード時の弾性体の変形状態の一例を示す斜視図。The perspective view which shows an example of the deformation | transformation state of the elastic body at the time of Z direction vibration mode.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本発明の一実施形態に係る超音波振動子を適用した超音波モータの一構成例を示す図である。図2は、同超音波モータの上面図である。図3は、同超音波モータの下面図である。図4は、同超音波モータの側面図(図2及び図3において矢印E1で示す方向から観た側面図)である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration example of an ultrasonic motor to which an ultrasonic transducer according to an embodiment of the present invention is applied. FIG. 2 is a top view of the ultrasonic motor. FIG. 3 is a bottom view of the ultrasonic motor. FIG. 4 is a side view of the ultrasonic motor (a side view seen from the direction indicated by an arrow E1 in FIGS. 2 and 3).

本一実施形態に係る超音波モータは、弾性体10と、圧電素子A1,A2,B1,B2,C1,C2,D1,D2と、駆動子A1d,B1d,C1d,D1dと、被駆動体20と、を具備する。
前記弾性体10は、枠体10fと、枝部10−A,10−B,10−C,10−Dと、を具備する。この弾性体10の材料としては、例えば真鍮やステンレス等を挙げることができる。
The ultrasonic motor according to the present embodiment includes an elastic body 10, piezoelectric elements A1, A2, B1, B2, C1, C2, D1, and D2, drivers A1d, B1d, C1d, and D1d, and a driven body 20. And.
The elastic body 10 includes a frame body 10f and branch portions 10-A, 10-B, 10-C, and 10-D. Examples of the material of the elastic body 10 include brass and stainless steel.

前記枠体10fは、平面視正方形状の外形を呈し(図2及び図3参照)、中央部近傍に中空領域が形成されている枠体である。
前記枝部10−A,10−B,10−C,10−Dは、枠体10fの中空領域において十字形状を呈するように連結されている枝部である。
The frame body 10f is a frame body having a square shape in plan view (see FIGS. 2 and 3) and having a hollow region in the vicinity of the center.
The said branch part 10-A, 10-B, 10-C, 10-D is a branch part connected so that a cross shape may be exhibited in the hollow area | region of the frame 10f.

前記圧電素子A1,B1,C1,D1は、それぞれ各枝部10−A,10−B,10−C,10−D上面に、例えば接着等により固定された圧電素子である(図2参照)。
前記圧電素子A2,B2,C2,D2は、それぞれ各枝部10−A,10−B,10−C,10−D下面に、例えば接着等により固定された圧電素子である(図3参照)。
The piezoelectric elements A1, B1, C1, and D1 are piezoelectric elements that are fixed to the upper surfaces of the branch portions 10-A, 10-B, 10-C, and 10-D, respectively, by bonding or the like (see FIG. 2). .
The piezoelectric elements A2, B2, C2, and D2 are piezoelectric elements that are fixed to the lower surfaces of the branch portions 10-A, 10-B, 10-C, and 10-D, respectively, by bonding or the like (see FIG. 3). .

ここで、圧電素子A1と圧電素子A2とは、枝部10−Aの上下面において互いに対応する位置に配設されている。圧電素子B1と圧電素子B2とは、枝部10−Bの上下面において互いに対応する位置に配設されている。圧電素子C1と圧電素子C2とは、枝部10−Cの上下面において互いに対応する位置に配設されている。圧電素子D1と圧電素子D2とは、枝部10−Dの上下面において互いに対応する位置に配設されている。   Here, the piezoelectric element A1 and the piezoelectric element A2 are disposed at positions corresponding to each other on the upper and lower surfaces of the branch portion 10-A. The piezoelectric element B1 and the piezoelectric element B2 are disposed at positions corresponding to each other on the upper and lower surfaces of the branch portion 10-B. The piezoelectric element C1 and the piezoelectric element C2 are disposed at positions corresponding to each other on the upper and lower surfaces of the branch portion 10-C. The piezoelectric element D1 and the piezoelectric element D2 are disposed at positions corresponding to each other on the upper and lower surfaces of the branch part 10-D.

換言すれば、前記圧電素子A1,B1,C1,D1,A2,B2,C2,D2は、枝部10−Aと枝部10−Bとから成り枠体10fに両持支持された梁部と、枝部10−Cと枝部10−Dとから成り枠体10fに両持支持された梁部とによって構成される十字部材のうち十字交差に係る部位(十字交差部CR)の中心点(交差点)について点対称に配置されており、且つ、当該弾性体10の上面と下面とで同様の配置態様で配置されている。   In other words, the piezoelectric elements A1, B1, C1, D1, A2, B2, C2, and D2 each include a beam portion that includes a branch portion 10-A and a branch portion 10-B and is supported at both ends by the frame body 10f. , The center point of the cross-related portion (cross-crossing portion CR) among the cross-members constituted by the beam portion that is composed of the branch portion 10-C and the branch portion 10-D and is supported by the frame 10f. Are arranged symmetrically with respect to the intersection), and the upper and lower surfaces of the elastic body 10 are arranged in the same manner.

前記駆動子A1dは、枝部10−A上面の十字交差部CR近傍において、圧電素子A1に並設された駆動子である。前記駆動子B1dは、枝部10−B上面の十字交差部CR近傍において、圧電素子B1に並設された駆動子である。前記駆動子C1dは、枝部10−C上面の十字交差部CR近傍において、圧電素子C1に並設された駆動子である。前記駆動子D1dは、枝部10−D上面の十字交差部CR近傍において、圧電素子D1に並設された駆動子である。   The driver A1d is a driver arranged in parallel with the piezoelectric element A1 in the vicinity of the cross intersection CR on the upper surface of the branch portion 10-A. The driver B1d is a driver arranged in parallel with the piezoelectric element B1 in the vicinity of the cross intersection CR on the upper surface of the branch portion 10-B. The driver C1d is a driver arranged in parallel with the piezoelectric element C1 in the vicinity of the cross intersection CR on the upper surface of the branch portion 10-C. The driver D1d is a driver arranged in parallel with the piezoelectric element D1 in the vicinity of the crossing portion CR on the upper surface of the branch portion 10-D.

これら駆動子A1d,B1d,C1d,D1dは、一方面がそれぞれ枝部10−A,10−B,10−C,10−Dに対して例えば接着等により固定されており、他方面は被駆動体20に対して接触する。
本一実施形態に係る超音波振動子は、上述の弾性体10と、圧電素子A1,A2,B1,B2,C1,C2,D1,D2と、駆動子A1d,B1d,C1d,D1dと、により構成されている。
These driver elements A1d, B1d, C1d, and D1d have one surface fixed to the branch portions 10-A, 10-B, 10-C, and 10-D by adhesion, for example, and the other surface is driven. Contact the body 20.
The ultrasonic transducer according to the present embodiment includes the elastic body 10 described above, piezoelectric elements A1, A2, B1, B2, C1, C2, D1, and D2, and driver elements A1d, B1d, C1d, and D1d. It is configured.

ところで、本一実施形態に係る超音波振動子では、三種類の振動モード(十字交差部CがX方向に振動する“X方向振動モード”、Y方向に振動する“Y方向振動モード”、及びZ方向に振動する“Z方向振動モード”)が存在し、それらの固有振動数が略同じ値となるように、弾性体10の厚さ、枝部10−A,10−B,10−C,10−Dの長さ等の各種寸法が設定されている。   By the way, in the ultrasonic transducer according to the present embodiment, three types of vibration modes (an “X direction vibration mode” in which the cross portion C vibrates in the X direction, a “Y direction vibration mode” in which the cross section C vibrates in the Y direction, and There are “Z-direction vibration modes” that vibrate in the Z direction, and the thickness of the elastic body 10 and the branch portions 10-A, 10-B, and 10-C are such that their natural frequencies have substantially the same value. , 10-D length and other dimensions are set.

詳細は後述するが、前記の各振動モードは各圧電素子が伸縮することで励起され、各振動モードが適宜組み合わせて同時に励起されることで、各駆動子近傍に楕円振動が励起される。
前記被駆動体20は、弾性体10の上面側に配設され、駆動子A1d,B1d,C1d,D1dに対して接触している。この被駆動体20は、駆動子A1d,B1d,C1d,D1dによって摩擦駆動される。なお、被駆動体20と駆動子A1d,B1d,C1d,D1dとは、例えば被駆動体20の自重等により圧接状態となっている。
Although details will be described later, each vibration mode is excited by expansion and contraction of each piezoelectric element, and elliptical vibration is excited in the vicinity of each driver by simultaneously exciting each vibration mode in combination.
The driven body 20 is disposed on the upper surface side of the elastic body 10 and is in contact with the driving elements A1d, B1d, C1d, D1d. The driven body 20 is frictionally driven by the driver elements A1d, B1d, C1d, and D1d. The driven body 20 and the driver elements A1d, B1d, C1d, and D1d are in a pressure contact state due to, for example, the weight of the driven body 20 or the like.

なお、被駆動体20は、不図示のガイド機構により、図1乃至図3に示すXY方向に(X−Y面内で)駆動可能に支持されている。
なお、上述の枠体10fには、その四隅に固定孔10h1,10h2,10h3,10h4が形成されている。これら固定孔10h1,10h2,10h3,10h4を利用して、被駆動体20への駆動子A1d,B1d,C1d,D1dの押圧力を更に強める為の不図示の押圧機構(例えばコイルバネ等で押圧しながら螺子締結する機構)を組み付けることも可能である。
The driven body 20 is supported by a guide mechanism (not shown) so that it can be driven in the XY directions shown in FIGS. 1 to 3 (in the XY plane).
The above-described frame body 10f has fixing holes 10h1, 10h2, 10h3, and 10h4 at the four corners. Using these fixing holes 10h1, 10h2, 10h3, and 10h4, a pressing mechanism (not shown) (for example, a coil spring) is used to further increase the pressing force of the driving elements A1d, B1d, C1d, and D1d to the driven body 20. It is also possible to assemble a screw fastening mechanism.

以下、本一実施形態に係る超音波モータの一駆動方法例について詳細に説明する。X−Y面上での被駆動体20の駆動方法について、X方向への駆動とY方向への駆動とに分けて詳細に説明する。
《X方向への駆動》
図5は、図2に示すN−N断面の矢視図である。図6は、X方向振動モード時の弾性体の変形状態の一例を示す斜視図である。図7は、図2に示すM−M断面の矢視図である。図8は、Z方向振動モード時の弾性体の変形状態の一例を示す斜視図である。図9は、圧電素子A1,A2,B1,B2に印加する駆動信号の一例を示す図である。図10は、圧電素子C1,C2,D1,D2に印加する駆動信号の一例を示す図である。ここで、各々の圧電素子A1,A2,B1,B2には、駆動信号として印加する電圧Vが正の値のときには伸び変形が生じ、電圧Vが負の値のときには縮み変形が生じるものとする。
Hereinafter, an example of a method for driving the ultrasonic motor according to the present embodiment will be described in detail. The driving method of the driven body 20 on the XY plane will be described in detail separately for driving in the X direction and driving in the Y direction.
《Drive in X direction》
FIG. 5 is an arrow view of the NN cross section shown in FIG. FIG. 6 is a perspective view showing an example of a deformed state of the elastic body in the X direction vibration mode. FIG. 7 is an arrow view of the MM cross section shown in FIG. FIG. 8 is a perspective view showing an example of a deformed state of the elastic body in the Z direction vibration mode. FIG. 9 is a diagram illustrating an example of drive signals applied to the piezoelectric elements A1, A2, B1, and B2. FIG. 10 is a diagram illustrating an example of drive signals applied to the piezoelectric elements C1, C2, D1, and D2. Here, in each of the piezoelectric elements A1, A2, B1, and B2, expansion deformation occurs when the voltage V applied as a drive signal is a positive value, and contraction deformation occurs when the voltage V is a negative value. .

以下、図5及び図6に示すX方向振動モードと、図7及び図8に示すZ方向振動モードとを利用して、被駆動体20を駆動する例を説明する。
図9に示すように、圧電素子A1に印加する駆動信号と、圧電素子A2に印加する駆動信号とを同相に設定し、且つ、圧電素子B1に印加する駆動信号と、圧電素子B2に印加する駆動信号とを同相に設定する。また、圧電素子A1,A2に印加する駆動信号と、圧電素子B1,B2に印加する駆動信号とが、図9に示すように互いに逆相となるように設定する。
Hereinafter, an example in which the driven body 20 is driven using the X-direction vibration mode shown in FIGS. 5 and 6 and the Z-direction vibration mode shown in FIGS. 7 and 8 will be described.
As shown in FIG. 9, the drive signal applied to the piezoelectric element A1 and the drive signal applied to the piezoelectric element A2 are set in phase, and the drive signal applied to the piezoelectric element B1 is applied to the piezoelectric element B2. Set the drive signal in phase. Further, the drive signals applied to the piezoelectric elements A1 and A2 and the drive signals applied to the piezoelectric elements B1 and B2 are set so as to have opposite phases as shown in FIG.

このような駆動信号を圧電素子A1,A2,B1,B2に印加することで、図5に示すようにX軸方向に配置されている圧電素子A1と圧電素子A2とを同時に伸縮させ、且つ、圧電素子B1と圧電素子B2とを圧電素子A1,A2とは逆相に同時に伸縮させる。結果として、図5及び図6において両矢印Xで示す方向に、弾性体10を変形させることができる。   By applying such a drive signal to the piezoelectric elements A1, A2, B1, and B2, the piezoelectric element A1 and the piezoelectric element A2 arranged in the X-axis direction as shown in FIG. 5 are simultaneously expanded and contracted, and The piezoelectric element B1 and the piezoelectric element B2 are simultaneously expanded and contracted in opposite phases to the piezoelectric elements A1 and A2. As a result, the elastic body 10 can be deformed in the direction indicated by the double arrow X in FIGS. 5 and 6.

換言すれば、圧電素子A1,A2,B1,B2に上述の駆動信号を印加することで、図5及び図6に示すように十字交差部CRが並進する変形が弾性体10に生じ、該変形がX方向についての加振力となり、X方向振動モードが励起される。
一方、図9及び図10に示すように、圧電素子C1と圧電素子D1とには圧電素子A1,A2に印加する駆動信号と同位相の駆動信号を印加し、且つ、圧電素子C2と圧電素子D2とには圧電素子B1,B2に印加する駆動信号と同位相の駆動信号を印加する。
In other words, by applying the drive signal described above to the piezoelectric elements A1, A2, B1, and B2, the elastic body 10 undergoes a deformation in which the cross-cross portion CR translates as shown in FIGS. Becomes the excitation force in the X direction, and the X direction vibration mode is excited.
On the other hand, as shown in FIGS. 9 and 10, a drive signal having the same phase as the drive signals applied to the piezoelectric elements A1 and A2 is applied to the piezoelectric element C1 and the piezoelectric element D1, and the piezoelectric element C2 and the piezoelectric element are applied. A drive signal having the same phase as the drive signal applied to the piezoelectric elements B1 and B2 is applied to D2.

このような駆動信号を圧電素子C1,C2,D1,D2に印加することで、図7に示すように圧電素子C1と圧電素子C2とを互いに逆相に伸縮させ、且つ、圧電素子D1と圧電素子D2とを互いに逆相に伸縮させることができる。ここで、圧電素子C1と圧電素子D1とについては同相で伸縮させ、且つ、圧電素子C2と圧電素子D2とについては同相で伸縮させる。   By applying such a drive signal to the piezoelectric elements C1, C2, D1, and D2, the piezoelectric element C1 and the piezoelectric element C2 expand and contract in opposite phases as shown in FIG. 7, and the piezoelectric element D1 and the piezoelectric element The element D2 can be expanded and contracted in opposite phases. Here, the piezoelectric element C1 and the piezoelectric element D1 are expanded and contracted in the same phase, and the piezoelectric element C2 and the piezoelectric element D2 are expanded and contracted in the same phase.

結果として、図7及び図8において両矢印Zで示す方向に、弾性体10を変形させることができる。これにより、図7及び図8に示すようにZ軸方向に各枝部が屈曲する変形が生じ、該変形がZ方向についての加振力となり、Z方向振動モードが励起される。   As a result, the elastic body 10 can be deformed in the direction indicated by the double arrow Z in FIGS. Thereby, as shown in FIG.7 and FIG.8, the deformation | transformation which each branch part bends to a Z-axis direction arises, This deformation | transformation becomes an excitation force about a Z direction, and a Z direction vibration mode is excited.

そして、図5及び図6に示すX方向振動モードと、図7及び図8に示すZ方向振動モードとの位相差(圧電素子A1,A2,B1,B2に印加する駆動信号と、圧電素子C1,C2,D1,D2に印加する駆動信号との位相差)を適宜設定することで、十字交差部CR近傍に、XZ面内の楕円振動が発生し、被駆動体20をX方向に駆動することが可能となる。   The phase difference between the X direction vibration mode shown in FIGS. 5 and 6 and the Z direction vibration mode shown in FIGS. 7 and 8 (the drive signal applied to the piezoelectric elements A1, A2, B1, and B2, and the piezoelectric element C1). , C2, D1, and D2), the elliptical vibration in the XZ plane is generated near the cross intersection CR, and the driven body 20 is driven in the X direction. It becomes possible.

詳細には、圧電素子A1,A2,B1,B2に印加する駆動信号と、圧電素子C1,C2,D1、D2に印加する駆動信号との位相差を90度に設定する。これにより、十字交差部CR近傍にXZ面内の楕円振動が発生し、駆動子A1d,B1d,C1d,D1dによって被駆動体20をX方向に摩擦駆動することができる。
《Y方向への駆動》
図11は、図2に示すM−M断面の矢視図である。図12は、Y方向振動モード時の弾性体の変形状態の一例を示す斜視図である。図13は、図2に示すN−N断面の矢視図である。図14は、Z方向振動モード時の弾性体の変形状態の一例を示す斜視図である。
Specifically, the phase difference between the drive signal applied to the piezoelectric elements A1, A2, B1, and B2 and the drive signal applied to the piezoelectric elements C1, C2, D1, and D2 is set to 90 degrees. Thereby, elliptical vibration in the XZ plane is generated in the vicinity of the cross intersection CR, and the driven body 20 can be frictionally driven in the X direction by the driver elements A1d, B1d, C1d, and D1d.
<< Driving in Y direction >>
11 is a cross-sectional view of the MM cross section shown in FIG. FIG. 12 is a perspective view illustrating an example of a deformed state of the elastic body in the Y-direction vibration mode. 13 is an arrow view of the NN cross section shown in FIG. FIG. 14 is a perspective view showing an example of a deformed state of the elastic body in the Z direction vibration mode.

図11に示すように、圧電素子C1と圧電素子C2とを同相で伸縮させ、且つ、圧電素子D1と圧電素子D2とを同相で伸縮させる。また、圧電素子C1及び圧電素子C2と、圧電素子D1及び圧電素子D2とが互いに逆相で伸縮するように設定する。
すなわち、圧電素子C1に印加する駆動信号と、圧電素子C2に印加する駆動信号とを同相に設定し、且つ、圧電素子D1に印加する駆動信号と、圧電素子D2に印加する駆動信号とを同相に設定する。そして、圧電素子C1,C2に印加する駆動信号と、圧電素子D1,D2に印加する駆動信号とについては、互いに逆相となるように設定する。
As shown in FIG. 11, the piezoelectric element C1 and the piezoelectric element C2 are expanded and contracted in the same phase, and the piezoelectric element D1 and the piezoelectric element D2 are expanded and contracted in the same phase. In addition, the piezoelectric element C1 and the piezoelectric element C2, and the piezoelectric element D1 and the piezoelectric element D2 are set to expand and contract in opposite phases.
That is, the drive signal applied to the piezoelectric element C1 and the drive signal applied to the piezoelectric element C2 are set in phase, and the drive signal applied to the piezoelectric element D1 and drive signal applied to the piezoelectric element D2 are in phase. Set to. The drive signals applied to the piezoelectric elements C1 and C2 and the drive signals applied to the piezoelectric elements D1 and D2 are set so as to have opposite phases.

このような駆動信号を圧電素子C1,C2,D1,D2に印加して、図11に示すように圧電素子C1と圧電素子C2とを同時に伸縮させ、且つ、圧電素子D1と圧電素子D2とを圧電素子C1,C2とは逆相に同時に伸縮させる。結果として、図11及び図12において両矢印Yで示す方向に、弾性体10を変形させることができる。   By applying such a drive signal to the piezoelectric elements C1, C2, D1, and D2, the piezoelectric elements C1 and C2 are simultaneously expanded and contracted as shown in FIG. 11, and the piezoelectric elements D1 and D2 are expanded and contracted. The piezoelectric elements C1 and C2 are simultaneously expanded and contracted in the opposite phase. As a result, the elastic body 10 can be deformed in the direction indicated by the double arrow Y in FIGS. 11 and 12.

換言すれば、圧電素子C1,C2,D1,D2に上述の駆動信号を印加することで、図11及び図12に示すように十字交差部CRが並進する変形が弾性体10に生じ、該変形がY方向についての加振力となり、Y方向振動モードが励起される。
一方、図13に示すように、圧電素子A1と圧電素子A2とを互いに逆相に伸縮させ、且つ、圧電素子B1と圧電素子B2とを互いに逆相に伸縮させる。また、圧電素子A1と圧電素子B1とが同相となるように、且つ、圧電素子A2と圧電素子B2とが同相となるように設定する。
In other words, by applying the drive signal described above to the piezoelectric elements C1, C2, D1, and D2, the elastic body 10 undergoes a deformation in which the cross-cross portion CR translates as shown in FIGS. Becomes the excitation force in the Y direction, and the Y direction vibration mode is excited.
On the other hand, as shown in FIG. 13, the piezoelectric element A1 and the piezoelectric element A2 are expanded and contracted in opposite phases, and the piezoelectric element B1 and the piezoelectric element B2 are expanded and contracted in opposite phases. Further, the piezoelectric element A1 and the piezoelectric element B1 are set to be in phase, and the piezoelectric element A2 and the piezoelectric element B2 are set to be in phase.

すなわち、圧電素子A1に印加する駆動信号と、圧電素子B1に印加する駆動信号とを同相に設定し、且つ、圧電素子A2に印加する駆動信号と、圧電素子B2に印加する駆動信号とを同相に設定する。ここで、圧電素子A1,B1に印加する駆動信号と、圧電素子A2,B2に印加する駆動信号とについては、互いに逆相となるように設定する。   That is, the drive signal applied to the piezoelectric element A1 and the drive signal applied to the piezoelectric element B1 are set in phase, and the drive signal applied to the piezoelectric element A2 and drive signal applied to the piezoelectric element B2 are in phase. Set to. Here, the drive signals applied to the piezoelectric elements A1 and B1 and the drive signals applied to the piezoelectric elements A2 and B2 are set so as to have opposite phases.

このような駆動信号を圧電素子A1,A2,B1,B2に印加することで、結果として、図13及び図14において両矢印Zで示す方向に、弾性体10を変形させることができる。これにより、図13及び図14に示すようにZ軸方向に各枝部が屈曲する変形が生じ、該変形がZ方向についての加振力となり、Z方向振動モードが励起される。   By applying such a drive signal to the piezoelectric elements A1, A2, B1, and B2, as a result, the elastic body 10 can be deformed in the direction indicated by the double arrow Z in FIGS. As a result, as shown in FIGS. 13 and 14, a deformation occurs in which each branch portion bends in the Z-axis direction, and the deformation becomes an excitation force in the Z direction, and the Z-direction vibration mode is excited.

換言すれば、圧電素子A1,A2,B1,B2に上述の駆動信号を印加することで、図14に示すように十字交差部CRが並進する変形が弾性体10に生じ、該変形がZ方向についての加振力となり、図14に示すようなZ方向振動モードが励起される。
そして、図11及び図12に示すY方向振動モードと、図13及び図14に示すZ方向振動モードとの位相差(圧電素子A1,A2,B1,B2に印加する駆動信号と、圧電素子C1,C2,D1,D2に印加する駆動信号との位相差)を適宜設定することで、十字交差部CR近傍に、YZ面内の楕円振動が発生し、被駆動体20をY方向に駆動することが可能となる。
In other words, by applying the drive signal to the piezoelectric elements A1, A2, B1, and B2, the elastic body 10 undergoes a deformation that translates the cross intersection CR as shown in FIG. 14, and the deformation occurs in the Z direction. The Z-direction vibration mode as shown in FIG. 14 is excited.
The phase difference between the Y-direction vibration mode shown in FIGS. 11 and 12 and the Z-direction vibration mode shown in FIGS. 13 and 14 (the drive signal applied to the piezoelectric elements A1, A2, B1, and B2, and the piezoelectric element C1). , C2, D1, and D2), the elliptical vibration in the YZ plane is generated in the vicinity of the cross intersection CR, and the driven body 20 is driven in the Y direction. It becomes possible.

詳細には、圧電素子A1,A2,B1,B2に印加する駆動信号と、圧電素子C1,C2,D1、D2に印加する駆動信号との位相差を90度に設定する。これにより、十字交差部CR近傍にYZ面内の楕円振動が発生し、駆動子A1d,B1d,C1d,D1dによって被駆動体20をY方向に摩擦駆動することができる。   Specifically, the phase difference between the drive signal applied to the piezoelectric elements A1, A2, B1, and B2 and the drive signal applied to the piezoelectric elements C1, C2, D1, and D2 is set to 90 degrees. Thereby, elliptical vibration in the YZ plane is generated in the vicinity of the cross intersection CR, and the driven body 20 can be frictionally driven in the Y direction by the driver elements A1d, B1d, C1d, and D1d.

以上説明したように、本一実施形態によれば、多自由度の超音波モータの薄型化を実現する超音波振動子、及び該超音波振動子を利用した超音波モータを提供することができる。
すなわち、8つの圧電素子A1,B1,C1,D1,A2,B2,C2,D2を上述したように適宜組み合わせて伸縮させることで、被駆動体をX方向及びY方向に選択的に駆動することができ、非常に簡略な構成で薄型化を実現した多自由度の超音波モータが実現した。
As described above, according to the present embodiment, it is possible to provide an ultrasonic vibrator that realizes thinning of a multi-degree-of-freedom ultrasonic motor, and an ultrasonic motor using the ultrasonic vibrator. .
That is, the driven body is selectively driven in the X direction and the Y direction by appropriately combining and expanding the eight piezoelectric elements A1, B1, C1, D1, A2, B2, C2, and D2 as described above. This has realized a multi-degree-of-freedom ultrasonic motor with a very simple configuration and reduced thickness.

換言すれば、十字形状を呈する部位(枝部10−A,10−B,10−C,10−D)を有する弾性体(弾性体10)の表面及び裏面に、それぞれ圧電素子(A1,A2,B1,B2,C1,C2,D1,D2)を固着し、これら圧電素子の伸縮の組み合わせにより、当該十字形状における十字交差部位(十字交差部CR)に楕円振動を発生させる。そして、この楕円振動する十字交差部位に加圧接触させた被駆動体(被駆動体20)を2自由度に駆動する。このような構成を採ることで、薄型且つ多自由度の超音波モータが実現する。   In other words, piezoelectric elements (A1, A2) are respectively formed on the front and back surfaces of an elastic body (elastic body 10) having cross-shaped portions (branches 10-A, 10-B, 10-C, 10-D). , B1, B2, C1, C2, D1, D2) are fixed, and elliptical vibration is generated at the cross-cross portion (cross-cross portion CR) in the cross shape by a combination of expansion and contraction of these piezoelectric elements. Then, the driven body (driven body 20) that is brought into pressure contact with the cross-crossing portion that vibrates elliptically is driven with two degrees of freedom. By adopting such a configuration, a thin and multi-degree-of-freedom ultrasonic motor is realized.

以上、一実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で、種々の変形及び応用が可能なことは勿論である。
例えば、弾性体に設ける枝部の数は4つに限られず、枝部が呈する形状も十字形状でなくともよい。また、枝部に設ける圧電素子の数は8つに限られず、枝部が呈する形状に応じて適宜設ければよい。さらに、駆動子についても、枝部及び圧電素子の配設態様に応じて適宜設ければよい。
The present invention has been described based on one embodiment. However, the present invention is not limited to the above-described embodiment, and various modifications and applications are possible within the scope of the gist of the present invention. It is.
For example, the number of branch portions provided in the elastic body is not limited to four, and the shape of the branch portions may not be a cross shape. Further, the number of piezoelectric elements provided in the branch portion is not limited to eight, and may be appropriately provided according to the shape exhibited by the branch portion. Further, the driver element may be provided as appropriate according to the arrangement of the branch portions and the piezoelectric elements.

さらに、上述した実施形態には種々の段階の発明が含まれており、開示した複数の構成要件の適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示す全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成も発明として抽出され得る。   Further, the above-described embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention can be achieved. In the case of being obtained, a configuration from which this configuration requirement is deleted can also be extracted as an invention.

A1d,B1d,C1d,D1d…駆動子、 A1,A2,B1,B2,C1,C2,D1,D2…圧電素子、 CR…十字交差部、 10…弾性体、 10f…枠体、 10−A,10−B,10−C,10−D…枝部、 10h1,10h2,10h3,10h4…固定孔、 20…被駆動体。     A1d, B1d, C1d, D1d ... Driver, A1, A2, B1, B2, C1, C2, D1, D2 ... Piezoelectric element, CR ... Cross intersection, 10 ... Elastic body, 10f ... Frame, 10-A, 10-B, 10-C, 10-D ... branches, 10h1, 10h2, 10h3, 10h4 ... fixing hole, 20 ... driven body.

Claims (4)

複数の駆動方向に被駆動体を駆動する為の超音波振動子であって、
枠体と、該枠体により両持支持された複数の梁部と、を備える弾性体と、
前記弾性体のうち前記被駆動体に対向する面に設けられた駆動子と、
前記梁部のうち前記被駆動体との対向面及びその裏面に設けられた複数の圧電部と、
を具備し、
前記弾性体の前記複数の梁部は、それぞれ互いに異なる駆動方向に対応した方向に延びて互いに交差しており、
前記弾性体のうち前記交差に係る部位には、前記複数の圧電部の伸縮振動により楕円振動が励起される
ことを特徴とする超音波振動子。
An ultrasonic transducer for driving a driven body in a plurality of driving directions,
An elastic body comprising a frame and a plurality of beam portions supported by both sides of the frame;
A driver provided on a surface of the elastic body facing the driven body;
A plurality of piezoelectric portions provided on the opposite surface of the beam portion to the driven body and the back surface thereof,
Comprising
The plurality of beam portions of the elastic body extend in directions corresponding to driving directions different from each other and intersect each other,
The ultrasonic vibrator is characterized in that elliptical vibrations are excited by the stretching vibrations of the plurality of piezoelectric portions at the crossing portions of the elastic body.
前記圧電部は、前記梁部のうち前記交差に係る部位の交差点について点対称に配置されており、且つ、前記対向面と前記裏面とで同様の配置態様で配置されている
ことを特徴とする請求項1記載の超音波振動子。
The piezoelectric parts are arranged point-symmetrically with respect to the intersection of the parts related to the intersection of the beam parts, and are arranged in the same arrangement manner on the facing surface and the back surface. The ultrasonic transducer according to claim 1.
複数方向に駆動可能に配設された被駆動体と、
枠体と、該枠体により両持支持された複数の梁部と、を備える弾性体と、
前記弾性体のうち前記被駆動体に対向する面に設けられ、前記被駆動体に対して圧接している駆動子と、
前記梁部のうち前記被駆動体との対向面及びその裏面に設けられた複数の圧電部と、
を具備し、
前記弾性体の前記複数の梁部は、それぞれ互いに異なる駆動方向に対応した方向に延びて互いに交差しており、
前記弾性体のうち前記交差に係る部位には、前記複数の圧電部の伸縮振動により楕円振動が励起され、
前記被駆動体は、前記楕円振動を駆動源として、前記駆動子により摩擦駆動される
ことを特徴とする超音波モータ。
A driven body arranged to be drivable in a plurality of directions;
An elastic body comprising a frame and a plurality of beam portions supported by both sides of the frame;
A driver provided on a surface of the elastic body facing the driven body and being in pressure contact with the driven body;
A plurality of piezoelectric portions provided on the opposite surface of the beam portion to the driven body and the back surface thereof,
Comprising
The plurality of beam portions of the elastic body extend in directions corresponding to driving directions different from each other and intersect each other,
Elliptical vibrations are excited by the stretching vibrations of the plurality of piezoelectric portions at the intersections of the elastic bodies.
The ultrasonic motor is characterized in that the driven body is frictionally driven by the driver using the elliptical vibration as a driving source.
前記圧電部は、前記梁部のうち前記交差に係る部位の交差点について点対称に配置されており、且つ、前記対向面と前記裏面とで同様の配置態様で配置されている
ことを特徴とする請求項3記載の超音波モータ。
The piezoelectric parts are arranged point-symmetrically with respect to the intersection of the parts related to the intersection of the beam parts, and are arranged in the same arrangement manner on the facing surface and the back surface. The ultrasonic motor according to claim 3.
JP2010269302A 2010-12-02 2010-12-02 Ultrasonic transducer and ultrasonic motor Withdrawn JP2012120370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269302A JP2012120370A (en) 2010-12-02 2010-12-02 Ultrasonic transducer and ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269302A JP2012120370A (en) 2010-12-02 2010-12-02 Ultrasonic transducer and ultrasonic motor

Publications (1)

Publication Number Publication Date
JP2012120370A true JP2012120370A (en) 2012-06-21

Family

ID=46502567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269302A Withdrawn JP2012120370A (en) 2010-12-02 2010-12-02 Ultrasonic transducer and ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2012120370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320015A (en) * 2014-10-15 2015-01-28 吉林大学 Bionic multi-degree of freedom precise piezoelectric driving device
CN108400722A (en) * 2018-04-18 2018-08-14 哈尔滨工业大学 A kind of two-freedom Piexoelectric actuator and its motivational techniques

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320015A (en) * 2014-10-15 2015-01-28 吉林大学 Bionic multi-degree of freedom precise piezoelectric driving device
CN108400722A (en) * 2018-04-18 2018-08-14 哈尔滨工业大学 A kind of two-freedom Piexoelectric actuator and its motivational techniques
CN108400722B (en) * 2018-04-18 2019-11-08 哈尔滨工业大学 A kind of two-freedom Piexoelectric actuator and its motivational techniques

Similar Documents

Publication Publication Date Title
JP5979817B2 (en) Vibration wave drive
EP2587343A1 (en) Method of generating 3d haptic feedback and an associated handheld electronic device
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
TW200933194A (en) MEMS scanning micromirror
JP5655861B2 (en) Piezoelectric generator and manufacturing method thereof
JP2014018027A (en) Vibration type actuator, imaging apparatus, and stage
CN102868315A (en) Paster-type bending vibration composite dual-feet ultrasound motor oscillator
CN104967355A (en) Bionic crawling multi-foot linear piezoelectric actuator
JP2012120370A (en) Ultrasonic transducer and ultrasonic motor
US8525388B2 (en) Vibration wave driving apparatus and manufacturing method of vibration body
JP5669444B2 (en) Vibration type driving device
JP5665360B2 (en) Vibration wave actuator
CN102868316A (en) Paster-type dual-feet ultrasound motor oscillator
JP2010122403A (en) Fine-positioning mechanism equipped with ultrasonic motor
JP2574577B2 (en) Linear actuator
JPH08182351A (en) Ultrasonic actuator
JP2012029478A (en) Vibrator and ultrasonic motor
JP2012115038A (en) Vibrating body of vibration type driving device, and method of manufacturing the same
CN113595439B (en) Circular patch type bipedal linear ultrasonic motor and stator thereof
JPH05115846A (en) Ultrasonic vibrator and driver having the same
JP2004187334A (en) Ultrasonic motor and electronic apparatus fitted therewith
JP2008148440A (en) Oscillation driver
JPH0386087A (en) Actuator
JP2012139071A (en) Ultrasonic motor
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140204